Appl. Phys. B 53, 268-270 (1991)

IR Multiple-Photon Dissociation
by a Focused Uniform Beam

Photo-

Appli physics
Physics B Serisey

" © Springer-Verlag 1991

An Improved Analytical Method Based on a CLND Model

S.Kato and K. Takeuchi

The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-01, Japan,

FAX: 0484-62-1554

Received 15 May 1991/Accepted 13 June 1991

Abstract. An improved analytical method is presented in which the reaction yield in the IR
multiple-photon dissociation by a focused uniform beam is expressed in a generalized form
as a function of fluence. The analytical solution is derived for a real focusing geometry
by assuming the cumulative log-normal distribution (CLND) for the functional form of the
dissociation probability vs. fluence. Also presented is a shortcut analytical method with simple
and convenient algebraic expressions which approximate the exact analytical solution, thereby

speeding up the analysis of experimental data.

PACS: 82.20.Wt, 33.80.Wz, 42.60.Kg

Since Barker and Baldwin [1-3] reported that the cu-

mulative log-normal distribution (CLND) function sat-
isfactorily described the dissociation probabilities (g) of
molecules over a wide fluence (@) range in single-fre-
quency IR multiple-photon dissociation (IRMPD), the
two-parameter model based on the CLND function has
been used and tested in the analysis of reaction yields in
IRMPD by a focused beam. Takeuchi et al. [4,5] com-
pared the CLND model with the power-law model and
showed that, when both models were normalized to give
the same results in a sufficiently low & region, the power-
law model overestimated the reaction yields near the
fluence region where saturation of dissociation occurred.
Nicol et al. [6] compared the exponential model in ad-
dition to the above two models and concluded that the
CLND model was superior. Thus the practical CLND
model is one of the most accurate two-parameter models
reported that can be incorporated in analytical methods
for the IRMPD in an optically thin medium.

The analytical methods with the CLND model, how-
ever, have proved to be inconvenient or tedious to use:
Nicol’s method necessitates a parameter fitting to a num-
ber of experimental data to extract the two CLND pa-
rameters [6]. In an improved method by Takeuchi et
al. where CLND parameters are conveniently estimated
[4], a tedious numerical integration is still necessary to
calculate the reaction volume. The most sophisticated ap-
proach may thus be to first solve for the non-dimensional
reaction volume as a function of the non-dimensional
fluence based on the CLND model and secondly approx-
imating the solution by well-suited algebraic expressions.

Such an approach was successfully employed in the
analytical method for a Gaussian transverse beam geom-
etry [5]. For a uniform beam geometry, however, only a
method based on the power-law model was reported [7].
In the present paper we derive a mathematical solution
based on the CLND model for a focused transversely
uniform beam geometry, and express the solution in sim-
ple equations for convenient use.

1. Exact Analytical Solution

Figure 1 schematically illustrates the dimensions of a
batch irradiation experiment with a weakly focused ge-
ometry. The beam radius at a distance z from the focal
point is given by,

P =31 +2/d) 5

where a is the Rayleigh range. The local fluence of the
transversely uniform beam is thus

P(z) = Eo/nr2 (2)

where Ey is the pulse energy entering the irradiation cell.
According to the CLND formulation [1-3], the disso-
ciation probability (g) can be expressed as
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Fig. 1. Dimensions of a batch irradiation experiment with a weakly
focused geometry
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Fig. 2. Numerical results for non-dimensional reaction volume Y
as a function of non-dimensional fluence F for various values of
the standard deviation, . The CLND model is used to calculate
Y for a focused, transversely uniform beam geometry
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The o is the standard deviation, and & is the character-
istic fluence required to give a dissociation probability of
1/2. The reaction volume (VR) is obtained by integrating
the q(®) over the cell volume (1),

Ve = / 4(@)dV
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The Vg is related to the specific dissociation rate, b,
obtained experimentally;

b=Vr/Ve
= —(1/9)In(1 — X) ()

where X is the fraction converted after ¢-pulse irradiation.
By introducing the non-dimensional distance, k(= z/a),
Vg is calculated from (1,2,4-6) as

L/a

Ve = 2nria /
0

A
X [% + % / exp(—tz)dt} (1 + k*)dk. (8)
0

Defining the focal volume (V¢) by Vi = 2nrfa, we arrive
at the non-dimensional reaction volume Y (= Vr/V5);

L/a A
1 1
Y = [~ + = exp(—tz)dt] (1 +k*dk 9)
A= mF/a 40 (10)
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where F is the non-dimensional fluence defined by,
F=&;/,. 11)

Equations (9-11) are generalized expressions for the re-
lation between Y and F under a focused uniform beam
geometry. The upper limit, L/a, in the integration in (9)
is the non-dimensional cell length which can be replaced
with co in most cases. The results of numerical calcula-
tions are shown in Fig. 2 for various values of a.

2. Shortcut Analytical Procedure

Although (9-11) are expressed in a generalized form, de-
convolution of experimental data using these equations
to determine the CLND parameters, ¢ and &, is not very
simple. Takeuchi et al. [4] derived a convenient relation-
ship between the standard deviation (o) and the slope of
the logg vs. log & plot (n) well below the saturation of
dissociation (g < 0.1);

c=22/n. (12)

The assumption on which (12) is based should be noted
before use: the above relationship was obtained by fitting
the CLND and power-law models at two points giving
g = 0.01 and 0.1 [4]. Thus an experimental value of n
should be determined from data to give 0.01 < g < 0.1
in order for (12) to be valid.

Even when o is evaluated from (12), the deconvolution
to determine @ is still tedious because the iteration from
Y to F contains a numerical integration in (9). Thus we
approximate the relation between Y and F in (9-11) by
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Table 1. Coefficients in (13-15) for various values of ¢

=10 =038 =06 =04

n=22) (n=298) (n=23.7) (n=235.5)
Ay —0.116 —0.157 —0.118 —0.059
Ay 2.057 1.211 0.466 —0.042
A, —0.773 —0.275 0.191 0.460
By 1.287 1.280 1.239 1.080
B, —2918 —-2.971 —2.743 —1.920
B, 2.742 2.686 2.153 0.795
Bs —0.981 —0.927 —0.645 —0.024
By 1.047 0.703 0.517 0419
Co 16.42 6.166 4210 2.729
Cy 3.303 3.746 4.878 7.284

algebraic expressions similar to those in [5] as follows:
Y = AoF + A1 F? + A, F3
for F<1, (13)

Y = By + Bi/F + By/F* + B3/ F* + B4F*/?
for F>1. (14)

The fifth term in (14) represents the 1.5th power depen-
dence of Y upon F where F > 1. For extremely low Y
regions (102 < Y < 1072), it is recommended to use,

Y = CyF©. (15)

Table 1 summarizes the coefficients in (13—15) for var-
ious values of 0. The values of Y approximated with
these equations are accurate to within 0.5% for (14)
and 5% for (13) and (15). Since the coefficients do not
vary too steeply with ¢ or n (Table 1), the values of
Y for another ¢ (or n) are also calculable by using the
coefficients Ag—A;, By—-Bs, and Cy—C; interpolated from
Table 1. Now the non-dimensional fluence, F, is calcu-
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lated from the experimental Y value by iteration with
a simple computational method (e.g., Newton’s method).
Then the &, from (11) and the ¢ are used to calculate the
dissociation probability as a function of fluence by using
(3), or (4) and (5).

3. Conclusion

The improved analytical method presented above for the
IRMPD by a focused uniform beam is based on very
realistic assumptions, i.e., a real (hyperbolic) focusing ge-
ometry and the CLND model for q(®). A similar method
of Herman [8] is based on a less accurate power-law
model for g(®), and furthermore, has the limitation that
the parameter, n, must be an integer. Thus we believe our
method, together with that for a Gaussian beam geome-
try [5], to be the most accurate and convenient one now
available for the analysis of IRMPD under optically thin
conditions.
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