
Appl. Phys. B 53, 268-270 (1991) 
Applied physics 

Physics B " "  Chemistry 

' © Springer-Verlag 1991 

IR Multiple-Photon Dissociation 
by a Focused Uniform Beam 

An Improved Analytical Method Based on a C L N D  Model 

S. Kato and K. Takeuchi 

The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-01, Japan, 
FAX: 0484-62-1554 

Received 15 May 1991/Accepted 13 June 1991 

Abstract. An improved analytical method is presented in which the reaction yield in the IR 
multiple-photon dissociation by a focused uniform beam is expressed in a generalized form 
as a function of fluence. The analytical solution is derived for a real focusing geometry 
by assuming the cumulative log-normal distribution (CLND) for the functional form of the 
dissociation probability vs. fluence. Also presented is a shortcut analytical method with simple 
and convenient algebraic expressions which approximate the exact analytical solution, thereby 
speeding up the analysis of experimental data. 

PACS: 82.20.Wt, 33.80.Wz, 42.60.Kg 

Since Barker and Baldwin [1-3] reported that the cu-  
mulative log-normal distribution (CLND) function sat- 
isfactorily described the dissociation probabilities (q) of 
molecules over a wide fluence (4) range in single-fre- 
quency IR multiple-photon dissociation (IRMPD), the 
two-parameter model based on the CLND function has 
been used and tested in the analysis of reaction yields in 
IRMPD by a focused beam. Takeuchi et al. [4, 5] com- 
pared the CLND model with the power-law model and 
showed that, when both models were normalized to give 
the same results in a sufficiently low • region, the power- 
law model overestimated the reaction yields near the 
fluence region where saturation of dissociation occurred. 
Nicol et al. [6] compared the exponential model in ad- 
dition to the above two models and concluded that the 
CLND model was superior. Thus the practical CLND 
model is one of the most accurate two-parameter models 
reported that can be incorporated in analytical methods 
for the IRMPD in an optically thin medium. 

The analytical methods with the CLND model, how- 
ever, have proved to be inconvenient or tedious to use: 
Nicol's method necessitates a parameter fitting to a num- 
ber of experimental data to extract the two CLND pa- 
rameters [6]. In an improved method by Takeuchi et 
al. where CLND parameters are conveniently estimated 
[4], a tedious numerical integration is still necessary to 
calculate the reaction volume. The most sophisticated ap- 
proach may thus be to first solve for the non-dimensional 
reaction volume as a function of the non-dimensional 
fluence based on the CLND model and secondly approx- 
imating the solution by well-suited algebraic expressions. 

Such an approach was successfully employed in the 
analytical method for a Gaussian transverse beam geom- 
etry [5]. For a uniform beam geometry, however, only a 
method based on the power-law model was reported [7]. 
In the present paper we derive a mathematical solution 
based on the CLND model for a focused transversely 
uniform beam geometry, and express the solution in sim- 
ple equations for convenient use. 

1. Exact Analytical Solution 

Figure 1 schematically illustrates the dimensions of a 
batch irradiation experiment with a weakly focused ge- 
ometry. The beam radius at a distance z from the focal 
point is given by, 

r 2 = rff(l q- z2/a  2) (1) 

where a is the Rayleigh range. The local fluence of the 
transversely uniform beam is thus 

• (z) = Eo/zcr 2 (2) 

where E0 is the pulse energy entering the irradiation cell. 
According to the CLND formulation [1-3], the disso- 

ciation probability (q) can be expressed as 

in 
1 f ( ( ln~- ln~s)2"~d 

q(~)-- v / ~ a  exp - 2~ 2 } ln~  (3) 
- - O O  
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Fig. l. Dimensions of a batch irradiation experiment with a weakly 
focused geometry 

011  
0.1 1 10 

F 

Fig. 2. Numerical results for non-dimensional reaction volume Y 
as a function of non-dimensional fluence F for various values of 
the standard deviation, a. The CLND model is used to calculate 
Y for a focused, transversely uniform beam geometry 

269 

The VR is related to the specific dissociation rate, b, 
obtained experimentally; 

b =- VR/ Vc 
= -- ( l / t ) ln(1 -- X) (7) 

where X is the fraction converted after t-pulse irradiation. 
By introducing the non-dimensional distance, k( = - z/a), 
VR is calculated from (1, 2, 4-6) as 

L/a 

VR = 2rcr2 a / 

0 

X [~q-T01/exp(-t2)dt (l+k2)dk. (s) 

Defining the focal volume (Vr) by Vf = 2~r~a, we arrive 
at the non-dimensional reaction volume Y ( -  VR/Vf); 

ia[~ J ] 1 exp(-t2)dt (1 + k2)dk (9) 
Y = + T 0  

1 
A = ~ ln[F/(1 + k2)] (10) 

where F is the non-dimensional ftuence defined by, 

F = ~ f /~s .  (11) 

Equations (9-11) are generalized expressions for the re- 
lation between Y and F under a focused uniform beam 
geometry. The upper limit, L/a, in the integration in (9) 
is the non-dimensional cell length which can be replaced 
with ~ in most cases. The results of  numerical calcula- 
tions are shown in Fig. 2 for various values of o-. 

2. Shortcut Analytical Procedure 

or 
A 

if q(eb) = ~ + T exp(-t2)dt (4) 

0 
where 

1 ln (~ /~s ) .  (5) A= g 

The a is the standard deviation, and ~s is the character- 
istic fluence required to give a dissociation probability of 
1/2. The reaction volume (VR) is obtained by integrating 
the q(~) over the cell volume (Vc), 

vR = fq( )av 
vc 

L 

= 2 / q(eb)~rradz. (6) 

o 

Although (9-11) are expressed in a generalized form, de- 
convolution of experimental data using these equations 
to determine the CLND parameters, a and (bs, is not very 
simple. Takeuchi et al. [4] derived a convenient relation- 
ship between the standard deviation (o-) and the slope of 
the log q vs. log ~b plot (n) well below the saturation of 
dissociation (q < 0.1); 

= 2.2/n. (12) 

The assumption on which (12) is based should be noted 
before use: the above relationship was obtained by fitting 
the CLND and power-law models at two points giving 
q = 0.01 and 0.1 [4]. Thus an experimental value of n 
should be determined from data to give 0.01 < q < 0.1 
in order for (12) to be valid. 

Even when a is evaluated from. (12), the deconvolution 
to determine ~s is still tedious because the iteration from 
Y to F contains a numerical integration in (9). Thus we 
approximate the relation between Y and F in (9-11) by 
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Table 1. Coefficients in (13-15) for various values of a 

a =1.0 a =0.8 a =0.6 a =0.4 
(n = 2.2) (n = 2,8) (n = 3.7) (n = 5.5) 

A0 -0.116 -0.157 -0.118 -0.059 
A1 2.057 1.211 0.466 --0.042 
A2 --0.773 --0.275 0.191 0.460 
B0 1.287 1.280 1.239 1.080 
B1 --2.918 -2.971 -2.743 --1.920 
BE 2.742 2.686 2.153 0.795 
B3 --0.981 -0.927 -0.645 --0.024 
B4 1.047 0.703 0.517 0.419 
Co 16.42 6.166 4.210 2.729 
Ci 3.303 3.746 4.878 7.284 

algebraic expressions similar to those in [5] as follows: 

Y = AoF + A ~ F  2 + A 2 F  3 

for F < 1, (13) 
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lated f rom the exper imenta l  Y value by i terat ion with 
a simple computa t iona l  me thod  (e.g., Newton ' s  method).  
Then the ~s f rom (11) and the a are used to calculate the 
dissociat ion probabi l i ty  as a funct ion o f  fluence by using 
(3), or (4) and  (5). 

3. Conclusion 

The improved  analytical  me thod  presented above for the 
I R M P D  by a focused uni form b e a m  is based on very 
realistic assumptions ,  i.e., a real (hyperbolic) focusing ge- 
omet ry  and  the C L N D  model  for q(~). A similar me thod  
of  H e r m a n  [8] is based on a less accurate  power- law 
mode l  for q(~),  and . fur thermore ,  has the l imitat ion that  
the parameter ,  n, must  be an integer. Thus  we believe our  
method ,  together  with tha t  for a Gauss ian  beam geome-  
try [5], to be  the mos t  accurate  and  convenient  one now 
available for the analysis o f  I R M P D  under  optically thin 
conditions. 

Y = Bo + B 1 / F  + B 2 / F  2 -t- B 3 / F  3 -t- B4F 3/2 

for F >  1. (14) 

The  fifth t e rm in (14) represents the 1.5th power  depen-  
dence o f  Y upon  F where F >> 1. For  extremely low Y 
regions (10 -3 < Y < 10-2), it is r e commended  to use, 

Y = CoF c'. (15) 

Table  1 summar izes  the coefficients in (13-15) for  var-  
ious values of  a. The  values of  Y approx ima ted  with 
these equat ions  are accurate  to within 0.5% for (14) 
and  5% for (13) and  (15). Since the coefficients do not  
vary too steeply with o- or  n (Table  1), the values o f  
Y for  ano ther  a (or n) are also calculable by using the 
coefficients A0-A2, B0-B4, and  C0-CI in terpola ted  f rom 
Table 1. N o w  the non-dimens ional  fluence, F, is calcu- 
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