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1. Introduction. Curves and their representation in 17 th century mathematics 

1.I From antiquity until the beginning of the seventeenth century the collec- 
tion of plane curves known to mathematicians did not change. It consisted in 
the conic sections, some higher algebraic curves such as the conchoid of NIC0- 
MEDES and the cissoid of Dt0CLES, and a few transcendental curves the most 
important of which were the Archimedean spiral and the quadratrix of DIN0- 
STRArtrS. There was a marked change in this situation in the seventeenth century. 
Over a short period mathematicians vastly expanded the realm of curves open to 
mathematical treatment. Through the new analytic geometry o f  FERMAT and 
DESCARTES the collection of mathematical curves came to include all algebraic 
curves, that is, all curves whose equation in rectilinear coordinates involves only 

the algebraic operations + ,  --, × , -  and ~/ - (k  > 1, integer). The collection 
of transcendental curves, that is curves which do not admit an equation as above, 
was enlarged as well. The cycloid appeared on the mathematical scene around 
1630, and the logarithmic curve in the 1660's. After that mathematicians encoun- 
tered many more curves that depended algebraically on these two fundamental 
transcendentals. Most of these curves occurred as solutions of inverse tangent 
problems° 

The new curves, like the earlier ones, could play three different roles. They 
could be an object of study, they could be a means to solve a problem and they 
could themselves be the solution of a problem. Thus PASCAL, in his famous 
challenge to mathematicians of 1658, proposed the cycloid as an object of study 
and suggested that its area, the areas and centres of gravity of its segments and 
the contents and centres of gravity of solids arising by rotation of its segments 
be determined. 

The "Cartesian parabola", introduced by DESCARTES in his Gdomdtrie, was 
an example of a new curve that served as a means to solve a problem; the curve 
was used in the geometrical construction of the roots of equations of 5 th and 6 th 

degrees (eft 5.2). 
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Finally, the curve with modern equation 

_L 
ae ~ = a - - y + x  (I ;1)  

is an example of a (transcende_ntal) curve which originated as the solution of a 
problem, namely the famous problem of DEBEAtmE (1638) (c f  note 31). 

1.2 The enormous increase in the number of curves forced 17th-century mathe- 
maticians to think about how new curves could be introduced, described or de- 
fined. If the curves were to serve as an object of study, a means of solving a problem 
or as a solution, they had to be or to become known. In the previous period this 
was no problem since all curves were known and mathematicians could refer to 
any of them by name (ellipse, conchoid, spiral etc.), adding~ if necessary, the values 
of their parameters. 

But when is a new curve sufficiently known ? Seventeenth-century mathemati- 
cians did not have a uniform definition of the concept of curve (nor apparently 
did they feel the need for such a definition) and therefore they had no standard 
form for specifying the curves they had in mind. In fact, there were many ways 
of specifying curves. One could, for instance, indicate how points on the curve 
could be constructed, one could describe a machine by which the curve could be 
traced, and (after analytic geometry had been introduced) one could give the 
equation of the curve. Some of these ways of describing curves were considered 
satisfactory, others less so, some not at all. 

I shall use the term "representations of curves" to mean ways of specifying 
curves which were thought to make the curves sufficiently known. This term was 
not used in the 17 t~ century with that meaning; there was no term with that mean- 
ing then. Nevertheless, mathematicians did use the term "construction of curves" 
which has almost the same meaning but is more restricted. 

The different ways in which curves were specified in 17 th century mathematics, 
the preferences that mathematicians expressed for certain of them and the reason 
given for these preferences form an important and interesting theme for historical 
study° These ways and preferences influenced the direction in which mathematics 
developed° Until now historians of mathematics have been hardly aware of this 
theme, mainly because a too rapid translation of 17th-century mathematical argu- 
ments into modern analytical symbolism has obscured these aspects of the treat- 
ment of curves° The subject is also of more general interest because it touches 
on a wider mathematical, or perhaps metamathematical, question, namely, when 
is a mathematical entity "known" or when is a problem "solved"? 

1o3 In this study I shall deal in particular with the representation of curves 
in DESCARTES' Gdomdtrie 1. At one stroke the Gdomdtrie brought all the algebraic 

i R. DESCARTES, La Ge~omEtrie, one of the essays in his Discours de la mdthode pour 
bien conduire sa raison, et chercher la u~rit~ clans les sciences, phts la Dioptrique, les 
Meteores et la Geometrie qui sont des essais de cete methode, Leiden, 1637. In references 
to the G~om~trie I use the abbreviation G and I shall use the page numbers of the original 
edition (pp. 297--413). The original text is easily accessible in The geometry o f  Rend 
Descartes with a facsimile o f  the first edition (tr. and ed. by D. E. Sirra & M. L. LA- 
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curves into focus. But, as historians of  mathematics have remarked 2 (with some 
surprise), DESCARTES did not  consider  the equation to be a sufficient representa- 
tion of  the curve; he used other kinds of  representation instead. 

Moreover, DESCARTES introduced a sharp distinction between admissible and 
inadmissible curves. The first he called "geometrical" the other "mechanical".  
The "geometrical" curves are what we now call algebraic curves (although DES- 
CARVES did not explicitly say as much in the Gdomdtrie, this can be inferred from 
what he did state); the "mechanical" curves are those which are now termed 
transcendental curves. But because DESCARTES did not consider the equation a 
sufficient representation of  the curve, he could not  establish any distinction be- 
tween geometrical and non-geometrical curves on the basis of  their equations; he 
had to reason about  it on the basis of  representations of  curves which he did 
find acceptable. The acceptability of  representations of  curves is therefore a 
crucial concept in the Gdom~trie. 

DESCARTES' distinction between ' "geometr ical"  and "mechanical'., curves 
provided a serious issue in seventeenth-century matheniatics. The increasing 
interest in transcendental curves (curves therefore that to DESCARTES were not  
admissible in geometry) forced mathematicians to use methods other than those 
expounded in the Gdomdtrie and to take up a position with respect to the question 
of  how far such curves could be considered "geometrical" or somehow admissible. 
Again, this question could only be dealt with in terms of  the representation of  
these curves, and several of  the representations used in these debates had been used 
in DESCARTES' Gdom~trie. 

1.4 The complicated structure of  the G~omdtrie, the different roles of  curves 
in it, and DESCARTES' different criteria for geometrical acceptability o f  curves 
have not  yet been satisfactorily unravelled 3. A detailed analysis of  the roles of 

THAM), New York (Dover) 1954. In my translations of texts from the G~om~trie I have 
taken the English of SMrrI-I & LAX'l-tAM as my starting point. However, their translation 
is very free and often unreliable, so in many cases I have had to modify it. The edition 
of the G~om~trie in the (Euvres de Descartes (eds. C. ADAM & P. TANNERY, Paris 1897- 
1913) vol. 6, pp. 367-485 also indicates the page numbers of the original. I shall use 
the abbreviation A.T. to refer to the Oeuvres. 

2 See, for instance, C. B. BORER, History of analytic geometry (New York 1956) 
p. 88 and p. 102; see also M. S. MAI-IOrCEY, "Descartes: mathematics and physics",  
Dictionary of scientific biography (ed. C. C. GILLISPIX, New York 197010 vol. 4 (1971), 
pp. 55-61, footnote 7. 

3 There have been many studies on DESCARTES' G~omdtrie. Most of~these, however, 
are unsatisfactory as far as the questions I discuss are concerned because they seek to 
answer the unfruitful question as to whether DESCARTES did or did not invent analytic 
geometry. The best source for the actual contents of the G~om~trie is the G~om~trie 
itself. The best summary of its intention, its development and its place within DES- 
CAR~S' mathematics is still G. MILHAtlD, Descartes savant, Pads 1921. J, ITARD'S La 
g~omdtrie de Descartes (Conferences du Palais de la D~couverte, s&ie D, nr 39) Paris 
1956 is very penetrating but als0 very dense. I have found A. G. MOLLArCD'S "Shifting 
the foundations, Descartes' transformation of ancient geometry", Hist. Math. 3 (1976), 
pp. 21-49 very helpful since it discusses the history of the concepts of construction and 
classification of curves in antiquity and DESCARTES' opinions on these classical ideas. 
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curves and their representation in the G~omdtrie sheds new light on the structure 
of DESCARTES' book, on its underlying programme and on the earlier development 
of DESCARTES' ideas about geometry. There is a conflict in the Gdomdtrie between 
geometrical and algebraic, methods of definition and criteria of acceptability. 
This conflict reflects a break in the development of DESCARTES' thought about 
geometry. In an early phase DESCARTES considered that the aim of geometry was 
to construct solutions of geometrical problems by means of curves traced by certain 
instruments; the instruments served as acceptable generalizations of ruler and 
compass. He tried to find new constructions in this way and to classify them. 
About 1630 that plan seemed to stagnate and DESCARTES also became fully aware 
of the power of algebraic methods. He then changed his programme. Algebra 
became the dominant tool, both for the solution of problems and for the classifi- 
cation of curves. But DESCARTES continued to believe in the principle of geometrical 
construction by means of curves traceable by instruments. As a result, there are 
conflicting elements in the G~omdtrie. " 

I shall show that it was impossible for DESCARTES to keep strictly to his earlier 
programme which was based on the use of instruments, But it was also impossible 
for him to work out a fully algebraic programme. If he had kept to his earlier 
plans, he would have lost the advantages of algebra; if he had adopted a fully 
algebraic approach, he could no longer have claimed that he was doing geometry. 
The contradictions in the G~om~trie were indeed unavoidable. In order to under- 
stand DESCARTES' great contribution to geometry and algebra it is necessary 
to make these contradictions explicit and to explain how they influenced the struc- 
~ re  of the G~om~trie. 

The later synthesis of algebraic and geometrical methods into what is now 
called analytic geometry was possible only because later mathematicians were 

n o t  aware of (or forgot) the programmatic problems with which DESCARTES 
had struggled. 

2o The problem of Pappus 

2.1 In his Gdomdtrie DESCARTES expounded a new programme for dealing 
with geometrical problems, and he used one problem as the key example: the 
problem of PA~'PUS. I shall explain DESCARTES' programme in Section 3, but 
first I shall discuss the problem of PAPPUS and DESCARTES' solution of it. That 
discussion may illustrate the sort of geometrical problems which DESCARTES 
had in mind and explain the roles of geometrical constructions, curves and al- 
gebraic calculations in the Gdomdtrieo 

As far as the concepts of curves and constructions in DESCARTES' G~omdtrie are concerned 
one can compare J. VUILLEMIN) Mathdmatiques et mdtaphysique chez Descartes, Paris 
1960 (in particular Ch. III "De la classification cartrsienne des courbes", pp° 77ff.), 
G°-G. GRANGER, Essai d'une philosophie du style, Paris 1968 (in particular Ch. III 
"Style Cart~sien, style Argue~sien" pp. 43-70), and .to DHOMBI~S, Nombre, inesure et 
continu, dpist~mologie et histoire, Paris 1978 (in particular the section pp. 134-143). 
My interpretation of the Gdom~trie differs in several points from the interpretations 
given in these articles. 
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In explaining the problem of PAPPUS 4 I shall use symbols for the lines, dis- 
tances and numbers. DESCAR~S presented the problem in prose accompanied by 
drawings. Let (see Figure 1) a number of lines L~ be given in the plane, and let 
tp~ be fixed angles. 

J 

t~ J 

/J 
/ d~ = y ~ " -  - " ~ / ~ ' ~  

; 2 2 . -  -----'z ~ q~z 

>< 

Fig. 1 

Let ~.denote the length of the line segment from point P to Li which makes 
an angle ofq~i with Li. (If~0i is 90 °, d~ is the distance to L~.) Let ~ :  fl be a given ratio 
and a a given line segment. It is required to find points with the following properties: 

for three.lines: 

for four lines: 

(a l .  a2) : (a~) = ~, :/~, (2; 1) 

(d~. d_,): ( d 3 - & )  = ~ : f l ,  (2; 2) 

for an uneven number (2n -- 1) of lines, n > 2: 

(d~. . .  d,) : (dn+l . . .  d~_ 1 • a) = 0c:fl, (2; 3) 

and for an even number (2n) of lines, n > 2: 

(al .. a , )  : (a,+~ . . .  az~) = ~ : ~ .  (2;  4) 

PA1,Fus gives the problem for three and four lines as well as its generalization to 
more lines 5. What  we have here is a locus problem; in each case there are infinitely 
many points which satisfy the condition; these points form a locus in the plane; 

4 DESCARTES quoted the problem ((7, pp. 304-306) in Latin from the edition by 
COre~ANDn~O, Pappi Alexandrini Mathematicae Collectiones, Bologna 1588, pp. 164 v- 
165L For the Greek text see F. HULTSCH (ed.) Pappi Alexandrini Collectiones quae super- 
sunt Berlin 1876-1878, vol. 2, pp. 677. 

s Note however that (2; 3) is not a generalization of(2; 1). In fact (2; 1), the problem 
in three lines, is an exceptional case which arises when two lines coincide in the problem 
for four lines. 
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this locus is generally a curve. PAPPUS states that for three and four lines the locus 
is a conic section and that for more than four lines nothing is known about the 
form of  the locus. 

2.2 DESCARTES sketches the general solution of  the problem at the end of  the 
first book of  the Gdomdtrie (pp. 309-314). His method is as follows. He sets 

d~ = y (2; 5) 

and he takes x to be the distance along Lt  from a fixed point A to the intersection 
of  d~ with L, .  He then shows by simple geometrical arguments that all d~ can be 
expressed linearly in x and y:  

di = aix + biy -+- ci. (2; 6) 

He notes that in the exceptional case when all lines are parallel, x does not occur 
in the expressions for the di. 

He then remarks that the products d~ .. .  d,, d,+l . . .  dz~ and dn+t . . .  dz,-1 • a 
become expressions in x and y of  degree at most n. The conditions (2; I)--(2; 4) 
can therefore be rewritten as equations. Equation (2; 4) for instance becomes 6 

y(a2 x + bz.v + cz) . . .  (a,,x + b,,y -a t- c,,) 

0¢ 
= "~'(an+Ix + bn+tY + cn+1)... (aznx -'}- bz,d' + e2,,). (2; 7) 

For  n lines the equation will be of  degree at most n. For  n - -  1 lines the choice 
of  di = y and the occurrence of  a in the second product  of  lines implies that the 
highest power of  x is at most n - -  1. Thus the equation is of  degree at most n, 
but  the highest power of  x is at most n - -  1. This statement does not apply to 
the problem with only three lines, which makes that one exceptional. Finally for 
2n and 2n --  1 parallel lines the result is an equation in one unknown, namely 
y, of  degree at most n; the locus then consists in a number  of  lines parallel to the 
given lines. 

DESCARTES goes on to consider how the points satisfying the requirements 
of  the problem (the points on the locus) can be constructed. He chooses arbitrary 

D~SCARTES did not discuss the fact that as a result of this rewriting the di may have 
negative values, whereas the obvious interpretation of the original problem would re- 
quire the d~ to remain positive. The effect of this is that DESCARTES found only one 
curve as locus, while the original interpretation would lead to a locus consisting in two 

curves. For instance in the four line locus (taking-~- = 1) D~SCAR~S worked out 
$ 

y(azx  + b2y ÷ c2) = (a3x -'k bay -}- c3) (a~x ÷ b.y  ÷ c#), 

and found one conic section as the locus. But if the d i were taken to be positive, the 
equation would become 

lY[ [a2x ÷ b2y ÷ e21 = la3x + b3y ÷ c3l la,,x + b,y  + e,,l 
or 

Y(a2x + b2y + c2) = 4- (a3x ÷ b3y + ca) (a~.x ÷ bay ÷ c.) ,  

that is, two conics. 
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values for y and then constructs geometrically the corresponding values for xo 
In this way one can construct as many points as one wishes on the locus. In 
Section 6 I shall discuss this type of pointwise construction in more detail. DES- 
CARTES re_marks that for any chosen value of y, the corresponding x's are the roots 
of an equation the degree of which is, for 2n lines, at most n, and for 2n -- 1 
lines at most n -- 1. For three lines the result in general is an equation of degree 2. 
The exceptional case of 2n -- 1 parallel lines leads directly to an equation in y 
of degree n. 

Thus the problem is reduced to the geometrical construction of roots of equa- 
tions. DESCARTES then anticipates results which he will explain in the third book 
of the Gdom~trie. These results are the following: The roots of an equation of 
second degree can be constructed by ruler and compass. The roots of equations 
of third and fourth degrees can be constructed by the intersection of conics, in 
particular the intersection of a parabola and a circle. The roots of equations of 
fifth anc~ sixth degrees generally cannot be constructed by the intersection of 
conics; more complex curves have to be used for them° It is possible to construct 
these roots by the intersection of a circle with a certain curve of third degree 
namely the "Cartesian parabola". On the basis of these results DESCARTES gives 
at the end of the first book the following classification of the cases of the problems 
of PAPPUS (G pp. 313-14): 

a) 3, 4 or 5 lines, but not 5 parallel lines: 
the equation in x is of degree ___ 2 and therefore points on the locus can always 
be constructed with ruler and compass. 

b) 5 parallel lines, 6, 7, 8 or 9 lines, but not 9 parallel lines: 
the equation in x (or for 5 parallel lines, in y) is of degree ~ 4 and therefore 
points on the locus can always be constructed by means of intersections o f  
conics; in some cases, construction by ruler and compass only may be possible 
(namely if the equations happen to be of degree < 2 or if they are reducible 
to such equations). 

c) 9 parallel lines, 10, 11, 12, 13 lines but not 13 parallel lines: 
the equation in x (or in y in the case of 9 parallel lines) is of degree ~ 6; the 
construction by means of intersection of conic sections will in general not be 
possible and a more complicated curve will have to be used. 

d) etc. 

2.3 This classification refers to the construction of the locus. DESCARTES 
returns to the problem of PAPPUS in the second book. There he gives another 
classification, now according to what he calls the "genre" of the locus; I shall 
translate "genre" by "class". This relates to a classification of curves according 
to the degree of their equations, a classification that DESCARTES explains in the 
second book (G pp. 319-323). He argues there that all geometrical curves have 
algebraic equations (cf. Section 9.1). The curves of the first class are those with 
equations of the second degree: the circle, the parabola, the hyperbola and the 
ellipse. The second class contains the curves with equations of the 3 ~d and 4 th 
degree; the third class those with equations of the 5 th and 6 th degree, and so forth. 
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I shall return to this classification in Section 3. It leads to the following classifica* 
tion of the cases of the problem of PAPPUS (G pp. 323-324): 

a') 3 or 4 lines: 

The equation of the locus is of degree at most 2; the locus is of the first class° 

b') 5, 6, 7 or 8 lines: 
The equation is of degree at most 4; the locus is of the second class or, in 
exceptional cases, of the first. 

c') 9, 10, II or 12 lines: 
The equation is Of degree at most 6; the locus is of the third class or of a lower 
class in exceptional cases. 

d') etc.  

In this connection DESCARTES states that all (algebraic) equations can occur 
as equations of the locus of some problem of PAPPUS: 

And because the position of the given lines can vary in all sorts of ways and 
thereby change the given quantities and the signs + and -- of the equations 
in all imaginable ways, it is evident that there is no curved line of the first class 
which would not be of use in this problem if it is proposed in four straight 
lines, nor one of the second which would not be of use if it is proposed in 
eight, nor of the third when it is proposed in twelve, and likewise with the 
others. Thus there is no curved line which is subject to calculation and which 
can be accepted in geometry, which is not of use for some number of lines. 
(G p. 324)° 

The statement is incorrect 7. But it is important in DESCARTES' further classifica- 
tion of curves; I shall return to it in Section 9. 

DESCARTES then gives a complete solution (G pp. 324-334) of the problem 
of PAl, PUS in three and four lines, calculating the equations explicitly and discussing 
the positions of the resulting conics in the plane. This section is well knownS; 
since it is not important for my present subject, I will not discuss it here. 

Finally DESCARTES treats two special cases of the locus of the problem of five 
lines which will be discussed in Sections 5.2 and 8.1. 

2.4 DESCARTES' solution of the problem of PAPPUS supplies a good illustration 
of the two different roles that curves can play in the solution of locus problems: 
a curve can occur as a locus; it can occur also as the means to construct points 
on the locus. DESCARTES treats the curves in totally different ways according to 
their roles. Consider for instance the case where conic sections occur as loci. 
This happens in problems with 3-1ines and 4-lines and DESCARTES states that 
these problems are "plane". That implies that he considers the locus in this case 
to be constructible by ruler and compass. But with ruler and compass one can 

7 See the Appendix. 
8 For an extensive discussion of the section see D. T. WH1TESrDE, "Patterns of mathe- 

matical thought in the later seventeenth century", Arch. Hist. Ex. Sci. I (1960-1962), 
pp. 179-388, especially pp. 290-295. 
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only construct points on a conic; one cannot construct or trace the conic as a 
whole. Nevertheless DESCARTES considers such a pointwise construction of  a 
conic sufficient when it occurs as a locus. But when a conic is used as means 
constrtiction DESCARTES sets stronger requirements. This occurs in the problem 
for 6, 7, 8 or 9 lines (Case b in Section 2.2), where points on the locus are-construct- 
ed by means of  intersections of conics with circles and straight lines. Apparently 
DESCAR~S does not consider the conics involved here constructible by ruler and 
compass, because if that were so the whole construction could be performed by 
ruler and compass, and that is what DESCAR~S denies. Hence pointwise construc- 
tions of  conics are not acceptable if these conics themselves serve as means of  
construction; in that case their construction must satisfy stronger criteria. For  
higher-order curves too, the construction has to satisfy different criteria according 
to whether the curve occurs as a locus or serves as a means of  construction of  
points on a locus. 

The reason for a stronger requirement when ~he curve is used as a means of  
construction is that it is then supposed that the intersections of  the ~urve with 
circles, straight lines or other conics can be found° But if a curve is given only 
through a pointwise construction as in the locus case, its intersections with other 
lines cannot be determined. To illustrate this let C~ and Cz be two conics (see 
Figure 2) whose equations are given (or equivalently whose vertices and diameters 

C~ /f 

A B 

/y 
Fig. 2 

are given) and whose intersections I and J we want to construct. Let AB be the 
axis of  the x's and Y the direction of  the y's. Points on C1 and C2 can be construct- 
ed by ruler and compass by taking arbitrary values for x and constructing the 
corresponding y's. But I and J cannot  be accurately constructed in this way; 
we can approximate them but their exact position would only be found if acciden- 
tally we started our construction with xt or xl .  

I f  a curve is used as means of  construction, it must be possible to find its 
intersection with other curves. A pointwise construction is not  sufficient for that 
purpose. Instead one obviously needs a method of  tracing the curve by a con- 
tinuous motion, so that the intersections with other lines are actually marked. 
We will see (Sections 4 and 5) that the requirement that curves be traceable by 
continuous motion is crucial to DESCARTES' Gdomdtrie. 
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3. Descartes' Programme for Geometry 

3.1 In his Gdomdtrie DESCARTES presented a new approach to the solution 
of geometrical problems; it contrasted so strongly with earlier approaches that 
one can speak of a new paradigm. Before giving his own opinion on the programme 
of geometry DESCARTES explained what mathematicians before him~ especially 
those from antiquity, had thought about this matter. He said (G pp. 315-317) 
that, traditionally, geometrical problems had to be solved by ruler and compass. 
However, classical mathematicians had already encountered problems which 
could not be solved in this way. They had solved these using intersections of 
conics or even more complicated curves such as the conchoid. But they called 
these curves mechanical, thereby implying that they did not consider them to be 
genuinely geometrical. DESCARTES went on to speculate about the reasons the 
ancients might have had for this, and he rejected these. His rendering of the 
classical arguments was oversimplified, if not inaccurate 9, but it served very well 
as an introduction and contrast to DESCARTES' own view. 

DESCARTES' view can be summarized as follows: Construction of problems 
by ruler and compass is certainly simpler than, and therefore preferable to, construc- 
tion by means of the intersection of conics or more complex curves. In the con- 
struction of problems one should always use the simplest possible curves. But 
this does not imply that more complex curves are necessarily less geometrical 
than the straight line and the circle, or that constructions by means of these curves 

• are less geometrical than constructions by ruler and compass. There is a collection 
of curves of ever increasing complexity (circles~ conics9 conchoids, etc.) which are 
in principle acceptable in geometrical constructions. If a problem can be con- 
structed by the intersection of two such curves and it cannot be constructed by 
simpler curves, then that construction is the right one to choose and it is no less 
geometrical a construction than one by ruler and compass. 

This vision of the geometrical procedure of constructing problems deter- 
mined a programme in three parts° First DESCARTES had to determine which curves 
were acceptable as genuinely geometrical means for the construction of problems. 
Secondly, he had to make it clear on which criteria some curves would be consid- 
ered simpler than others; this would lead to a classification in order of simplicity 
within the collection of geometrically acceptable curves. Finally, a method had 
to be devised for finding the simplest possible curves by which each problem could 
be constructed. This is essentially the programme which DESCARTES worked out 
in his Gdomdtrie. 

3.2 The first point of the programme--differentiating between the curves 
which are acceptable in geometry and those which are not--caused DESCARTES 
(and his successors) the greatest number of conceptual problems. Basically DES- 
CARTES took as geometrical curves those "which can be described by some regular 
motion" (G p. 369). But this is not a very clear criterion° Also DESCARTES wished 
to include in the collection of geometrically acceptable curves all curves that may 
occur as locus solutions of problems such as the problem of PAPPUS. This meant 

9 See the article by 1V[OLLAND cited in Note 3. 
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that in fact--although DESCARTES never explicitly said so--he wanted to regard 
all algebraic curves as geometrical. But to do so he would have to prove that all 
algebraic curves could be traced by continuous and geometrically acceptable 
motions, or that they could be traced by other means which were just as geo- 
metrical as the tracing by continuous motion. In Sections 4-9 I shall discuss how 
DESCARTES dealt with this very complex part of his programme. 

Algebra, in the sense of the existence of an algebraic equation of the curve, 
was the essential criterion in the first part of the programme. But the algebra 
had to remain implicit. DESCARTES could not simply take as "geometrical" all 
curves that admit an algebraic equation, because obviously that is not a geometri- 
cal criterion; if he were to adopt this criterion, DESCARTES could no longer claim 
that he was doing geometry. 

3.3 In the second and the third part.of the programme algebra could be used 
quite openly, and it formed the crucial tool. DEScARTEs used the degree of the 
curve equations to classify the curves according to their simplicity. He divided 
them into classes ("genres"); the first class consisted of the curves with equations 
of 2 nd degree; these are the conic sections. DESCARTES did not incorporate straight 
lines in his classification. Curves with equations of the 3 ra and 4 th degree were 
of the second class; those of the 5 th and 6 th degree were of the third class, etc. 

(G p. 319). 
DESCARTES stressed elsewhere that in constructions we should always use curves 

of the lowest possible class (G p. 371). He noted that within one class some curves 
may be simpler than others, in the sense that one cannot construct such compli- 
cated problems with them as one can with the others. For instance, the circle 
is of the first class, but there are constructions that can be performed with the 
other curves of that class (the conic sections) but not with the circle. DESCARTES 
aisomentioned the conchoid as an exceptional curve within the second class 
(G p. 323), but he did not discuss how to distinguish the exceptional curves from 
the other curves within one class. 

It is not quite clear why DESCARTES, after taking the conic sections as the first 
class of curves, lumped all curves of the third and the fourth degrees together in 
the second class, those of the fifth and sixth degrees in the third class, and so forth. 
DESCARTES explained that he did so because there is a general rule whereby fourth- 
degree problems can be reduced to third-degree ones, and sixth-degree problems 
to fifth-degree ones (G p. 323). It seems likely that for problems of fourth degree 
and third degree he had in mind FERRA~'S rule for reducing equations of fourth 
degree (in one unknown) to ones of third degree. But there is no such rule for 
equations of sixth and fifth degrees, so in this case DESCARTES was making rather 
a~ rash extrapolation. 1° 

The classification may also have been connected with the methods used for 
constructing roots of equations by the intersection of curves. The roots of equations 

lo DESCARTES tended to underestimate the dangers of extrapolating mathematical 
results, as is evident, for instance, from the penultimate sentence of the Gdoradtrie: 
"For in the matter of mathematical progressions, once one has the first two or three 
terms, it is not difficult to find the others" (G p. 413). 
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of  the third and fourth degrees can be constructed by circle and parabola, those 
o f  fifth and sixth degrees by circle and Cartesian parabola. In other words, by 
introducing one higher curve as a new means of  construction one can construct 
roots of  equations of  two successive higher degrees. But there is a puzzling aspect 
here. DESCARTES' classification was for curves serving as means of  construction, 
whereas this argument would classify problems rather than devices for construc- 
tion. In fact, the degree of  the constructing curves (parabola, degree 2, Cartesian 
parabola, degree 3, etc.) rises by steps of  one. 

In DESCARTES' classification, and especially in his arguments about  the sub- 
division within one class, there is a contradiction between algebraic criteria of  
simplicity (the form of  the equation, in particular its degree) and geometrical 
criteria of  simplicity (the use of the curve as a device for construction). The special 
role that the circle plays in the first class shows that the classification is not really 
adequate for  dinstinguishing the means of  construction. I shall return to this 
contradiction in cofinection with pointwise constructions in Section 10. 

3.4 For  the third part  of  the programme-- to  find the simplest geometrical 
construction of  the solution of  a given geometrical problem - the crucial tool 
again was algebra. A problem should be reduced to an equation in one unknown 
(G pp. 300-302). Then the roots of  this equation should be constructed geometric- 
ally by the intersection of  certain curves, which should be as "simple" as possible, 
that is, of  the lowest possible class. The simplicity of  the curves by which a prob- 
lem could be solved determined the class to which the problem belonged° Here 
DEscAR~s followed classical usage and called problems plane if they could be 
solved by circles and straight lines, and solid i f  they also required a conic section. 
DESCARTES devoted most  of  the third book o f  the Gdomdtrie to this point of the 
programme. He proved there that every equation of  third or four th  degree could 
be constructed by the intersection of a circle and a parabola, and every equation 
of  fifth or sixth degree equation by the intersection of  a circle and a Cartesian 
parabola?  x 

3.5 At the beginning of  the third book of  the Gdomdtrie DESCARTES gave a suc- 
cinct formulation o f  t hep rog ramme  which I have been describing: 

Although all curved lines which can be described by some regular movement 
must be admitted in geometry, this is not  to say that for the construction of  

~ For details of this construction see G pp. 402--411 and WnrrEsmE'S note in The 
mathematical papers of  lsaac Newton (ed. D. T. WHrlmSZDE, Cambridge, 1967-) vol. 1 
(1967), p. 495, note 15. DESCARTES wrote the equation as y6 _pyS  -k qy~ - -ry  a + 
sy z -- ty + v = 0, where he intendedp, q, r, s, t, and v to be positive. He mentioned 
as a condition for his construction that pZ be smaller than 4q. He stated that if this 
condition is not satisfied, a substitution y ~ y + c with c large enough will yield an equa- 
tion which satisfies the condition. The substitution and its inverse correspond to straight- 
forward geometrical constructions~ so the construction of the roots of the resulting 
equation yields also the roots of the original equation. In fact DESCARTES' construction 
tacitly assumes some further conditions for the coefficients (such as for instance the 
arrangement with positive factors and alternating signs), but an these conditions can 
be satisfied by performing the substitution y ~ y + e with c large enough. The construc- 
tion is therefore general and can be used to find the roots of any equation of sixth degree. 



Curves in Descartes' G3om3trie 307 

any problem we may use indifferently the first one that occurs. We must al- 
ways take care to choose the simplest through which the solution is possible. 
And it should be noted that by simplest curves one should understand not 
only those which can most easily be described, nor those which make the con- 
struction or the proof of the proposed problem easier, but primarily those 
of the simplest class which can be used to determine the required quantity. 
(G p. 369'-370) 

Thereupon came an example of the construction of two mean proportionals 
between two given line segments by means of curves traced by a certain machine 
(which I shall discuss in Section 5.1). DESCARTES remarked that this construction 
might well be the easiest possible construction and might provide the clearest 
proof, but it used curves of a higher class than necessary and therefore 

... it would be a mistake in Geometry not to use them [namely curves of a 
simpler genre]. On the other hand it is als0 a mistake to try in vain to construct 
a problem by a simpler class of lines than the nature of the problem allows. 
(G p. 371) 

4. The representation of curves in Descartes' G~omdtrie 

4.1 DESCARTES dealt with the fundamental question of his programme at 
the beginning of the second book of the G~om~trie. He formulated that question 
in the marginal title as: "which are the curved lines that can be accepted in geo- 
metry'" (G p. 315). He criticised the classical mathematicians for having called 
certain curves used in geometrical constructions "mechanical" rather than "geo- 
metrical". DESCARTES said that the fact that "'mechanical" curves are described 
by certain machines does not make them less geometrical than the straight line 
and the circle, which, after all, are also traced by machines, namely by ruler and 
compass. DESCARTES did not wish to impose such strict requirements for geometri- 
cal curves; he accepted many more curves as geometrical: 

To trace all the curved lines which I wish to introduce here, nothing else need 
be supposed than that two or several lines can be moved one by the other, 
and that their intersections mark other lines . . . .  (G p. 316) 

Such curves may be very complicated, but that need not make them less geometri- 
cal: 

It seems very clear to me that if we consider (as is customary) as geometrical 
that which is precise and exact, and as mechanical that which is not, and if 
we consider geometry as the science which furnishes a general knowledge 
of the measures of all bodies, we have no more fight to exclude the more com- 
posite lines than the simpler ones, provided that we can imagine them as de- 
scribed by a continuous motion, or by several motions following each other, 
the last of which are completely regulated by those which precede. For in this 
way one can always have an exact knowledge of their measure. (G p. 316) 

DESCARTES' criterion, then, to accept curves as geometrical was that they 
could be traced by continuous motion. The tracing of the curve is basic for an 
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understanding of its nature; significantly, DESCARTES combined the word 
"tracing" with understanding and conceiving; he used expressions such as: 
"ways to trace and conceive curved lines" (G p. 319) and "to know and trace the 
line" (G p. 307). 

4.2 Since DESCARTES considered curves primarily as traced by continuous 
motions generated by certain machines, he faced a number of difficult conceptual 
problems which are summarised below: 

a) There are certain curves, such as the spiral and the quadratrix, which DES- 
CARTES did not accept as geometrical but considered to be mechanical, in the sense 
that they were imprecise and inexact. These curves, however, can be traced by 
continuous motion (see Section 7.2). DVSCARTES had therefore to specify which 
types of motion he accepted and which he rejected. 

b) In the course of his studies DESCARTES came across several curves which he 
could not, or would not, present as traced by some continuous motion/Instead 
he presented them as constructed pointwise or as traced by machinery involving 
string. He had therefore to argue that such constructions or methods of tracing 
are just as acceptable in geometry as tracing by continuous motion. 

c) Pointwise constructions and tracing machinery involving string can a/so be 
devised for curves which DESCARTES did not accept in geometry. Therefore he 
had to specify which pointwise constructions and which methods of tracing 
with string were acceptable. 

d) Algebra was the crucial tool in DESCARTES' new programme for geometry, and 
the new curves he wished to introduce had to be amenable to algebraic treatment, 
that is, they had to have an algebraic equation. Thus DESCARTES had to consider 
whether his new curves had such equations, and conversely, whether equations 
resulting from the use of the algebraical methods would always correspond to 
geometrically acceptable curves. 

The representation of  curves is fundamental to these problems. The arguments 
about the acceptability of curves can only be formulated in terms of the represen- 
tations of the curves, and the discussion is complex because three different methods 
of  representation are involved: representation by specifying the continuous mo- 
tion which traces the curve, representation by the method of constructing points 
on the curve, and representation by specifying the tracing machinery involving 
string. To these three one may add the fourth method--the representation of a 
curve by its equation. However, all these problems in fact arise because DFSCARTES 
did not consider it acceptable in Geometry to represent a curve by its equation. 

In the following sections I shall summarise DESCARTES" arguments with regard 
to the four problems mentioned above. 

5. Curves described by continuous motion 

5.1 DESCARTES said that to trace the curves that are acceptable in geometry, 
"'nothing else need be supposed than that two or several lines can be moved one 
by the other and that their intersections mark other lines" (G p. 316). In the second 
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book of the G~omdtrie he gave two examples to illustrate the kinds of motion 
he had in mind. 

The first example concerned the famous instrument of Figure 3 (G p. 318 and 
p. 370). 

! 
/ / 

/ 

/ 
,Q" 

Z 

Fig. 3 

It is a system of linked rulers. The rulers YX and YZ are connected in Y by a 
pivot. Ruler BC is fixed perpendicular to YX in B. The rulers CD, EF and GH 
are made in such a way that they can slide along Y Z  and still remain perpendicular 
to it. Similarly the rulers DE and FG slide along YX while remaining perpendicu- 
lar to it. At the beginning of the motion of the instrument angle X Y Z  is assumed 
to be zero and all the rulers coincide in point A. Now the angle X Y Z  is opened 
by keeping YZ fixed and rotating YX. Ruler BC pushes CD outwards, CD pushes 
DE, DE pushes EF, etc. Point B (fixed on XY)  describes a circle; points D, F and 
H, sliding along YX, describe other curves (dotted in the figure). DESCARTES 
argued that these curves, although described by more and more complicated 
combinations of motions, should all be accepted in geometry: 

But I do not see what could prevent us from conceiving the description of the 
first [i.e. the curve described by D] as clearly and distinctly as that of the circle, 
or at least as that of the conic sections, nor what could prevent us from con- 
ceiving the second one and the third one and all the others, which one can 
describe equally well as the first one; nor therefore what could prevent us 
from accepting all these curves in the same manner, to serve the speculations 
of geometry. (G pp. 318-19) 

The instrument of Figure 3 is found even in DESCARTES' very- early studies; 
I shall discuss its use and origin in Section 10. It is interesting to note that DES- 
CARTES' discussion of the instrument in this passage did not serve primarily to 
explain which motions he had in mind for the tracing of acceptable curves; he 
added another example which explained this better. Rather, the instrument served 
to show that, however composite a motion is, the resulting curve can be con- 
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ceived in a clear and distinct way, and is therefore acceptable in geometry. The 
instrument was a precise illustration of the description, given above, of acceptable 
tracing motions: 

a continuous motion, or(-) several motions following each other the last of 
which are completely regulated by those which precede. (G p. 316) 

Here the first motion is the rotating motion of the rulers YX and_ BC, the subse- 
quent motions are those of the rulers CD, DE, EF, etc. ;BC regulates the motion 
of CD, CD that of DE and so forth. 

The text, and especially the use of the key words, clear and distinct ("nette- 
merit", "distinctement", G p. 318), show that DESCARTES saw a paraIlet between 
the series of interdependent motions in the machine, all regulated by the first 
motion, and the "long chains of reasoning" in mathematics, discussed in the Dis- 
cours de la Methode, which, provided each step in the argument is clear, yield 
results as clear and certain as their starting point. ~2 

5.2 But the example of the instrument of Figure 3 did not cover all the com- 
binations of motions which DESCAaTm had in mind, because it involved only 
straight lines as moving parts. When DESCARTES wrote "nothing else need be 
supposed than that two or several lines can be moved the one by the other, and 
that their intersections mark other lines", he also had moving curved lines in 
mind. This becomes clear in a series of further examples. These concerned a tracing 
process whereby new, more complicated curves are generated from the motion 
of simpler curves and straight lines. DESCARTES proceeded as follows (G pp. 319 if; 
see Figure 4): 

. . ,  . . . . . . .  ... 
j,4 ~ , " 

,*®q C ° 

/ J  A 
Fig. 4 

1: DESCAgTES ~Euvres (see Note 1) vol. 6, p. 19. 
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A ruler GL pivots at G. It is linked at L with a device N K L  which can be moved 
along the vertical axis while the direction of the line K N  is kept constant. When L 
is moved along the vertical axis, the ruler turns around G and the line K N  is moved 
downwards remaining parallel to itself. The intersection C of these two moving 
straight lines describes the curve G C E .  DESCARTES derived the equation of this 
c u r v e  

c 
y :  = cy - -  --~ x y  q- ay  - -  ac (5; 1) 

(where GA = a, K L  = b, N L  = c, C B  = y and A B  --- x)  and concluded that it 
was a curve of the first class; he added that it was in fact a hyperbola. Thus the 
straight line K N  in the machine produced a curve of the first class. 

Next DESCARTES asserted (G p. 322) that if the straight line in the machine 
were replaced by a curve of the first class, the resulting curve would be of the 
second class. He mentioned the case where K N i s  a circle with centre L; the resulting 
curve will then be the conchoid of NICOr~EDES. (See Figure 5; on all the lines through 
a fixed point (G), the intercepts between the conchoid and an axis (KA)  are equal.) 
The conchoid is of a higher class than the conics. 

! 
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~ 

Fig. 5 
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Then DESCARTES replaced the circle by a parabola (see Figure 6), and stated 
that the resulting curve would be the "first and simplest curve for the problem 
of PAPPUS if there are only five lines given in position" (G p. 322). The curve 
played a central role in DESCARTES" Gdombtrie;  it became later known as the 
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Fig. 6 
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"Cartesian parabola".  13 Further on in the second book (G pp. 335-337) he showed 
that this curve was indeed the solution of  a special simple case of  the five line locus 
problem 1'~, and he gave the equation of  the curve: 

ya  _ 2ayZ _ a2y  + 2a  3 = a x y .  (5; 2) 

la See G. LORIA, Spezie l le  algebraische und  transzendente  ebene Kurven,  Leipzig 
(2d ed.) 1910-1911, vol. 1, pp. 51-52. Other names for the curve are "trident" (N~WTON) 
and "parabolic conchoid"° 

14 Namely the problem ( c f  Section 2.1) 

d~ " dz " d3 = d~. " ds " a 

in the case where L~, Lz, L ,  and L3 (in that order) are equidistant and parallel, and Ls 
is perpendicular to the other lines; a is the distance between Lz and Lz, and all the 
distances di are take n perpendicular to Lt. The equatio~i of the curve is: 

ya _ 2ayZ _ aZy + 2a 3 = a x y .  

Compare the figure (from G~ p. 336). The lines L i are GF, ED,  IH ,  A B  and GA respectively. 
The distances are taken perpendicular to the lines, dl  = CF~ d2-----CD, d3 = CH, 
d,, -~ C B  ~-- y~ ds = C M  = x. GL  is the ruler moving around G. C K N  is the parabola 
moving vertically along its axis ~lB. G E C  is the branch of the "Cartesian parabola" 
described by C~ N I O  is the branch described by the other intersection N,  cGc and o ln  

are the branches of the other "Cartesian parabola" which occurs if the distance to Ls 
is taken to be positive in the other direction. 

Figure for Footnote 14 
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In the third book DESCARTES explained how this curve can be used for finding 
the roots of  a sixth degree equation (G p. 403); he discussed there in more detail 
how the curve was traced by the combined motions of  a ruler and a parabola. 
In the passage from the second book where he introduced this curve DESCARTES 
said that it was of  the second class. Furthermore he claimed that if a curve of  the 
second class was used in the tracing, the resulting curve would be of the third class 
etc. (G p. 322), b u t h e  did not prove this. 15 

5.3 The linkage machines and the device of  a moving curve whose intersection 
with a ruler traces new curves are the examples which DESCARTES gave to illustrate 
his concept of  tracing curves by combination of  motions. It is a fundamental 
concept because DESCARTES stated that he would introduce new curves only if 
they were traceable in this way. This means that there were other curves which 
he would not  accept as geometrical because they could not be traced in this way. 
As examples DESCARTES mentioned the spiral and the quadratrix. However, both 
the spiral and the quadratrix can be traced by a combination of  continuous mo- 
tions; they were in fact defined in such a way. DESCAR~.S had therefore to specify 
a further requirement for the motions in order to rule out these curves. Before 
discussing this requirement I shall indicate the ways in which the two curves men- 
tioned can be traced by continuous motions. 

The Archimedean spiral 16 (see Figure 7) is described by two motions, one 
rotatory motion of  a ruler OR which turns uniformly around O, and one recti- 
linear motion of  a point P which moves uniformly along the ruler OR. The point 
P traces the spiral. 

Fig. 7 

t5 DESCARTES claimed that it is easy to prove this by actual calculation. But this 
is not true. A counter example arises when one takes ya = c2z for the moving curve 
(taking z as vertical coordinate measured from K, and y as horizontal coordinate). 
This curve has degree 3 and therefore belongs to the second class. The new curve described 
by the intersection of this curve and the ruler GK has equation ( a -  y) y a =  
c:(xy -- by + ab) (where x is the vertical coordinate taken from A) a ---- GA, b = KL). 
This curve has degree 4 and therefore also belongs to the second class. In general, if 
the equation of the moving curve is linear in z, the degree of the resulting curve will 
be only one higher than the degree of the moving curve (comme il est fort ays6 a connoistre 
par le calcul), and hence in that case the Tesulting curve may belong to the same class as 
the original curve. 

~s See ARCHIMEDES, On Spirals, definition 1, in The works of Archimedes (ed. 
T. HEATH, New York, Dover reprint), p. 165. 
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A 

0 C 

Fig. 8 

The quadratrix 17 (see Figure 8) can be described by a combination of separate 
motions, namely by one rotatory motion of a ruler OA which turns uniformly 
around A, from position OA to position OC, and one rectilinear motion of a 
ruler PQ which moves uniformly downwards from position AB to position OC, 
during the same time that OR turns from OA to OCo The intersection S of both 
rulers traces the quadratrix ASD. The construction implies that during the motion 
always 

AP: AR = AO AC. (5; 3) 

DESCARTES said about the spiral, the quadratrix and similar curves, that 
"they are conceived as described by two separate movements, between which 
there is no relation ("raport") that can be measured exactly", and that for that 
reason they "really only belong to Mechanics"° (G po 317) The absence of a mea- 
surable "raport" is the essential point here, for in both cases the two movements 
could in principle be linked in such a way that the one determines the other, 
namely by a string mechanism which I shall discuss in Section 7. In view of the 
methods of tracing the quadratrix and the spiral we may conclude that when 
DESCARTES spoke about the measures of the motions, he meant their velocities. 
Indeed these measures have no exactly measurable "raport", as the comparison 
of the velocities involves the comparison of the lengths of straight and curved 
lines, in particular the ratio AO : AC of the radius of a circle to the quarter arc 
of that circle° The argument returns some pages later in the G~om~trie in connec- 
tion with the tracing of curves by machines involving strings (see Section 7). 
There DESCARTES wrote: 

.,o the proportion between straight lines and curves is not known and I even 
believe that it can never be known by man, (G p. 340). 

Thus the separation between geometrical and non-geometrical curves, which 
was fundamental in DESCARTES' vision of geometry, rested ultimately on his 
conviction that proportions between curved and straight lengths cannot be found 
exactly. This, in fact, was an old doctrine, going back to ARISTOTLE. Is The central 
role of the incomparability of straight and curved in DESCAR~S' geometry ex- 

x7 Often called the quadratrix of DINOSTRATU$, although the names of HiPPt~s and 
NICOMEDF.S are also connected with the curve. PnpPus discusses the curve in his Mathe- 
matical collections° See I. BtrLMER THOMAS, "Dinostratus", Dictionary of scientific bio- 
graphy (ed. C° C. GmLiSPm, New York 1970ff.) vol. 4, pp. 103-105. 

18 See T. L. HEATH, Mathematics in Aristotle (Oxford 1949), pp. 140-142. 



Curves in Descartes' Gdomdtrie 315 

plains why the first rectifications of algebraic (i.e. for DESCARTES geometrical) 
curves 19 in the late 1650's were so revolutionary: they undermined a cornerstone 
of the edifice of DESCARTES' geometry. 

5.4 These, then, were DESCARTES' arguments about tracing curves by con- 
tinuous motion. A curve could be accepted as geometrical if there was an acceptable 
way of  tracing it. Obviously, this criterion was connected with the use of the curve 
as a means of construction (see Sections 2.4 and 10); the intersections of  the curve 
with other lines could be considered constructable only if the curve was actually 
traced. But in the Gdom~trie DESCARTES also accepted other ways of representing 
curves. I shall discuss these, and their relation to tracing by continuous motion, 
in the following sections. 

6. Pointwise construction of  curves 

6.1 As we have seen (Section 2.2), DESCARTES solved the problem of PAPPUS 
by constructing arbitrarily many points on the locus. The method was as follows: 
first derive the equation of the locus in indeterminates x and y; then choose an 
arbitrary value ~7 for y and form the equation in one unknown for the correspond- 
ing value or values of x; then solve this equation geometrically, that is construct 
the root or roots ~; and finally construct the point or points with coordinates ~:,r/ 
on the locus. By repeating this process~ taking other values for y, one can find 
arbitrarily many points on the locus. However, it is not at all obvious that this 
construction can be regarded as a satisfactory construction for the whole curve 
which forms the locus. It is not a construction by continuous motion. The process 
yields only a finite number of points on the curve. And generally it is not  possible 
to use this construction for determining the intersection of the locus with a given 
curve (cf. Section 2.4). 

In his discussion of the problem of PAPPUS in the first book of the Gdomdtrie 
DESCARTES did not say whether this pointwise construction could be considered 
as a construction of the locus as a curve. In the case of the three-line and four-line 
problems, where the locus is a conic, DESCARTES did not stop after giving the point- 
wise construction; he also indicated how in each case the position of the vertices, 
axes, latus rectum and latus transversum z° could be found, thus giving a represen- 
tat.ion of  the locus curve by naming it (ellipse, hyperbola etc.) and giving its basic 
parameters (G pp. 327-332). However, later on in the second book DESCARTES 
returned to pointwise constructions of  curves and stated that, in certain cases, 
curves constructed pointwise should be accepted in geometry. 

t9 Rectifications of algebraic curves were found around 1658, independently, by 
VAN HEURAET, NEILE and FERMAT. See for instance M. E. BARON, The origins o f  the 
infinitesimal calculus (Oxford 1969), pp. 223-228. 

zo Latus rectum and latus transversum are the classical terms for certain line segments 
occurring in the defining properties of conic sections. If the vertex of the conic section 
is taken as origin and the X-axis is along the diameter, then the latus rectum a and the 
latus transversum b occur in the analytical formulas for the conics in the following way: 

y2 _ ax (parabola); y~ = ax -- ~b x2 (ellipse); yz  = ax q- ~ x z (hyperbola). 
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He made this stament when dealing with the five-line locus problem 

d l ° d z o a a = a , . a s . a .  (6; 1) 

DESCAR~S solved the problem for two special cases, both involving four equi- 
distant parallel lines and the fifth line perpendicular to the others. He took the 
position of  the lines as in Figure 9a and 9b, respectively. In the first ease (G 
pp. 335-339; cfi section 5.2 and note 14) he found that the locus was the "Carte- 
sian parabola" which he had introduced earlier as the curve described by a com- 
bined motion of  a ruler and a parabola. For  the second case DESCARTES gave 
only a property of  the locus (formulated in a rather obscure wayZ~), from which 
at best a pointwise construction could be derived (G p. 339); he did not  explain 
how that locus could be traced by a continuous motion. He then decided not to 
give any more details because he had already indicated in the first book how 
points on the locus could generally be constructed: 

As to the lines serving in the other cases, I shall not bother to distinguish thena 
into different kinds, for  I have not undertaken to say everything. And now 

zx DESCARTES' cryptic description of the curve is as follows: The curve is such that 
if all the straight lines applied consecutively to its diameter [i.e. the ordinates] are 
taken equal to those of a conic section, then the segments of the diameter between 
the vertex and these lines [i.e. the abscissae] have the same ratio to a given line as 
that line has to the segments of the diameter of the conic section to which these 
lines are applied consecutively. (G p. 339) 

Following C. RABUEL, Commentaires sur la Gdomdtrie de Me Descartes (Lyon 1730) 
po 271, we may interpret the passage as follows. If we take the origin in the centre of the 
figure (cf. Figure 9b), 

dl " dz " dz -= d,~ " d5 " a 
leads to 

x ( Y q - ~ a ) ( y - - 3 a ) = ( Y q - - - ~ ) ( Y - - ' ~ )  a 

as the equation for the required curve° Taking 

1 a-  1 - ' T  a ) ,  (yZ 9 z 
W ~  T ! 

we find 
w:a  = a : ( x - a ) .  

If we now take the "vertex" in DESCARTES' text to be the point V ( x  = a, y = 0), and draw 
the parabola 

2aw = y2 9 , - - - ~ - a  

with w taken along the X-axis from V, then the required curve and the parabola are 
related in such a way that for points (x, y) and (z, y) on either curve with equal ordinates 
y, the abscissae x - - a  and w (taken from IF) satisfy 

w : a = a : ( x  - - a ) .  

This corresponds to what DESCARTES says, but he does not specify that in this ease the 
conic section is a parabola. If the conic section and the position of the vertex are given, 
DESCARTES' description implies a pointwise construction of the curve. 
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a b 
Fig. 9 

that I have explained the way to find an infinity of points through which they 
pass, I think that I have sufficiently explained the way to describe them. 
(G p. 339) 

Thus DESCARTrS stated that pointwise constructions are sufficient to describe the 
c u r v e s .  

(i.2 Dr:.SC~TES said more about the acceptability of these constructions in 
the next section, the margin title of which is: 

Which are the curved lines that one describes by finding many of  their points 
and that can be accepted in geometry. (G p. 340) 

As the title indicates, DESCART~ accepted pointwise constructions under certain 
conditions as sufficient constructions for curves. As was the case in the tracing 
of curves by continuous motion, these conditions must exclude curves such as the 
spiral and the quadratrix. However, as DESCART~ said, there are pointwise con- 
structions for these curves as well. DESCARTES probably had in mind here the follow- 
ing pointwise construction for the quadratrix 22 (see Figure 10). Divide arc AC 

A 

0 D C 
Fig. 10 

in 2, 4, 8, 1"6 etc. parts (this can be done with ruler and compass) and do the same 
with the radius OA. Then draw radii such as OR to the points of division on ARC 
and draw horizontals such as TS through the points of division of OA. The 
intersections, such as S, of corresponding radii and horizontals are on the quadra- 
trixo In this way arbitrarily many points on the quadratrix, lying arbitrarily close 

z2 This pointwise construction follows immediately from the description of the qua- 
dratrix by continuous motion; see Note 17. T. L. H~TI-I mentions the construction in 
his A history of Greek mathematics (2 vols, Oxford 1921), vol. 1, p. 230, as a means to 
find points on the curve near D (Figure 9) and thus to approximate D. But he gives 
no reference to classical sources containing this construction. 
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to each other can be geometrically constructed. There is a similar construction for 
the spiral. 

Since DESCARTES had to exclude these pointwise constructions, he had to 
explain the difference between these unacceptable constructions and the acceptable 
pointwise constructions of, for instance, the loci for the problem of PAPPUS. 
According to DESCARTES the difference lay in the fact that for curves such as the 
quadratrix the constructable points were special points. For the quadratrix 

k 
as constructed above, they are the points with ordinates ~-# OA; generally one 

finds only those points of the quadratrix which correspond to a division of  the 
angle which is possible by Euclidean constructions. In the case of acceptable 
pointwise constructions every point is in principIe constructable because the con- 
struction may start from any given value of  one of the coordinates. DESCARTES 

. explained this as follows: 

It is worthy of note that there is a great difference between this method of 
finding several points to trace a curved line, and that used for the spiral and 
similar curves° For with the latter one does not find indifferently all points of 
the required curve, but only those points which can be determined by a simpler 
measure than is required for the composition of  the curve° Therefore, str/ctly 
speaking, one does not find any one of its points, that is, not one of those 
which are so properly points of the curve that they cannot be found except 
by means of  it. On the other hand there is no point on the curves which are 
of use for the proposed problem [the PAPPUS problem] that could not 
occur among those which are determined by the method explained above. 

• And because this method of tracing a curved line by finding a number of  its 
points taken at random is. only applicable to curves that can also be described 

_ by a regular and continuous motion, one may not exclude it entirely from geo- 
metry. (G pp. 339-340) 

Thus DESCARTES stated firmly, but without any attempt at proof, that curves 
admitting a pointwise construction in which every point on them can, in principle, 
be constructed, can also be traced by continuous motion and are therefore geo- 
metrical. The passage suggests that DESCARTES saw a correspondence between the 
complete arbitrariness of the constructed points on the curve and the continuity 
of  the motion. 

6.3 After this passage DESCARTES repeatedly used pointwise construction 
to represent curves. For instance he introduced the famous ovals z3, which are 
curves with certain optical properties, by giving a pointwise construction. As an 
illustration of such a representation by pointwise constructions I summarize 
DESCARTES' introduction of the first oval (G p. 352, "this is how I describe them"):  

2a The ovals which DESCARTES discusses on pp. 352-368 of the G~om~trie are curves 
whose surfaces of revolution provide shapes of lenses with the property that light rays 
coming from one point converge, after passing through the lens, to another point (and 
variants of this property). DESCAXT~S explains how these ovals can be constructed when 
the positions of the light source and the converging point, and the refractive index of 
the lens material, are given. 
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L R 

Fig. 11 

Let two lines (see Figure 11) be given, intersecting in A at a given angle. A lies 
between the points F and G on the one line; the ratio of A F  to AG is given. R 
lies on the other line, AG = AR. To construct points on the oval, take an arbi- 
trary point K on AG. Draw a circle with centre F and radius FK. Draw KL per- 
pendicular to AR. Draw a circle with centre G and radius RL. The two inter- 
sections of the two circles lie on the oval. By repeating this construction starting 
from other points K on AG, arbitrarily many points on the oval can be found. 
The construction yields a geometrical curve, because the choice of Kis completely 
arbitrary. 

7. Curve construction using string 

7.1 The passage in the second book on the geometrical acceptability of curves 
given by pointwise constructions was followed by a passage about a third way of 
representing curves, namely tracing them with machines involving strings. The 
title in the margin of that section is: 

And which curves that one describes by means of a string can be accepted. 
(G p. 340) 

DESCARTES then referred to his Dioptrique z4, in which he had given constructions 
by strings for the ellipse and the hyperbola. The construction for the ellipse is 
the well known "gardener's construction" (see Figure 12): A string is fixed in 
the points A and B. It is stretched by a tracing pin T which is moved around A 
and B, the strings being kept straight. It then traces an ellipse with loci A and B 
(A.T. 6, p. 166). 

T 

Fig. 12 

z,, La Dioptrique, one of the three essays of the Discours; in DESCARTES' ¢~Euvres 
(see Note I), vol. 6, pp. 79-228. 
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Fig. 13 

For the hyperbola (see Figure 13) a ruler AR pivots at A; a string is fixed at B 
and at point R on the ruler. The string is stretched by a tracing pin T which is 
kept against the ruler. When the ruler is turned around A with T kept fixed to 
the ruler and A T  stretched, T describes one arm of a hyperbol~i with loci A and B 
(A.To 6~ p. 176). 

It should be noted that in the Dioptrique DESCARTES called this construction 
of the ellipse "rather rough and not very exact" (A.T., 6~ p. 166) but thought that 
it was a better means for understanding the nature of an ellipse than the section 
of a cone or a cylinder. In discussing the construction of the hyperbola DES- 
CARTES pictures "a gardener who uses it to mark offthe border of some flower bed" 
(A.T. 6, p. 176). Nevertheless, in the Gdomdtrie DESCARTES accepted these construc- 
tions as genuinely geometrical representations of curves. This shows that he was 
more concerned that his constructions should be clear and comprehensible in 
principle than that they should be accurate in practice. 

7.2 But constructions by strings could be used also to trace curves which 
DESCARTES did not accept as geometrical. DESCARTES mentioned this but did 
not give examples. He may have had in mind a method similar to the one which 
HLIYGENS in 1650 suggested for tracing the spiral 25 (see Figure 14, which is HoY- 
GENS' sketch): A ruler AB pivots in Bo Around B there is a circular disk EH 

I 

t 
% 

Fig. 14 

2~ See C. HUYGENS, (~uvre$ Complbtes (22 vols. The Hague 1888-1950) vol. 11, 
p. 216; a note from 1650. 
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fixed to the plane. A string EAD is fixed to the rim of the disk in E, slung around a 
small pulley at A and led along the ruler to the centre. A drawing pin is fixed at 
the end D of the string. If the ruler is moved around counter-clockwise, the string 
winds up round the disk, the pin D is drawn along the ruler and describes an 
Archimedean spiral on the plane. DESCARTES was certainly able to devise machinery 
of this kind for tracing the quadratrix. 

DESCARTES had to exclude this way of using string in tracing curves. He did 
so by excluding the cases where the string is partly curved and partly straight and 
where during the motion curved parts change into straight ones or vice versa. 
His reason for excluding these cases was, as I have discussed above (Section 5.3), 
his conviction that ratios between straight and curved lines cannot be given 
exactly° DESCARTES argued as follows: 

Nor should we reject the method in which a string or a loop of thread is used 
to determine the equality of or the difference between two or more straight 
lines which can be drawn from each point of the required curve to certain other 
points or towards certain other lines at certain angles. We have used this 
method in the Dioptrique to explain the ellipse and the hyperbola. It is true, 
though, that one cannot accept in geometry any lines which are like strings, 
that is, which are sometimes straight and sometimes curved, because the pro- 
portion between straight lines and curved lines is not known and I even believe 
that it can never be known by man, so one cannot conclude anything exact 
and certain from it. Nevertheless, because in these constructions one uses 
strings only to determine straight lines whose lengths are perfectly known, this 
should not be a reason for rejecting them. (G pp. 340-341) 

7.3 Further on in the Gdomdtrie DESCARTES used string constructions as an 
alternative to pointwise constructions to represent ovals. By way of illustration I 
summarise the string construction of the first oval (see Figure 15): FE is a ruler 
that pivots at F. A string is fixed at E on the ruler and at G on the axis FAG. 
It is slung around a pin K on the axis and it is kept straight by a tracing pin at 
C against the ruler. Thus the string is kept to E-C-K-C-G.  Now the ruler is 

°°.~., .°o.'° 

Fig. 15 
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turned around F and in that motion the tracing pin C traces the oval. The points 
F, A, Kand G on the axis can be chosen such as to give the oval the required optical 
properties. 

8. Equations of curves in the G~om~trie 

8.1 We have seen that DESCARTES used three different kinds of representation 
of curves: tracing machines, pointwise constructions and tracing machines in- 
volving strings. In each case further conditions (which exclude the transcendental 
curves) have to be satisfied if the resulting curves are to be acceptable in geometry. 
In the first and the third kind of representations these conditions have tO do with the 
axiom of incommensurability of the straight and the curved, and in the second with 
the randomness of the constructible points on the curve. It is noteworthy that DES- 
CARTES did not try to connect these two types of condition. In fact they relate 
to different aspects of curve tracing by continuous motion. Incommensurability 
of the straight and the curved relates to the condition that the combined motions 
which trace the curve regulate each other in a measurable way (cfi Section 4.1). 
The randomness of the constructable points relates to the continuity of the tracing 
motions (el. Section 6.2). 

We must now consider the role of equations as representations of curves: 
to what extent did DESCARTES consider the equation to be a sufficient representa- 
tion of a curve ? DESCARTES was convinced that the equation of a curve incorporates 
M1 information on its properties; He wrote: 

Now if one knows the relation that all points of a curved line bear to all 
points of a straight line in the way I have explained [i.e. as soon as the equation 
is known], it is also easy to find their relation to all the other given points 
and lines; and subsequently to find the diameters, axes, centres and other lines 
or points to which each curve has some special relation, or a more simple rela- 
tion than to others, and in that way to conceive various ways of describing 
the curves, and to choose the easiest° (G p. 341) 

The passage suggests that finding the description of the curve from its equation 
still requires an effort, so the equation itself is not an appropriate representation 
of the curve. 

This is in keeping with the fact that nowhere in the Gdomdtrie did DESCARTES 
use an equation to introduce or represent a curve. In several cases he treated 
curves without giving their equations; in other cases he gave the equation almost 
casually in the course of his arguments. The solution of the problem of PAPPUS 
with five lines, four of which are parallel, equidistant and perpendicular to the 
fifth (cf. Section 6.1 and Note 21), was given in Book II by a prose description 
of a defining property of the locus. The description could have been translated 
into an equation, and would certainly have been more informative if it had been. 
Equations of the curves traced by the machine discussed in Section 5.1 were not 
given in the Gdomdtrie, nor did DESCARTES present the equations for the ovals. 
The Cartesian parabola, so fundamental to the Gdomdtrie, was introduced in 
Book II as the curve traced by the intersection of a parabola and a ruler. Its equa- 
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tion was given afterwards, and clearly not as a representation of the curve bu t  
as a means of proving that the curve solves the five-line locus problem (G p. 337), 
or as a means to determine its tangents (G p. 344). For readers to whom the de- 
scription of the curve by ruler and parabola "seems difficult" DESCARTES added 
as an alternative representation a pointwise construction, but not the equation 
(G p. 407). 

The conclusion from these facts must be that for DESCARTES.the equation of 
a curve was primarily a tool and not a means of definition or representation. 
It was part of a whole collection of algebraic tools which in the Gdomdtrie he showed 
to be useful for the study of geometrical problems. The most important use of the 
equation was in classifying curves into classes and in determining normals to 
curves. Here the equation must actually be written out. In many other cases 
DESCARTES could get through his calculations about problems without writing 
down the equation of the curve explicitly. 

9.  Geometrical  curves 

9.1 Within his programme for geometry, DESCARTES did not, and could not, 
simply state that geometrical curves are those which admit algebraic equations. 
But how did DESCARTES see the class of geometrical curves ? Did he really consider 
this class to be the same as the class of curves admitting algebraic equations, and 
did he think that every such equation could occur as the equation for a geometric- 
al curve ? And was he aware of the extension of the class of curves which he decided 
to banish from geometry? I shall deal with these questions in this section. 

DESCARTES stated firmly that all geometrical curves have equations. After 
explaining the curve-tracing machine discussed in Section 5.1 he wrote: 

I could give here several other ways of tracing and conceiving curved lines, 
which would be more and more complicated by degrees to infinity. But to 
understand the totality of all curves that are in nature and to distinguish 
and order them in certain classes, I do not know a better way than to say that 
aU points of those that can be called geometrical, that is those which admit 
some precise and exact measure, necessarily have some relation to all points 
of a straight line, which can be expressed by some equation, the same equation 
for all points. (G p. 319) 

He went on to explain how these equations can be found for the curves traced by 
the machines discussed in Section 5.2. 

The converse question, namely whether all algebraic equations describe geo- 
metrical curves, is a much more difficult one and DESCARTES did not answer it 
explicitly. Taken in its strict sense the question is whether for every algebraic 
equation a tracing machine, or a combination of continuous motions in the sense 
explained in Section 5, can be found which describes the curve having that equa, 
tion. DESCARTES did not deal explicitly with that question anywhere. However, 
it is such a fundamental question in the whole Cartesian programme of geometry 
that it seems very unlikely that DESCARTES was unaware of it. His silence on this 
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question must be due to his inability to answer it. It is not surprising that DES- 
CARTES could not answer it; a proof that the answer to the question is positive 
was found only in the 19 th century. 26 

Implicitly, DESCARTES' answer to the question was positive. An equation of 
a curve implies a pointwise construction; one takes successive fixed values for one 
of the variables, say for y, and constructs geometrically the corresponding values 
for x as the roots of the resulting equation in x. DESCARTES was convinced that 
this could always be done. In the third book of the Gdomdtrie, he showed that the 
roots of equations (in one unknown) up to the sixth degree can be found by the 
intersection of geometrically acceptable curves, and he claimed that the same can 
be done for equations of higher degree (G po 413; c f  Section 3°4)° This is how 
DESCARTES solved the problem of PAPPUS and he even claimed that every equation 
can arise as the equation for the locus in a problem of PAPPUS in some number 
of lines. Hence algebraic equations yield pointwise constructions for the curves 
they describe and these constructions are acceptable in geometry because one has 
a complefely free choice of starting point for the construction of the points (namely, 
the choice of the y; see Section 6.2). Moreover, DESCARTES claimed that such 
pointwise constructions of curves are equivalent to tracing by continuous motion, 
and hence, implicitly, he claimed that all algebraic curves are geometrical in the 
sense of being traceable by continuous motion. 

It is clear that the crucial step in this argument is the equivalence of pointwise 
constructions and constructions by continuous motion. Through this equivalence, 
curves described by equations acquire a status in geometry equal to that of curves 
traced by continuous motion. But we have seen that DESCARTES' arguments for 
the equivalence were weak (Section 6.2). He must therefore have had strong 
reasons for incorporating the equivalence in his geometry. In Section 10 I shall 
say something more about his reasons and about some conclusions which may be 
drawn from these concerning the formation of DESCARTES' ideas in geometry 
in the years before the publication of the G~om~trie. 

9.2 It is noteworthy that DESCARTES' basic argument in rejecting the transcen- 
dental curves was the incommensurability of straight and curved lines° This 
argument applied only to transcendental curves depending on the quadrature of 
the circle, such as the quadratrix and the spiral, which were the only ones DES- 
CARTES mentioned explicitly. But how many transcendental curves did he know, 
and, what is more important, did he know curves depending on logarithmic rela- 
tions, and which arguments did he use to exclude these from geometry ? 

The idea that curves generated by motions not mutually subordinate are to 
be rejected from geometry occurred earlier in DESCARTES' letter to BEECKMAN 
of 26 March 161927 (see Section 10.2); he mentioned the quadratrix as an example. 
By that time he had also hit upon the logarithmic relation in connection with 
the problem "de reditu redituum'" (income on income, i.e. compound interest). 
He considered two axes, one divided in equal parts, the other in proportional 

26 A. B. I~MPE, "On a general method of describing plane curves of the n th  degree 
by linkwork", Proc. London Math. Soc. 7 (1876) pp. 213-216. 

z7 A.T. 10, pp. 154-158. 
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parts. In one study 2s the idea of a curve representing the relation between corre- 
sponding parts on each axis seemed to underlie his argument. In another study 29 
he actually drew that curve, called it the linea proportionum and recognized it as 
belonging to the same class as the quadratrix: 

The line of  proportions is io be put in the same class as the quadratrix for it 
is generated by two motions, one circular and one straight, which are not 
subject to each other. (A.T. 10 pp. 222--223) 

It is not  clear how DESCARTES got the (wrong) idea that the line of proportions 
is generated by a combination of a straight motion and a circular motion; perhaps 
he was thinking only of  the quadratrix when he mentioned these motions. The 
figure in the published text suggests that he had no clear idea about the form of  
the curve. 

There:is no evidence that DESCARTES before 1637 actively studied transcendental 
curves other than the quadratrix and the spiral. But shortly after the publication 
of  the Gdom~trie we find DESCARTES discussing the logarithmic spiral in a letter to 
MERSENNE 3° and another logarithmic curve in connection with one of the prob- 
lems set by DEBEAUNE al. Around this time he also studied the cycloid. 3z In 
the case of  DEBEAUNE'S problem DESCARTES did not explicitly recognize that the 
curve was connected with logarithms~ although he may well have seen the link. 
He worked out two motions which together describe that curve and he found that 
these two motions 

are so incommensurable that they cannot be regulated by each other in an 
exact way; and therefore that this line belongs to those which I have rejected 
from my Geometry as being only mechanical. (A.T. 2, p. 517) 

From the little information we have, then, it seems that before the publication 
of the Gdorndtrie DESCARTES may have had the idea that by rejecting the quadratrix, 
the spiral " and  the like" (G p. 317) he was not really rejecting any interesting curves 
but only those originating from motions which involve the relation between 
curved and straight lines. Shortly after 1637 he came upon several other "non-  
geometrical" curves; some of  them obviously did not depend on the relation 
between curved and straight, and some of them were indeed quite interesting. 

28 A.T. 10, pp. 77-78; the study dates from before December 1618. 
29 A.T. 10, p. 222-223, from 1619-1621. 
30 DESCARTES to MERSENr~ 12-9-1638; A.T. 2, pp. 352-362, in particular p. 360. 
3 t For DESCARTES' solution of DEBEAUNE'S problem see his letter to DEBEAUNE of 

20-2-1639; A.T. 2, pp. 510-519, and C. J. SCRIBA, "Zur L6sung des 2. Debeauneschen 
Problems durch Descartes", Arch. Hist. Ex. ScL 1 (1960-1962), pp. 406--419. 

32 MERSENNE mentioned the cycloid and ROBERVAL'S studies on the quadrature 
in his letter to DESCAaT~S of 28-4-1638 (A.T. 2 pp. 116-122). In his answer of 27-5-1638 
(A.T. 2 pp. 134-153) DESCARa'~S said that he had never thought of the curve before 
(po 135). He discussed the curve and its properties in several subsequent letters to MER- 
SENNE. 
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10. Once more: Descartes' programme 

10.1 W.e have seen that in DESCARTES' programme for geometry as expounded 
in the Gdomdtrie there was a contradiction in the criteria for the geometrical 
acceptability of curves. On the one hand DESCARTES claimed that he accepted 
curves as geometrical only if they could be traced by certain continuous motions. 
This requirement was to ensure that intersections with other curves could be found, 
and it was induced by the use of the curve as means of construction in geometry. 
On the other hand DESCARTES stated that, under certain conditions, curves re- 
presented by pointwise constructions were truly geometrical. Pointwise construC- 
tions were related to curve equations in the sense that an equation for a curve di- 
rectly implied its pointwise construction. Pointwise construction was used pri- 
marily for curves that occurred as solutions to locus problems. 

The link between the two criteria is DESCARTES' argument that pointwise 
constructible curves can be traced by continuous motion. We have seen that that 
argument, and  hence also the link, is very weak (cf. Section 9.1). This makes 
the criteria themselves all the more interesting. DESCARTES needed both criteria; 
he could not restrict his attention to one of them. On the one hand he could not 
keep strictly to the criterion'of continuous motion because he wished to regard 
all loci for problems of PAPPUS as geometrical curves. In studying the five-line 
locus he came upon such a locus for which he could not, or would not, give a 
construction by continuous motion (cf. Section 6.1 and Note 21). Certainly he 
could not prove in general that all curves with algebraic equations can be traced 
by continuous motion. On the other hand~ DESCARTES also could not simply state 
that a curve is geometrical when it can be constructed pointwise. Pointwise con- 
struction presupposes means of construction and in DESCARTES' system these 
means can only be curves traced by continuous motion. Hence if he would adopt 
pointwise constructibility as a criterion for a curve to be geometrical, DESCARTES 
would still have to show that the necessary curves for performing this pointwise 
construction can be traced by continuous motion. This he also could not do in 
general° 

Why then did DESCARTES not cut this Gordian knot in the most obvious 
way~ namely by defining geometrical curves as those which admit algebraic 
equations 9 Why did he not simply state that all such curves are acceptable means 
of construction and that the degrees of their equations determine their order of 
simplicity? That principle would have removed the contradictions mentioned 
above. But DESCARTES did not accept the principle. In order to understand why 
we have to look at the development of DESCARTES' ideas on geometry. 

10.2 Even in 1619 DESCARTES had a programme for his geometrical research. 
We know this from what he wrote in his letter to BEECKMAN of 26 March 1619: 

I hope to prove (-) that certain problems can be solved with straight and 
circular lines only; that others can only be solved with other curved lines 
which originate in one single motion, and which therefore can be traced by 
the new compasses, which I do not think are less certain and geometrical 
than the ordinary ones with which circles are drawn; and that finally other 
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(problems) can be solved only by curved lines originating from different 
motions that are not subordinate to each other and that certainly are only 
imaginary (imaginariae); such a curve is the well known quadratrix. I think 
that one cannot imagine problems that cannot be solved by at least these lines; 
but I hope to be able to demonstrate which questions can be solved by the 
first or the second method but not by the third; so that in geometry nothing 
remains to be found. (A.T. 10 p. 157) 

The passage shows that by 1619 DESCARTES had formed the conception of geometry 
which he adhered to all his life. He did not consider geometry primarily as an 
axiomatic, deductively ordered corpus of knowledge about points, lines etc., 
but as the science of solving geometrical problems. Once all such problems could 
be solved there was nothing further to do in geometry. 

The compasses DESCARTES had in mind here were two linkage machines 33 
for solving problems or tracing curves° One of these we have met in the Gdornd- 
trie; it is the machine illustrated in Figure 3. It was designed to find mean pro- 
portionals between two given lines segments. The similarity of the triangles in- 
volved immediately yields 

Y B : Y C =  Y C : Y D =  Y D : Y E =  Y E : Y F =  Y F : Y G =  Y G : Y H .  (10;1) 

Hence to find, for instance, two mean proportionals between YA and some given 
line 2, one opens the compass until YE = 2; YC and YD are then the required 
proportionals. Alternatively, one can first trace the curve AD by continuously 
opening the compass. Then when2 is given, one intersects AD with the circle with 
diameter YE = 2o The point of intersection is D; YC (the abscissa of D) and YB 
are the required proportionals. In the same way the curve AF traced by F serves 
to determine four mean proportionals. 

The other compass was not mentioned in the Gdomdtrie. Just as the first com- 
pass was based on a very simple geometric device to find proportionals, this one 
employed a very simple device for dividing an angle into any given number of 
equal parts. For the trisection of the angle the machine is as in Figure 16. There 
are four rulers AB, AC, AD and AE, all pivoted at A. On each of them, at fixed 

Fig. 16 

33 A.T. 10, p. 234 and p. 240. 
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and equal distances from A, there are adjusted links FG, 11t, KG, and LtL all 
equal in length° FGand KG are joined such that G can move along ruler AC; IH and 
L H  are joined such that H can move along ruler AD. If a given angle o~ has to be 
trisected the compass is opened until ~ BAE is equal to o~; then ,sY. BAC is equal 
to ~- a. Alternatively (see Figure 17) let the point G trace a curve MG by opening 
the compass while leaving ruler AE fixed. If angle o~ has to be trisected one draws 
the angle at A with one arm along AE, chooses a point F" on the other arm such 
that AF' = AF and draws a circle around F" with radius FG. Through the inter- 
section G' of the circle and the curve one draws AG'. Then ~ FAG'  = ~ ~ F'AE 
~_~_1~. 

i 

Fig. 17 

Around this time DESCARTES had experimented with other compasses -similar 
to these, and in his letter to BEECKMAN he mentioned that he had devised compasses 
for the construction of all types of cubic equations. It was nothing new to use in- 
struments such as DESCARTES' compasses for various special constructions; 
they were used in classical mathematics, and PAPPUS ~ Collections mention several 
such machines. Also the idea of considering the curves traced by these machines 
was not new; the eonchoid of NtCOMED~ for instance, is a curve traced by a 
special kind of instrument for certain constructions, the so-called neusis construc- 
tions 34. It should be noted~ however, that in formulating his programme DES- 
CARTES considered the curves themselves rather than the compasses as the means of 
construction. 

10.3 If we compare the programme which DESCARTES outlined in his letter 
of 1619 to BEECKMAN with the programme of the Gdom~trie we find significant 
differences. These differences concern the role of algebra and pointwise construc- 
tions. We see that by 1619 DESCARTES' programme contained the following ideas: 
Geometry is the science of solving or constructing geometrical problems° Construc- 
tion by means more complex than the circle and the straight line (the compass 

34 See the chapter "On the problems known as neuseis" in The works of Archimedes 
(ed. T. Lo HEATH, Dover edition), pp. c-exxii, in particular po evil. For the conchoid see 
also Figure 5. 
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and the ruler) need not be less geometrical. Curves that can be traced by one single 
continuous motion such as that provided by the compasses are acceptable means f o r  
geometrical construction. There are also problems that can be constructed only 
by curves traced by a combination of  motions that are not subordinate to each 
other. Such curves are "imaginary";  an example is the quadratrix. All problems 
can be solved with such curves, but DESCARTES wishes to classify the problems 
that can be solved by acceptable geometrical curves. These elements of  the pro- 
gramme of  1619 were all to be found in the Gdomdtrie as well. But several points 
of the programme of the Gdomdtrie were still lacking in 1619. Most notable was 
the absence of algebra. It is true that DESCARTES envisaged geometrical solutions 
of algebraic equations by means of  compasses, but algebra did not yet play a role 
in the classification of geometrical means of construction according to their sim- 
plicity, nor in a method for finding the simplest possible constructions. It  seems 
l ikely. that  by 1619 DESCARTES envisaged classifying the constructing curves 
according to the simplicity of  the compasses used to draw them. A trace o f  this 
is found in the G~omdtrie where DESCARTES, in discussing the compass for mean 
proportionals, said 

I do not believe that there could be an easier method to find as many mean 
proportionals as one wishes, nor  one whose proof  would be more evident, 
than to use the curved lines traced by the instrument X Y Z  . . . .  (G p. 370) 

But DESCARTES went on to say that the curves traced by that instrument are of  a 
higher class than necessary and that therefore they should not be used in a truly 
geometrical solution of  the problem to find mean proportionals (G p. 371). We 
may conclude that by 1637 DESCARTES' algebraic criterion for the simplicity of 
curves, namely their class, defined via the degree of  the equation, had replaced, 
and indeed was in conflict with an earlier criterion for  simplicity, namely the sim- 
plicity of  the compass and of the resulting proof  of the construction. 

The other element not in the programme of 1619 concerned loci and pointwise 
constructions. In 1619 DESCARTES did not wish to introduce new curves in geometry 
for purposes other than constructions. The problems r o b e  constructed had one 
solution or a finite number of solutions° In 1619 DESCARTES did not consider the 
case where the solutions are infinite in number forming a locus which, by the 
nature of  the process of  solving the problem, is constructed pointwise. Hence he 
was not faced with the problem of  whether or not such curves should be accepted 
in geometry and according to which criteria. 

10.4 Evidently, therefore, DESCARTES' programme of  geometry changed be- 
tween 1619 and 1637. The stages of  this change are in fact fairly well known, a5 

32 See G. MILHAUD, Descartes savant (Paris 1921), Chs. 1, 3 and 6. JOHN SCHUSTER 
has recently published a detailed study of the development of DESCARTES' ideas about 
universal mathematics in relation to his metaphysics and his programmes for philosophy; 
see J. A. SCHUSTER, "Descartes' mathesis unversalis; 1619-1628" in Descartes; philo- 
sophy, mathematics and physics (ed. S. Wo GAUKROGER, Hassocks (Sussex) (Harvester 
Press), 1980), pp. 41-96. He argues that one of the reasons why DESCARTES after 1628 
abandoned his programme for universal mathematics as formulated in the Regulae 
ad directionem ingenii was that he encountered difficulties in working out the geometrical 
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It was probably shortly after his letter to BEECKMAN of  March 1619 and before 
November 1620 that DESCARTES studied the construction of  problems through 
the intersection of  conics and found the solution of  all equations of  third and fourth 
degree through the intersection of  a parabola and a circle. This must have given 
him the idea that the conics are the class of  constructing curves immediately 
following the circle and the straight line. 

This idea may have led him to search for a construction of  all equations of  
fifth and sixth degrees through the intersections of  a circle with one special curve 
more complicated than the conics. He succeeded in finding this construction; 
the curve is the Cartes/an parabola; the construction is explained at the end of  
Book 3 of  the G~om~trie (G pp. 402-411 ; cf. Section 3.4)° But we do not know 
the date of  this discovery36o These results must have induced DESCARTES to con- 
sider that the degree of  the equation of  the curve, rather than the simplicity of 
the tracing machine, was the criterion for the geometrical simplicity of  curves 
used in constructions. ~ 

The other new aspect, loci "and pointwise constructions, probably was in- 
corporated into DESCARTES' programme in 1631 when GOLIUS suggested that he 
might try his hand at the problem of  PAPPUS. We know that Dw:SCARTES solved 
the problem in a number of  weeks and that the solution appearing in the G~o- 
m~trie is essentially the one he sent to GOLIUS in January 163237° This study must 
have turned DESCARTES' attention more to algebra, to the equation as embodying 
all the information about  the curve, to the need to incorporate all curves admitting 
algebraic equations in geomet ryand  to the need to admit pomtwise construction 
for curves. 

10.S However, more important than the chronology of  the changes in D~S- 
CARTES' geometrical ideas is the fact that these changes explain the basic contra- 
diction in DESCARTES' programme in the G(omdtrie. The programme of  1619 

theory of equations. This fits in well with the chronology of DESCARTES' changing ideas 
about geometry. Also SCt-IUSTER'S study provides an illustration of DESCARTES' attitude 
to contradiction and failure in his programmes (i.e. the programme of universal mathe- 
matics) which seems to correspond well with what I find about DESC~TES' attitude to- 
ward the failure of his earlier programme for geometry° 

as It seems likely that this discovery was made later than 1628, for we have a note by 
BEret:MAN about his interview with DESC~a~T~S in October 1628. D~SC~atTES had ex- 
plained to BEI~CKMAN the construction of the roots of any equation of the fourth degree by 
the intersection of a circle and a parabola. BEECrdaAN noted that "M. DESCARTES made 
so much of this invention that he confessed never to have found anything superior himself 
and even that nobody else had ever found anything better" (A.T. 10, p. 346)° It is not 
likely that DESCARTES would have made this kind of comment if by that time he had al- 
ready known the general construction of the roots of equations of 5 th and 6 th degrees. 

37 See DESCARTES' letter to GOLXUS of January 1632, A.T. 1, pp. 232-236. Dr SCART~S 
refers to an "rcrit" sent earlier to GoLms; this "rcrit" has been lost. In the letter DEs- 
CARTES adds a definition of classes ("genres") of curves. The definition is not clear and 
the terminology is quite different from that used in the Gdom~trie. Still, from the further 
indications in the letter, it seems likely that DESCARTES had by that time found the essen- 
tial elements of the solution of the problem of PAPPUS as it appeared in the G~ora~trie 
and that the "~crit" sent to GoL~s contained a condensed version of this solution. 
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may have been impracticable, but it was consistent. It provided a demarcation 
between geometrical andonon-geometrical constructions, and the criterion used 
in that demarcation was a geometrical one: the constructions had to be performed 
with machines that were generalizations of the ruler and the compass. 

In the programme of 1637 algebra had become dominant. DESCARTES now 
classified curves according to the degree of their equations and a large part of 
the Gdomdtrie (especially the third book) is devoted to algebraical techniques 
relating to the roots and coefficients of equations (reduction of equations, sign 
rule, removal of terms from the equation, change of negative roots into positive 
ones, etc.). But despite all this algebra, what had remained was DESCARTES' 
conception that geometry was the science of solving geometrical problems by 
the construction of points through the  intersection of curves. Therefore the 
main aim of the third book was the construction of roots of equations through 
the intersection of curves. 

This aim determined the structure of the third book and the nature of the 
algebraic techniques presented in it. The reduction of'equations to other equa- 
tions of lower degree was necessary for finding the construction by the simplest 
possible constructing curves. The techniques relating to the roots and coefficients 
of the equation served to reduce the equations to standard forms, for which DES- 
CARTES then gave standard constructions. For equations of third and fourth degrees 
this was the construction by the intersection of circle and parabola; for equations 
of fifth and sixth degrees the construction by the intersection of circle and Carte- 
sian parabola. 

Thus, although algebra occupied a dominant position in DESCARTES' pro- 
gramme of 1637, it was the geometrical aim of the work that determined its struc- 
ture and provided the motivation. 

10.6 We now have the answer to the question raised in Section 10.1, namely 
why DESCARTES kept the criterion of tracing by continuous motion for the geo- 
metrical curves, and why he did not simply define geometric curves as those which 
have algebraic equations. As we have seen, the whole structure of his G~om~trie 
depended on the conception of construction by the intersection of geometrical 
curves. For DESCARTES, these intersections were actually found or constructed 
only if the curves could be traced by continuous motion. In that case one can 
conceive clearly and distinctly that the intersections are found. If he were to re- 
nounce his criterion of tracing by continuous motion and at the same time keep 
to his programme of construction by the intersection of curves, he would have 
to state as an axiom that for all curves having an algebraic equation the inter- 
sections are given or constructible. 

It is evident that DESCARTES could not do this. An axiom which states that the 
intersections of curves are constructible is by no means clearly and distinctly 
evident, so it would not satisfy DESCARTES' criterion for accepting a statement as 
a basis for further argument. 

Moreover, by adopting this approach DESCARTES could no longer claim that 
he was doing geometry; he would be doing some kind of algebra. But that would 
mean giving up the principal aim of his work; to bring order into the science of 
geometry. 
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Finally, the whole structure of the Gdomdtrie, which was based on finding 
the simplest constructing curves for a given problem, would lose much of its 
meaning. If  the intersections of all algebraic curves are by axiom constructible, 
there is no evident reason for findifig the simplest curves for a given problem~ 
and hence there is not much point in finding constructions for roots of equations. 
The roots of  an equat ionx ~ + ax ~-~ -+- . . . .  0 are the intersections of the curve 
y = x n q- ax ~-~ ÷ .o. with the straight line y ----- 0; thus they are already given 
as intersections of curves with algebraic equations. 

We see that DESCARTES could not give up his definition of  geometrical curves 
by continuous motion because then he would have lost the claim of doing geometry 
and hence the rationale of the whole structure of his work would have been 
destroyed. 

11. Conclusion 

11.1 As I hope I have shown, the representation of curves is the key to under- 
standing the structure of DESCARTES' Gdomdtrie and its underlying programme. 
Although there were contradictions in the structure and the programme, there 
was an underlying unity of vision. DESCARTES had this vision as early as 1619, 
but it did not find its clear expression until the Gdomdtrie of 1637o According 
to this vision geometry can and should be structured, and the bewildering jumble 
of problems, methods and solutions, in which it is impossible to know where the 
problems end and the solutions begin, can and should be cleared up. DESCARTES' 
view, in short, was that geometry concerns a surveyable, "orderable" collection 
of  well defined problems, well defined also in the sense that there are clear criteria 
of adequacy for their solutions. DESCARTES left it to his successors to work out the 
programme, to find its limitations and to come to terms with its contradictions. 

Appendix 

On the curves that occur as loci o f  problems o f  PAPPUS 

In the passage quoted in Section 2.3 DESCARTES asserts that every curve can 
arise as the locus of some problem of PAPPUS. In this Appendix I shall discuss 
the possible interpretations of this assertion and show that in each case the asser- 
tion is wrong° First of all I shall derive some properties of  polynomials occurring 
in the equations of loci of problems of PAPPUS. 

Let V~ be the (6n + 1)-dimensional real vector space consisting of vectors 

v = (al,  bl, cl, a2, b2, c2 . . . . .  az~, bz~, cz~, c~). 

Consider the mapping P~ defined by 

P~(v) (x, y) = (aix -t- biy -I- ci) --  ~ [ I  (aix + biY -t- ci). 
i ~ l  i ~ n + l  

P~ maps V~ into the space of polynomials in two variables with real coefficients. 
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If none of the factors aix + biy + ci is constant (i.e. if for all i, as ~ 0 or b~ ~ 0), 
then 

t ' . (v) (x, y) = o 

is the equation of the locus of a problem of PAPPUS in 2n lines. Let these lines be 
called L~; they have as equations 

aix + biy + ci = O. 

Taking into account the possibility that some of the factors may be constant, we 
see that 

en(v) (x, y) = 0 

is the equation of the locus of the following generalized problem of PAPPUS: 

Given k + l lines, with k _<__ n and l ~ n, find the locus of points in the plane 
such that the ratio of the product of their (oriented) distances to the first k lines 
and the product of their (oriented) distances to the last l lines is constant. 

This is a natural generalization of the original problem of PAPPUS. All 2m-line 
and ( 2 m -  O-line problems with m =< n occur among the P~(v)(x, y). I shall 
call a polynomial that can be written as P~(v) for some n and some v E V~, a Pappus 
polynomial. PAX'PUS polynomials are those polynomials which can be written 
as the difference between two polynomials each of which can be decomposed 
into linear factors. DESCAR~S' assertion therefore is about whether or not every 
polynomial can be written as such a difference. 

I shall need a number of properties of PAPPUS polynomials, derived in the 
following Theorems 1-3. 

Theorem 1. Let v E V~ and let the lines L~ corresponding to the nonconstant 
factors a~x + b,y + c~ be not all parallel to each other. Then there are points 
(x, y) in the plane such that P~(v) (x, y) = O. 

Proof. Because not all the lines are parallel, there is a pair of lines L,  Lj with 
i ~ n and j > n, which intersect each other° Let (xo, Yo) be their point of inter- 
section. Then 

a~xo + b~yo + c~ = ajx 0 + byo + cj = 0 

and therefore 
P,(v) (xo, Yo) ----" 0. 

If we are dealing with a proper 2n-line problem, i.e. if all the factors in Pn(v) 
are non-constant, the degree of Pn(v) will generally be equal to n. But because 
Pn(v) is the difference of two polynomials it may happen that the terms of high 
degree cancel each other, so that a 2n-line problem may lead to an equation o f  
degree less than n. An example is the 8-line problem 

( y +  1) (y --1) (x + l) (x -- 1) -- (y + 2) (y -- 2) (x + 2) (x -- 2) = O 

which yields a quadratic equation 

X2 + y2 ~__. 5. 
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Conversely, this means that if we are to find all PAPPUS polynomials of degree 
n, we may not restrict attention to all P#(v), because such polynomials may also 
arise as Pro(v) for some m > n. This possibility will be important in interpreting 
and checking DESCARTES' assertion. In particular we shall need the following theo- 
rem about the degree of  Pn(v): 

Theorem 2. Let v E Vn such that all factors aix + biy + ct in P#(v) are non- 
constant and such that not all the lines L i are parallel. Then 

n 
- ~  =< degree P~(v) ~ n. 

Proof. It is obvious that degree P~(v) =< n. To prove the other inequality I call 
L~ . . . . .  L~ the first set of  lines and L~+x . . . . .  L2~ the second set of lines, and I con- 
sider first the case where the two sets have no line in common. If  there is a line 
in the first set which is not parallel to any of  the lines in the second set, I take that 
line as L I  and proceed by taking k ----- 0 in the argument below. If  there is no such 
line in the first set, I choose (renumbering if necessary) LI . . . . .  Lk from the first 
set of  lines and Ln+I . . . . .  L~+k from the second set such that 

LI///-2//o..//-L~,//L,+I//...//L,+k, 

and such that either in the first set of  lines or in the second set there are no more 
lines parallel to LI. I assume that in the second set of  of lines there are no more 
than k lines parallel to L1 (in the other case I can switch the sets). Because not all 
the lines are parallel there is such a set of  lines LI . . . . .  Lk, L,+I . . . . .  L#+k with 

n 

0__<k<- T, 

n 
because if k were > -~-, a smaller set with the same properties could be chosen 

from the remaining lines. If  b~ ~ O, I substitute 

in 

~ a I X  ~ C~ 

Y =  bl 

n 2n 

P.(,O (x, y) = H (a,x + b,y + c,) - ~, 11 (a~x + O# + c.O. 
i = l  i = n + l  

The first product then becomes 0 (because a lx  + b ly  + c~ ---- 0), and in the second 
product the factors become 

aibi --  albi blci --  bicl 
x +  

bl bl 

For n + 1 --< i ~ n + k, the lines L~ are parallel to Lt but not equal to Lx ; 
hence in that case 

a~b I --  alb l = 0 and bxc i --  btc t =i= O, 

so the first k factors of the second product become constants e~ =~= 0. The lines 
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L.+k+I . . . . .  ~ are not parallel to L1, hence for n q- k ,-+- 1 _< i _< 2n 

aibl -- alb ~ ~ O, 

so the last n - - k  factors of  the second product  can be written as 

Ax + g. £ o. 
Hence 

x, "bl = FI e, (f,x + g,), 
iffin+! l ~ n + k + l  

a polynomial in x of degree n - - k .  But this means that 

degree Pn(v) (x, y) >= n --  k .  
Also 

gO 

n 
n - - k  >=-~, 

n 
degree P.(v) (x, y) => 

I fb l  = O, Jt can be proved analogously (substitution x = -~Zt ~ ) that P. (v) ( - -~- ,  y ) 

is a polynomial in y of  degree n --  k, so that also in that case 

n 
degree P.(v) (x, y) >= n --  k >= -~  

Finally, if  some of  the lines of  the first and second sets coincide, let these lines be 
L1 . . . . .  La, that is, L i = L.+l, I-a = L.+2 . . . . .  La = L.+d. Then, for 1 __< i _< d, 

aix + bff + e~ = ~i(a,,+ix + b.+iy + c,,+i), ~i =~ O. 

We then have 

d 

P.(v) (x. y) = 1-[ (a~x "k- biy -k- ci) " 
iffil 

• (alx q- bty Jr" c,) -- ~x 1-[ ~[-I l-I (aix + biy q- ci) • 
i 1 i ~ l  i ~ n + d + l  

The factor between brackets is a PAPPUS polynomial P._d(w) for  which the first 
n - - d  

and second sets of  lines have no lines in common. Hence its degree is _--_ 

s o  

degree P,(v) >= d + 

This completes the proof  of  Theorem 2. 

n - - d  n 
2 = 2 "  

, 

DESCARTES noted that a case where all lines are parallel is exceptional. Theo- 
rems 1 and 2 do not apply in that case. I shall therefore discuss it separately. 
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Let v E V, be such that none of the factors a~x + b~y -q- c i is constant and that 
the 2n lines L~ are all parallel. Then the equations of the lines L i can all be written 
a s  

with 

Hence 

z = a l x - - k b l y .  

f i  2n 
P.(v)  (x,  y)  = (o , :  + fit) - -  o, I-[ (~,,z + ill) = F(z ) ,  

i = 1  i=n+l 

where F(z) is a polynomial in z formed as the difference between two n th degree 
polynomials in z, each having n real roots. But it may happen that F(z)  itself has 

n 
no real roots or that its degree is < ~--. Hence the analogues of Theoremso 1 and 2 

do not apply in this case. We note that in this case o f  2n parallel lines, the surface 
in R a 

w - -  e . (v)  (x, y) = e (z)  

is a ruled surface. 
As to the degree of F we prove: 

Theorem 3. Let v E Vn be such that none of the factors aix + biy + ci is constant 
and such that the 2n lines Li are all parallel. I f  P,(v) has degree m < n, then there 
is a w E I'm, such that 

Pn(v) = Pm(W) 

and the lines corresponding to w are all parallel. 
(In other words, if a problem of  PAPPU$ in 2n parallel lines yields an equation 

of degree m, then there is a problem of PAPPUS in 2m parallel lines which yields 
the same equation.) 

Proof. Because 
n 2n 

?.(v)  (x, y) = I-[ (~,z + 8,) - ~ I-I (~,z + ¢,) = F(z) ,  
1=1 l=n+l 

we have to prove that every polynomial F(z)  o f  m th degree in one variable can be 
written as the difference between two polynomials G(z) and H(z)  of m th degree, 
each having only real roots. Consider a segment [a, b], and let IF(z)[ < K for 
z E [a, b]. Choose points in [a, b] as follows: 

a = do < cl < dl < c2 < d2 < .o. < Cm-l < dm-t  < cm < d., ----- b 

and consider 
m 

G(z) = I I  ( z -  c,). 
i=l 

Clearly G(d 0 ~ 0, and between each pair d~, d~+I, G has a change of sign. Choose 
such that [~G(d3[ > g for all d/, and consider the polynomial of mth degree 

t t ( z )  = F(z)  + c~G(z). 
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Because lF(d/)l < Kand laG(d/) i > K, H(4) has the same sign as G(4); thus H 
has a change of sign between each pair di, d,.+l. Therefore all the roots of H are 
real. The required decomposition is therefore 

F ( z )  = - 

Corollary of Theorems 2 and 3. If F(x,y) is a PAPPUS polynomial and degree 
F = k ,  then there is an m ~ 2k and a v E Vm such that F = P=(v). 

I now return to the interpretation of DESCARTES' assertion. If it is taken to 
mean that every polynomial in two variables is a PAPPUS polynomial (and the 
first lines of DESCARTES' assertion could be read thus), then the assertion is quite 
easily proved wrong. A counter-example is 

F(x, y) = x = + y2 + 1, 

because there are no real points (x, y) satisfying F(x, y) = O; also w = F(x, y) 
is not a ruled surface in R a, so by Theorem 1 and the remark preceding Theorem 3, 
F(x, y) cannot occur as P~(v) for any n and v E Vn. There is no evidence that DES- 
CARTES was aware of this complication in connection with polynomials without 
real roots° But, in view of the later part of the passage we are discussing, where 
DESCARTES speaks about curves, we must conclude that he did not have poly- 
nomials in mind but rather polynomial equations of curves, i.e. polynomials F(x,y) 
such that the set {(x, y) I F(x, y) = 0) is not empty. 

Even with this restriction the assertion is wrong. I shall prove this with a 
dimensional argument. In particular: 

Theorem 4. If n > 21, there are polynomials F(x, y) of degree n, such that F(x, y) 
= 0 is a non-empty real curve and F(x, y) ---- 0 does not occur as the locus of a 
problem of PAPPUS. 

Proof. Let Q~ be the space of polynomials in two variables of degree ~ n. The 

dimension of Q~ is (n + 1) (n + 2) Let O~ ( Qn be an open subset of Q~ consisting 
2 ~* 

of polynomials F(x, y) such that F(x, y) = 0 is a non-empty real curve; the di- 
( n  + I) (n + 2) 

mension of On is also 2 . [It can be seen from the following that 
÷ such a subset On exists. Let O(1,0) be the set of polynomials F with F(I, 0) > 0 

and let O('-l,0~ be the set of polynomials F with F(--1, 0) < 0. Both sets are open 
subsets of Q~ and their intersection O is not empty (F(x, y) = x belongs to it). 
If FE 0, then F(1, 0) > 0 and F(--1, 0) < 0 so that F(x, y) = 0 must be a non- 
empty real curve.] Suppose that all FE On are PAPPUS polynomials. Then, accord- 
ing to the corollary to Theorems 2 and 3, each FE On must occur as P~(v) for 
some v E V~. O~ ( Qn C Q:~, so o~ must be a subset of the image of P2~ in Qz~. 
Hence 

dim On _--< dim image P~ ~ dim V2n, 
that is 

(n -+- I) (n + 2) 
"__ 12n+ 1. 

2 
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This condition is not satisfied if n > 21, so in that case there must be polynomials 
in On which are not PAPPUS polynomials. (The estimate of  dimension can easily 
be sharpened e.g. to n > 13.) This completes the proof that DESCAR~S' assertion 
is wrong. 

Apparently NEWTON was the first to question DESCARTES' assertion that all 
curves occur as loci of  problems of  PAPPUS and to give a proof that it is wrong 
(cf. The mathematical papers of  Isaac Newton (ed. D. T. WHIrr.SIOE, Cambridge 
(1967-) vol. 4 (1971), pp. 340-344). The basic idea in this proof  is also a dimensional 
argument; NEWTON compared the number of  free coefficients in the choice of 
n lines and the number of  coefficients in a polynomial of  degree n, and found that 
for n >--- 5 the latter is larger than the former, so, NEWTON concluded, DESCARTES 
was wrong. NEWTON did not mention the occurrence of  polynomials F Such that 
F(x, y) = 0 is empty, nor did he consider the possibility that an equation F(x, y) --- 0 
ofn  th degree might occur as the locus of  a problem of PAPPUS in more than 2n lines. 
As we have seen, these tWO aspects make the question much more complicated. 

H. G. ZEtrrnEN states, in his Geschichte der Mathematik im 16. und 17. Jahr- 
hundert (1966, p. 210), that DESCARTES' assertion is wrong, but he does not provide 
a proof. 
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