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Abstract. In general, local stability does not imply 
global stability. We show that this is true even if one 
only considers population models. 

We show that a population model is globally stable 
if and only if it has no cycle of period 2. We also derive 
easy to test sufficient conditions for global stability. We 
demonstrate that these sufficient conditions are useful 
by showing that for a number of population models 
from the literature, local and global stability coincide. 

We suggest that the models from the literature are 
in some sense "simple", and that this simplicity causes 
local and global stability to coincide. 

for global stability of population models. We will show 
that a population model is globally stable if and only if 
the model has no cycles of period 2. Unfortunately, this 
necessary and sufficient condition may not be easy to 
test for many specific models. We address this difficulty 
by deriving some sufficient conditions which are easier 
to test. Then we show how these sufficient conditions 
can be used to prove the equivalence of local and 
global stability for various models from the literature. 
We include in our demonstration the models used by 
Nobile et al. (1982). Some of the results of this paper 
have appeared in Cull (1981). 

1 Introduction 

Does local stability imply global stability for popula- 
tion models? We will show that the answer is no. 

Actually, the issue of local versus global stability 
for population models is not a clear-cut case of yes and 
no. The issue only becomes dear-cut when there is an 
exact definition of population model. We give a 
definition of population model, and display popula- 
tion models which are locally but not globally stable. 

This definition may be rather broad because when 
we consider specific models from the literature, we find 
that local stability and global stability coincide. The 
models from the literature all obey our definition of 
population model, but in addition these models are in 
some sense simple. If one could define simple popu- 
lation model, then it might be possible to prove that 
local and global stability coincide for simple popu- 
lation models. We suggest that defining simple popu- 
lation model may be difficult because the actual models 
from the literature have different geometric properties, 
and because we need different methods to prove global 
stability for geometrically different models. 

Since local and global stability do not coincide for 
population models, we have to investigate conditions 

1.1 Definitions 

We will assume that a population model has the form 

Xt+, =f(XO 

where f is a continuous function with f (0 )=  0, and 
there is a unique positive equilibrium point X such that 

f (X)=X,  and 

f (X)>X for 0 < X < X  and 

f (X)<X for X < X  

and such that if f (X)  has a maximum X M in (0, X) then 
f(X) is monotonically decreasing for all X > XM such 
that f (X)  > 0. 

Our definition is similar to that of Nobile et al. 
(1982) but we do not require f(X) to be 0 for large 
enough X. We allow population models which have f 
positive for all positive X. This is really a superficial 
distinction because the interval [0, co) could be re- 
scaled to [0, 1), and then the rescaled population model 
would be a population model in the sense of Nobile et 
al. We prefer our fo~ma because many of the usual 
models are given in the literature as being defined on 
[0, oc), and we prefer to keep them in their traditional 
form. 
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The terms local and global stability cited in the 
population biology literature are at some variance 
with the use of the same terms in the mathematical 
literature. For  example, as the terms are used in the 
mathematical literature, it is possible for a model to be 
globally stable and fail to be locally stable if the 
function f is not continuous. 

We will use definitions of local and global stability 
which seem more appropriate in the context of our 
definition of population model. A population model is 
91obally stable ifffor all Xo such that f(Xo) > 0 we have 

lim Xt=X. A population model is locally stable iff 

there is some small enough neighborhood of Jf such 
that for all X o in this neighborhood, Xt is in this 
neighborhood and lira Xt = J~. Using these definitions 

t---~ O0 

and our assumptions about population models, global 
stability implies local stability since we can take as our 
neighborhood for local stability the whole region in 
which f(X) > O. 

When the function f(X) is differentiable in some 
neighborhood of J~, the necessary condition for local 
stability is that - 1 __< f '(X) __< 1. The condition that - 1 
< f ' ( J f )  < 1 is a sufficient condition for local stability. 
Nonlinear terms must be considered to decide local 
stability when I/'(X)l = 1. For  the models from the 
literature we will consider, we will find local (and 
global) stability when f ' ( J f )  = - 1, but when f'()~) = 1 
we will not find local stability because the models 
degenerate to f (X)  - X ,  which does not converge to Jf 
except when X is already Jr. We should note that 
f ( X ) - X  is not a population model according to our 
definition. 

1.2 Some Pictorial Examples 

Let us look at some figures and see some pictorial 
examples where local but not global stability occurs. In 
Fig. 1, we have a picture of f(X) for a locally and 
globally stable population model. It is easy to check 
that the definition of population model is satisfied. To 

I t 
X M x 

Fig. 1. A population model which is both locally and globally 
stable 

I 

I I 
x M 

Fig. 2. A population model which is locally but not globally 
stable because it falls off too quickly 

Fig. 3. A population model which is locally but not globally 
stable because the peak is too high 

convince yourself that this model is globally stable, 
pick any X in [XM, J(], then go up to the curve, over to 
the line, down to the curve, and back over to the line. 
You will find that you are closer to )~ than you were 
when you started. If you pick any point outside this 
interval and iterate from there, you will eventually get 
to a point in [XM, J~] and hence you will always 
converge toward J~. 

In Fig. 2, we have another population model. This 
model is locally stable since - 1 < f ' (J()  < 0. One can 
choose any X near J~ and iterate and approach nearer 
and nearer to J~. This model is not globally stable 
because there is a cycle of period 2. We may notice that 
above the equilibrium point this curve drops very 
quickly toward 0. We have given the curve a rather 
sharp corner so that it does not actually reach 0. This 
example shows one way in which a locally stable model 
can fail to be globally stable: the curve can fall off 
toward 0 very quickly. 

Figure 3 gives another example, of a population 
model which is locally but not globally stable. A cycle 
of period 2 appears in the figure. There is also another 
cycle of period 2 which is not drawn. This model differs 
from the model in Fig. 2 because there is no rapid fall 



offtoward 0. In this model the lack of global stability is 
due to the peak of the curve being very high. 

2 Conditions for Global Stability 

The examples in the last section demonstrate that local 
and global stability do not coincide for population 
models, but the examples do give us some clues about  
what extra conditions we might try to add to get global 
stability. First, notice that when local stability failed 
there was a cycle of period 2. We will demonstrate that 
this is always the case for population models. Con- 
versely, we can assure global stability if we can show 
that a model has no cycles of period 2. Unfortunately, 
this condition may be difficult to test so we may want 
to consider some easier to test conditions. Second, 
notice that in the examples global stability failed 
because the curve dropped off too quickly or the peak 
was too high. This suggests that we may be able to 
impose conditions to prevent these behaviors and 
thus assure global stability. Third, we recall that local 
stability depends on the first derivative of the curve, so 
perhaps we can force global stability by some con- 
ditions on the second and higher derivatives of the 
curve. 

We will start investigating the conditions for global 
stability by giving the necessary and sufficient con- 
dition for global stability of population models, which 
is the absence of cycles of period 2. We should remark 
that this condition really depends on our definition of 
population model. The~e are difference equations with 
a single equilibrium point which are not globally 
stable, but have no cycles of period 2. Such difference 
equations do not satisfy our definition of population 
model. 

Theorem 1. A population model is globally stable iff it 
has no cycles of period 2. 

Proof. Clearly a cycle of period 2 would mean that the 
model is not globally stable since for some initial 
conditions the model would oscillate around the cycle 
and never approach the equilibrium. 

If there is no cycle of period 2, then f ( f ( X ) )  > X on 
(0,)() because: either f ( X ) < 3 ~  on this interval and 
then f ( f ( X ) ) > X  by the definition of population 
model; or there is some X<X" so that f ( ~ ' ) = X  and 
hence f ( f ( X ) ) =  f ( X ' ) =  37 > X, but no cycle of period 
2 implies f ( f ( X ) )  - X has only one sign (0, X') and we 
have a point where f ( f ( X ) ) - X  is positive, so f ( f ( X ) )  
> X throughout the whole interval. 

Now f ( f ( X ) )  > X on (0, X) implies convergence to 
X" for all initial X in (0, X). If X" >__ f ( X )  > X for all X in 
(0,X'), then Xt monotonically increases toward X'. 
Otherwise, if f (X)>37,  then since we have f ( Y ) <  
for all Y > X from our definition of population model, 
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we have X > f ( f ( X ) ) > X  and hence in two steps we 
are closer to the equilibrium. This gives convergence 
for all X such that f ( X )  > X. For other X in (0, J(), we 
have strict monotonic increase of X t until an X~ such 
that f (X t )>  X is reached, and then we have conver- 
gence by the previous argument. 

Finally, for X > J (  such that f ( X ) > 0 ,  we have: 
either Xt > X for all t and thus a monotonic decreasing 
approach to X; or O < X t < X  for some t, and thus 
convergence from the above convergence for X in 
(0, X). [] 

Corollary. A population model is 91obally stable iff 
either (a) there is no maximum of f (X)  in (0, X); or (b) 
there is a maximum of f (X )  at X~t in (0, X) and f ( f ( X ) )  
> X for all X in [X~I, X). 

Part  (b) of the corollary points out that we only 
have to worry about  convergence in the interval 
[XM, X] because, starting from any other point, we 
will eventually be in this interval. The corollary also 
tells us that there are really only two ways a globally 
stable population model can behave. In case (a), if the 
population is initially below the equilibrium, it will 
monotonically increase toward the equilibrium. If the 
population is initially above the equilibrium, it will 
either monotonically decrease toward the equilibrium, 
or it will  eventually go below equilibrium and then 
monotonically increase toward the equilibrium. In 
case (b), if the population is initially above the equilib- 
rium, it will decrease below the equilibrium in one step. 
If the population is below the equilibrium, it will 
oscillate above and below the equilibrium getting 
closer to the equilibrium at every other step, or it will 
increase monotonically for a while and then start its 
oscillatory approach to the equilibrium. 

3 Sufficient Conditions 

While we have the necessary and sufficient condition 
for global stability of a population model, it is not clear 
how difficult it might be to verify that this condition is 
true. Consider, for example, a model in which f ( X )  
= Xer(1 -x). For this model to be globally stable when it 
is locally stable, we must establish that 

X e r ( 1  - x )  + r (1  - Xe r(t - x ) )  __ X > 0 

for all X e [1/r, 1) where 1 < r__< 2. It is not immediately 
evident that this inequality is valid, or how one would 
establish this inequality. Plotting f (X )  when r = 2, we 
find that the curve closely resembles the curve in Fig. 1, 
and we notice that the curve is concave downward up 
to x--1.  This suggests a possible condition that 
f"(X)  < 0 for X < J~, but this condition is not enough 
since it will not prevent the curve from falling off to 0 
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too quickly. A limitation on the third derivative of f 
could prevent this rapid fall off. These considerations 
suggest the following theorem. 

Theorem 2. If  a population model has a maximum X M 
in (0, X) and satisfies 

a) T"(X) < 0 for X in [X~ t, J~), 
b) f(3)(X)____0 for all X such that f"(X)<0 and 

f"(X) has at most one sign change, 
c) [f ' (X)[< 1 (the necessary condition for local 

stability), 
then the model is globally stable. 

Proof From the corollary to Theorem 1, we need to 
show that (a), (b), and (c) imply that f ( f ( X ) ) -  X > 0 for 
all X in [X~t, X). Let g(X)= f ( f ( X ) ) - X ;  then 9'(X) 
= f ' ( f ( X ) ) f ' ( X ) - l ,  and g"(X)=f"(f(X)) [ f ' ( X ) ]  2 
+ f ' ( f (X))  f"(X). Now g()() = 0, and g'(X) 
= f ' ( f ( X ) ) f ' ( X ) -  1 = [ f , ( j ~ ) ] 2 _  1 -_60. But g'(X~t ) 
= - 1 since f'(XM) = 0. Thus fig' were increasing in the 
interval (XM, X), then g' would be negative and g 
would be decreasing toward 0, so 9 would be positive 
and the model would be globally stable. Hence we will 
establish that g"(X)> 0 for X in [XM, X). From (a) 
f " ( X ) < 0 ,  f ' ( X ) < 0  and f ' ( f (X))<O from the as- 
sumption of single maximum and the definition of 
population model. Thus if f"(f(X))>O, then 
g"(X)>0.  Otherwise f"(f(X))<O, and from (b), 
f ( 3 ) (y )>0  for Y in [X,f(X)].  Thus 

f"(X) <_ f " ( f  (X)) < 0 

and 

If"(X)[ => If"(f(X))[. (P1) 

Since f '  is decreasing 

f ' (X) > f '(X) > f ' ( f (X)) .  

But [f ' (s  =< 1, so 1 > If ' (S) l  > If ' (S)l  2 and 

If'(f(S))l > If '(S)l > lf ' (S)l  2 �9 (P2) 

Combining inequalities (P1) and (P2) 

If"(S)l I f ' ( f  (s))l > [f"(f (s))l [f '(S)l 2 

which gives 

f"(X) f ' ( f (X))  + f"(f(X))  (f ' (X)) 2 > 0. 

Thus 9"(X)> 0 for X in [XM, 37), and the model is 
globally stable. [] 

As we will see when we consider specific models 
from the literature, the conditions of Theorem 2 are 
often satisfied and it will be relatively easy to establish 
that these models are globally stable exactly when they 
are locally stable. Figure 1 is an example of a model 
which satisfies the conditions of Theorem 2. Unfortu- 
nately, there are some models which do not satisfy 

these conditions. In particular, the downward concav- 
ity condition is not satisfied in some models for all 
combinations of parameters which are consistent with 
local stability. One reasonable way to attempt to 
handle these cases is try to draw a curve that "en- 
velops" the actual curve, and to show that the model 
corresponding to the enveloping curve is globally 
stable. One could hope that there would be an 
enveloping curve which satisfies the conditions of 
Theorem 2 and that hence it would be easy to establish 
global stability. Unfortunately, for the models which 
do not satisfy the conditions of Theorem 2, it is 
possible to prove that no enveloping curve for these 
models can satisfy the conditions of Theorem 2. 

There are also other reasons to study the ideal of 
enveloping curves. First, it may be that instead of 
actually having an analytic expression for a popu- 
lation model, one may have only a set of measured 
points. If a globally stable enveloping curve can be 
drawn for the points, then one can be reasonably 
confident that the measured population obeys a glob- 
ally stable model. Second, some models may have 
several parameters. If one can establish that models 
with larger values of a parameter envelop models with 
smaller values of that parameter then if the model 
with a larger value of the parameter is globally stable, 
one can conclude that models with smaller values of 
the parameter are also globally stable. In investigating 
whether local stability implies global stability, one can 
take the parameter as large as possible consistent with 
local stability and then try to establish global sta- 
bility. This should make things easier since you can 
consider a model with fewer parameters. In some 
cases, this can result in considering a model with no 

f(x) 

r/ 

Fig. 4. f(X) envelops fl(X) 



parameters, only constants. In more usual cases, this 
will result in considering a model with one parameter 
less. 

We are now ready for a definition of an enveloping 
model (see Fig. 4). A population model Xt+ 1 = f (Xt)  
envelops a population model Xt+ 1 = fl(Xt) iff 

f (X)>=f l (X)>X for 3 7 > X > 0  

and 

f (X)<=f l (X)<X for X > J ( .  

Theorem 3. I f  a globally stable population model enve- 
lops a population model, then the enveloped model is 
also globally stable. 

Pro@ If the enveloped model has no maximum less 
than J~, then this model is globally stable and we do 
not have to consider the model which envelops it. 

If the population model Xt+ 1 = fl(Xt) has a max- 
imum at X M where X M < X', then for any X in [X M, X) 
we have 

> f l( f l (X))  > f l ( f (X) )  >= f ( f ( X ) )  > X .  

The first inequality follows from the definition of 
population model. The second inequality follows 
because fl  is decreasing and f(X)>= f l ( ~ .  The third 
inequality follows from the second inequality in the 
definition of envelops. The final inequality follows 
from the assumption that f (X )  corresponds to a 
globally stable model. [] 

Corollary. I f  there is a parameter P so that 

af _ ~ + x < s  
8P ( - X > ) (  

and if Xt+ 1 = f (Xt) is globally stable when P = Po, then 
the model is also globally stable for all P < Po such that 
the model is a population model. 

The corollary follows directly from Theorem 3 because 
the assumption on P assures that the model with 
smaller values of P will be enveloped by the model with 
larger values of P. 

When we consider actual models from the litera- 
ture, we will find that the conditions of Theorem 1 are �9 
not satisfied by all models. These conditions are 
geometric in that they depend on the shape of the 
curve. While actual models may not satisfy these 
geometric conditions, the models are still in some 
reasonable sense "simple". Consider, for example, the 
model in which f ( X ) =  Xe "(1 -x). We could reasonably 
expect that any model will be similar to this model in 
that there is a factor of X. Further, we may expect that 
after we remove this factor, the remaining function will 
be simple. Since we expect the remaining function to go 
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to 0 for large enough X, we might expect that the 
reciprocal of this simple function might be even more 
nicely behaved. This suggests defining k(X) = X / f (X) .  
For our example, we have k(X)= e "(x- 1). To capture 
the idea of simplicity we consider k'(X). For the 
example, k'(X) = re ~(x - 1). We find very simple behavior 
when we consider k/k'. In the example, k/k'= 1/r. This 
is the most simple we could hope for, since it is a 
constant. Other models have more complicated ratios 
k/k'. 

The idea that k/k' will be simple suggests the 
following not entirely obvious theorem. 

Theorem 4. I f  a population model with f ' ( J ~ ) = -  1 
satisfies the following conditions, then the model is 
globally stable. Using the definition k = k( X) = X / f  (X), 
the conditions are: 

1) k'__<2 on [X~ ,X)  
2) g(X) > 0 where k/k'= g(X) +BX,  and B is a 

constant chosen to make g(X) nonnegative 
3) g'(X) <= 0 on [X~, f(XM)] 
4) g"(X) > 0 on [XM, f(XM)]. 

Pro@ We will assume that the model is normalized so 
that J~ = 1. From the corollary to Theorem 1 we have 
global stability iff f ( f ( X ) )  - X > 0 on IX M, 1). From 
the definition k = X/f ,  we can rearrange this condition 
to obtain global stability iff 

k k ( f ) < l  on [-X~,I). 

Since we have k(1)= 1, this inequality becomes an 
equality when X =  1, and we could establish the 
inequality if we could show that 

D[kk(f)]>O on [XM, 1 ). 

This derivative condition is 

k'k(f) + k k'(f) f" > O . 

We may assume that k ' > 0  for all X's of interest 
because f '<O for these X's. Our condition can be 
rearranged to 

k(f)  
k'(f~ + f f > O .  

Since f ' = ( k - X k ' ) / k  2, we can rearrange this to 

Lk'(f)J k 

At X = 1, the left hand side of this inequality is zero. So 
we could establish global stability if we could show 
that the derivative of the left hand side of the above 
inequality is negative. This derivative condition is 

k, Vk(f)  L- 'W ]1 ' r k(i) ], , *, Lk {77j f '+ 
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Expanding k f"  as 1 - fk', this inequality becomes 

k ' UF k(f) _ f r  k(f) T] + ~ k(f) ]' + I~ ] - 1 < 0  
Lk'(/) Lk'(i)l J LFCi)I 

Since the term inside the first set of brackets is positive 
by conditions (2) and (3), and since k '<2 ,  we can 
demonstrate this inequality if we can show 

21-k(i) r k(i) l" ]" 
Lk'(,) Lk(I)JJ+L ] + V - 1 < 0 .  

2 
At X = 1 this is ~ - 1, and since i f ( l )  = - 1, this is 

zero. Now all we have to do is to show that the 
derivative of the left hand side of this inequality is 
positive. We need 

, " I-'<-1" (1 -2 f ' f  +L J >0. 

But this is valid because f > 1 and f '  < 0 on (XM, 1) and 
by condition (4) [k/k'-J" >= 0 on [XM, f (X~) ] .  [] 

4 Models 

In this section, we will consider a number of models 
which have appeared in the literature. We will use our 
theorems to show that all of these models are globally 
stable if they are population models according to our 
definition and they satisfy the necessary condition for 
local stability. Specifically, for the following models we 
find global stability when - 1 < i f ( X )  < 1. When 
f ' ( X ) = l ,  these models degenerate to X t + I = X ,  
which is not globally stable, and which is not a 
population model according to our definition. It is 
pleasant to find that our methods establish global 
stability even when i f ( X ) = -  1, a case in which the 
usual linear method for even local stability is 
insufficient. 

Model I: 

f ( X )  = X exp Jr(1 - X)] 

i f (X)  = (1 - rX) exp [r(1 - X)] 

i f ( X )  = - r ( 2 -  rX) exp [r(1 - X)] 

f(3)(X) = r2(3 - rX) exp I-r(1 - X)] 

Of/& = X(1 - X) exp Jr(1 - X)] 

k(X) = exp [ f i X -  1)] 

k/k'= 1/r=g(X)+ BX 

g(X) = I/r, B = O. 

Parametric region of stability: 0 < r < 2. 

Global stability for this model can be established in 
several ways. Local stability implies that 0 ___ r _  2. For 
r = 0, the model degenerates to f ( X )  = X,  which is not 
a population model and is not globally stable. For 0 < r 
=< 1, the maximum does not occur before the equilib- 
rium point, so by the corollary to Theorem 1 the model 
is globally stable. For  1 < r < 2 ,  f "  is negative on 
[X~, 1) and f~a) is positive when' i f '  is negative, so by 
Theorem 2 the model is globally stable. The parameter 
r satisfies the conditions of the corollary to Theorem 3, 
so the model is globally stable for 0 < r < 2 because the 
model is globally stable for r = 2. Global stability for 
r = 2 can be established by Theorem 2 as we have done 
above, or by Theorem 4 since it is easy to check that the 
derivatives of g are 0. 

This model has been widely discussed in the 
literature, for example by Moran (1950), Ricker (1954), 
Smith (1974), May (1974), and Fisher et al. (1979). 

Model II: 

f ( X )  = X[1 + r(1 - X ) ]  

f ' ( X )  = 1 + r - 2rX 

i f ( X )  = - 2r 

f(3)(X) =0  

a f /&=X(1  - X )  

k(X) = 1/[1 +r(1 --X)] 

l + r  
k / k ' -  X = o ( X ) +  S X  

r 

g ( X ) = ( l + r ) / r ,  B= --1. 

Parametric region of stability: 0 < r < 2. 

As for the previous model, the global stability of 
this model can be established in several ways. Local 
stability implies that 0-< r_< 2. For  r = 0, the model is 
degenerate. For 0 < r =< 1, this model is globally stable 
by the corollary to Theorem 1. For 1 < r____ 2, f "  < 0 and 
f(3) =0,  so global stability follows from Theorem 2. 
The parameter r satisfies the conditions of the corol- 
lary to Theorem 3, so global stability for 0 < r < 2  
follows from the global stability for r = 2, which follows 
from Theorem 2 above or from the conditions of 
Theorem 4. 

Unlike the previous model, in this model f ( X )  goes 
to 0 for finite X, so we should more correctly write 
f ( X )  = max{x[1 + r(1 - X ) ] ,  0}. We should also recall 
that global stability here means that for all X such that 
f ( X )  > O, i f ( X )  converges to the equilibrium point. 

This model has also been widely discussed in the 
literature, for example by Smith (1968). 



Model III:  

f ( X ) = X [ 1  - r l n X ]  

f ' (X)  = 1 - r -  r In X 

f ' ( X )  = - -r /X 

f(a)(x) =r /X  2 

Of/ar = - X lnX 

k(X) = 1/[1 - r lnX] 

k/k" = X(1 - r lnX)/r  = g(X) + B X  

g(X) = - X  l nX,  B =  1/r. 

Parametric region of stability: 0 < r_= 2. 

As in the previous two models, local stability 
implies that 0__ r___ 2, but when r = 0 the model degene- 
rates. This model is globally stable for 0 < r__< 2 because 
when 0 < r__< 1 no maximum occurs in (0, 1), and when 
1 < r =< 2 the conditions of Theorem 2 are satisfied. The 
method of Theorem 4 cannot be used to prove this 
model globally stable because g"(X)< 0. As in Model 
II, this model should really be written as f ( X )  
= m a x { X [ 1 - r l n X ] ,  0}, because 1 - r l n X  becomes 
negative for large enough X. 

This model is studied in Nobile et al. They claim 
and demonstrate that this model is globally stable for 
0 < r__< 1. They claim but do not demonstrate that this 
model is globally stable for 1 < r < 2 .  They omit 
mention of the case when r = 2 .  We have used the 
version of their model which is normalized so that 
X" = 1, while they mainly discuss the version in which 
f ( X )  = - r X  lnX. The same conclusions about global 
stability hold for both versions of the model. 

Model IV: 

f ( X)  = X1-1/(b + cX)--  d] 

i f ( X )  = b/(b + cX) 2 - d  

i f ( X ) =  - 2bc/(b + cX) a 

f(3)(X) = 6bc2/(b + cX) 4 

f ( X )  = X[(d + 1)/1-b(d + 1) + (1 - b(d + 1))X] - d] 

3 f  /Ob = - (d + 1)2X(1 - X)/[b(d + 1) 

+(1 - b ( d +  1))X] 2 

k(X) = [b(d + 1) -  [1 - b(d + 1)]X]/[(d + 1) 

x (1 - bd) - d[ 1 - b(d + 1)IX] 

k/k '= {[b(d + 1) + [1 - b(d + 1)] X] 

x [ (d+ 1)(1 - b d ) - d [ 1  - b ( d +  1)] X]}/ 

(d+ 1) [1 - b(d + 1)]. 
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Parametric region of stability: 

(d -1 ) / (d+ l )2<=b<l / (d+l ) .  

For this model, local stability implies 

(d-1)/(d+l)Z<=b<=l/(d+l),  

but for b=  1/(d+ 1) the model degenerates because it 
has no positive equilibrium point. The parameter c 
does not appear because it determines the location of 
the equilibrium point but does not affect the stability. 
It is easy to check that this model has no maximum in 
(0, Jr) or that the model satisfies the conditions of 
Theorem 2, and thus in either case the population 
model is globally stable. We have also given f which is 
normalized so that XT= 1. Notice that c does not 
appear in ~ The dependence of f on b is exactly the 
reverse of what is needed for the corollary to 
Theorem 3, so the models with smaller values of b 
envelop the models with larger values of b. Theorem 4 
cannot be used to demonstrate global stability for this 
model since the second derivative of k-/k-' is negative. 

As for the previous two models, f ( X )  becomes 
negative for large enough X,  and we recall that global 
stability is only for those X's such that f ( X ) >  O. 

This model is from Utida (1957). 

Model V: 

f ( X ) = 2 X / ( 1  +aexp(bX)),  2 =  1 +aexp(b) 

i f (X )  = 2I- 1 + (1 - bX)a exp(bX)]/(1 + a exp(bX)) 2 

i f ( X )  = - 2ab exp(bX) [(1 - a exp (b X)  ) b X 

+ 2(1 + a exp(bX))]/(1 + a exp(bX)) 3 

f(3)(X) = - 2ab a exp(bX) {(1 + a exp(bX)) 

x[1 + (1 - bX)a exp(bX)] 

- 3a exp(bX) [Xb(1 - exp(bX)) 

+ 2(1 + a exp(bX))]}/(1 + a exp(bX)) 4 

Of/3a = X exp(b) [ 1 - exp(b(X - 1))]/1-1 + a exp(bX)] 2 

k(X) = [1 + a exp(bX)]/[1 + a exp(b)] 

k/k'= e x p ( -  bX)/ab + 1/b 

g(X)=k/k', B=O 

g'(X) = - e x p ( - b X ) / a  

f ( X ) =  b e x p ( -  b X)/a 

Parametric region of stability: 

a ( b -  2) exp(b) =< 2, a > 0, b > 0. 
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Local stability gives the above parametric region of 
stability but would allow a = 0 or b = 0, which are ruled 
out because the model would degenerate to f ( X )  = X. 

The term in square brackets in i f (X)  is decreasing 
so there is at most one maximum in (0, 1). If there is no 
maximum, the model is globally stable. If there is a 
maximum, we can follow Theorem 2 to argue that the 
model is globally stable. If there is a maximum, then 
the term inside the square brackets in f " (X)  will be 
decreasing, so if f "  becomes positive it will remain 
positive, i f ( l )  will be negative iff (1-aexp(b))b 
+ 2(1 + a exp(b)) > 0, but the sufficient condition for 
local stability assures that this will occur. If X > XM, 
then the first term in square brackets in f(3)(X) is 
negative. If X is before the change in concavity, the 
second term in square brackets is positive as we have 
argued above. So f(3)(X)>0 up to the change of 
concavity and hence by Theorem 2 the model is 
globally stable. 

The model for larger values of the parameter a 
envelops the models for smaller values of a. This fact 
and the above computations ofg(X) and its derivatives 
show that this model obeys the conditions of 
Theorem 4 and hence the model is globally stable. 

Although either Theorem 2 or Theorem 4 can be 
used to show that this model is globally stable, it seems 
much easier in this case to use Theorem 4. This is 
unlike previously considered models in which 
Theorem 2 was easier to apply than Theorem 4. 

This model is from Pennycuick et al. (1968). 

Model VI: 

f ( X )  = 2X/(1 + aX) b , 2 = (1 + a) b 

f ' (X)  = 211 - a(b-  1)X]/(1 + aX) b +~ 

f ' ( X )  = -- 2ab[2 - a(b-  1)X]/(1 + aX) b + 2 

f(3)(X) = 2a2b(b + 1) [3 - a(b-  1)X]/(1 + aX) b+ 3 

3f/Oa = X(1 - X)b(1 + a) b- 1/(1 + aX) b+l 

k(X) = (1 + aX)b/2 

k/k'= (1 + aX)/ab = g(X) + bX 

1 
g(X) = ~ ,  B = 1/b. 

Parametric region of stability: 

ab<2(l+a) ,  a > 0 ,  b > 0 .  

The parametric region of stability agrees with the 
region implied by local stability except that a = 0 or 
b = 0 is not included because in these cases the model 
degenerates into f (X)= X. 

Theorem 2 cannot be used to demonstrate the 
global stability of this model because there are param- 
eter values which give local stability but a l lowf"(X) 
to become positive before the equilibrium point. 

Theorem 4 was created to deal with this model. It is 
evident from Of/aa that this model with larger values of 
a envelops the models with smaller values of a. The 
other conditions of Theorem 4 are evidently met, so 
this model is globally stable. 

The parameter b could be used instead of the 
parameter a as an enveloping parameter. However, if 
one takes a at its largest value consistent with local 
stability, the remaining parameter b no longer serves as 
an enveloping parameter. In fact, with a=2/(b-2) ,  
Of/~b > 0 for all values of X. One could show that 
f ( f ( X ) ) - X  is a decreasing function of b for 
X E [XM, 1), but this computation is rather involved. 

This model is from Hassell (1974). 

Model VII: 

f (X) = 2X/(1 + ( 2 -  1)xo 

f ' (X)  -- 2[1 - ( c -  1) ( 2 -  1)XC]/[ 1 + (2-- 1)X~] 2 

i f ( X )  = - 2 ( 2 -  1)cX ~- ~[e + 1 - ( c -  1) 

x ( 2 -  l)X~]/[1 + ( 2 - 1 ) x q  3 

af  /#2 = x ( 1  - X q / [  1 + (2 - 1 ) x q  2 

k(X) = [1 + ( 2 -  1)XC]/2 

k/k'-= 1/c(2-  1)X~- ~ + X/c 

g(X) = l / e ( 2 -  1)X ~-a , B = 1/c 

g'(X) = - ( c -  1)/c(2- 1)Z ~ 

g'(X) = ( c -  1)/(2-  1)X ~+1 . 

Parametric region of stability 

c ( 2 -  1)<22,  2 > 1 ,  c > 0 .  

The parametric region of stability follows from the 
necessary conditon for local stability, except that 2 = 1 
or c = 0 result in the degenerate model f ( X )  = X. As in 
the last model, Theorem 2 cannot be used to demon- 
strate global stability because there are parameter 
values which are consistent with local stability but 
allow f "  to become positive before the equilibrium 
point. On the other hand, it is easy to check that the 
conditions of Theorem 4 are satisfied, so the model is 
globally stable. Yet another way to prove the global 
stability of this model is to use the transformation 
X<-.Z, 2 -  1 o a  on the c th power of the model, i.e., 

X~+ 1 = (1 + a)cXC/(1 + aXe) c 

giving 

z,+ ~ = (1 +a)~Z/(1 + aZ)  ~. 

Since this transforms this model into Model VI, the 
global stability of this model follows from the global  
stability of Model VI. 

This model is from Smith (1974). 
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5 Discussion 

Population modelers are well aware of the sufficient 
condition for local stability. After considering local 
stability, however, they often imply that global sta- 
bility follows. As we have demonstrated, this is not 
always the case. 

While the condition for local stability is simple, 
demonstrating global stability may be quite difficult. 
To prove global stability one usually constructs a 
specific function, called a Liapunov function, for a 
specific model and demonstrates that the Liapunov 
function satisfies a number of conditions related to the 
model. The general case of Liapunov functions and 
difference equations is discussed in LaSalle (1976). 
Construction of Liapunov functions for specific popu- 
lation models appears in Fisher et al. (1979) and Goh  
(1979). 

We have demonstrated that population models are 
special enough to have a simpler necessary and 
sufficient condition for global, stability. This condition 
is: the model has no cycle of period 2, or even more 
specifically, f(f(X))> X on [XM, X'). Difference equa- 
tions more general than our population models may 
have no cycle of period 2 and yet fail to be globally 
stable. 

Unfortunately, the lack of cycles of period 2 may 
not be very easily testable, so we gave the sufficient (but 
not necessary) methods of Theorems 2 and 4, which are 
easier to test. These methods are useful for the actual 
models we culled from the literature, but it is certainly 
possible that there are other population models for 
which these methods are not useful. 

We have also demonstrated that there are models 
which satisfy the definition of population model and 
are locally but not globally stable. We have a seeming 
paradox: on the one hand, population models do not 
need to have local and global stability coincide, but on 
the other hand, all the actual population models from 
the literature do have local and global stability coin- 
ciding. Clearly there is something extra about models 
from the literature which has not been captured in our 
definition of population model. As far as we can see, 
this something extra is that the actual models are 
simple in that they involve only elementary functions 
like polynomials, exponentials and logs, and use at 
most one division. Whether this idea of "simplicity" 
can be explicitly tied down we leave as an open 
question. Tying down this idea of simplicity may not be 
easy because the actual models seem to be of rather 
different types. One could say that two models f~(X) 

and fz(X) are of the same type if there is a function q~ so 
that fl(X) = q~(f2(q~- I(X)). While Models VI and VII 
are of the same type, they are not of the same type as 
Model I. The methods used to prove global stability 
could also be used to attempt to classify models. Both 
Theorem 2 and Theorem 4 can be used on Models I, II, 
and V. Theorem 2 but not Theorem 4 can be used on 
Models III and IV. Theorem 4 but not Theorem 2 can 
be used on Models VI and VII. This suggests that there 
may be a number of different kinds of population 
models, and no single simple method may be sufficient 
to analyze all of the different models. 
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