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Kinetics of nucleation and growth 
Part II Diffusion contro//ed growth 

J. R. FRADE 
Departamento de Engenharia Cerdmica e do Vidro, Universidade de Aveiro, 3800 Aveiro, 
Portugal 

The kinetics of nucleation and diffusion controlled growth have been re-examined; this includes 
the most commonly assumed nucleation laws. The square size distributions and the time 
dependence for the average square size were obtained from previous solutions for nucleation and 
reaction controlled growth. The solutions for the size distributions and average particle size were 
also derived. 

1. I n t r o d u c t i o n  
Some solutions for particle nucleation and growth 
have already been reported in Part I El]. These solu- 
tions were derived for growth controlled by interracial 
reaction. However, growth in a multicomponent solid 
matrix is often expected to become diffusion control- 
led. Therefore, a similar set of solutions for different 
nucleation laws and diffusion controlled growth is 
useful. 

The simplest solutions are for constant nucleation 
rate, but realistic models for nucleation may have to 
account for an induction time [2], consumption of 
active nucleation sites or multistep nucleation [3, 4]. 
In addition, nucleation sites may be swallowed by 
growing particles, as described by the Johnson- 
Mehl-Avrami (JMA) theory [5-9]. 

A simple solution is known for diffusion controlled 
growth from zero [10], but numerical methods are 
usually needed to obtain solutions for growth from 
finite initial size [11-15]. In this case, numerical 
methods are also needed to combine the kinetics of 
nucleation and growth and to obtain the size distribta- 
tions and the time dependence of the average particle 
size. Nevertheless, this limitation may be avoided by 
using a simple and relatively accurate solution for 
growth [13]. Numerical methods will thus only be 
needed when the kinetics of growth is described by 
a transient regime, as expected for a mixed diffu- 
sion + reaction growth mechanism and for the effects 
of interfacial energy. Self stresses and elastic inter- 
actions between particles are also believed to affect the 
diffusion controlled behaviour of particles [16, 17]. 

The kinetics of diffusion controlled growth may also 
depend on particle to particle distances; this occurs 
because the concentration profile around a particle 
may be affected by the nearest neighbours, as sugges- 
ted for diffusion controlled coarsening [18, 19]. Note 
that the average distance between the nearest particles 
is related to the volume fraction of precipitate, and this 
may be effective even for precipitate volume fractions 
lower than 1%. In addition, oversaturation decreases 
with increasing precipitate volume fractions and the 
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driving force for diffusion controlled growth also 
decreases. 

2. Solutions for nucleation and 
diffusion controlled growth 

Several nucleation laws will be treated as previously 
shown for reaction controlled growth [1]; this in- 
cludes the linear law (Equation 1), the exponential law 
for consumption of nucleation sites (Equation 2) and 
Kashchiev's law to account for an induction time 
(Equation 4). Two alternative solutions are also used 
to describe multistep nucleation, (Equation 6 or Equa- 
tions 7 and 8). 

NT = kt (1) 

NT = No(1 -- e -~) (2) 

= t/tN (3) 

NT = kt Z (t/t 0 (4) 

V(~) = 1 - 7r2/(6~) 

- 2 ~ ( - 1)"/[n2~exp(n2~)] (5) 
n = l  

NT = kt  p (6) 

d N T / d t  = k2tPexp(- t/tN) (7) 

NT = k2tNP+lM(p,  t/tN) (8) 
b-1 

M(p, 4 )  = p! - + p 
j=O 

x ( p -  1 ) . . .  ( p - j )  ~P-J-'] e -~ (9) 

where NT is the total number of particles, tN is a decay 
time and t~ is an induction time. The solutions for V({) 
are shown in Table I. 

The following alternative equations can be used to 
compute the size distribution function f (a,  t) 

f (a,  t) = NT  1 (~N/~t)/(da/dt)  (10) 

f ( a , t )  = -- NT  ~ (~N/Sa) (11) 
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TABLE I Solutions for V(~), V,(~), V2(~), E(~), H(~) 

V(~) r~ (~) V2 (~) e ({ )  H(~) 
• /~/~ 

0 0 0 0 0 0 
0.1 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 6 4 0  0.0320 
0.2 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 1 2 3 2  0.0616 
0.3 0 . 0 0 0 2  0 . 0 0 1 7  0 . 0 0 0 0  0 . 1 7 7 9  0.0890 
0.4 0.0016 0.0117 0 . 0 0 0 2  0.2285 0.1142 
0.5 0.0058 0.036l 0,0007 0 . 2 7 5 2  0.1376 
0.6 0 . 0 1 3 9  0 . 0 7 4 9  0 . 0 0 2 0  0 . 3 1 8 5  0.1592 
0.7 0.0261 0.1248 0.0041 0.3585 0.1793 
0.8 0 . 0 4 1 9  0.1814 0.0071 0.3956 0.1978 
0.9 0 . 0 6 0 7  0 . 2 4 0 9  0 . 0 1 1 0  0 . 4 3 0 0  0.2150 
1 0 . 0 8 1 7  0 . 3 0 0 6  0 . 0 1 5 7  0 , 4 6 1 9  0.2310 
1.2 0 . 1 2 7 8  0 . 4 1 4 0  0 . 0 2 6 9  0 . 5 1 9 0  0.2595 
1.4 0 . 1 7 6 0  0 . 5 1 4 2  0 . 0 4 0 0  0.5682 0.2841 
1.6 0 . 2 2 3 8  0.5995 0.0541 0.6109 0.3054 
1.8 0 . 2 6 9 6  0 . 6 7 0 9  0 . 0 6 8 7  0.6478 0.3239 
2 0 . 3 1 2 8  0 . 7 3 0 0  0 . 0 8 3 4  0 . 6 8 0 0  0.3400 
2.5 0.4077 0.8359 0.1t88 0 . 7 4 3 7  0,3719 
3 0.4849 0.9004 0.1511 0.7898 0.3949 
3.5 0 . 5 4 7 3  0.9396 0.1797 0 . 8 2 3 8  ~4119 
4 0 . 5 9 7 9  0 . 9 6 3 4  0.2049 0.8493 0.4247 
5 0 . 6 7 3 7  0 . 9 8 6 5  0 . 2 4 6 2  0.8843 0.4421 
6 0 . 7 2 6 7  0 . 9 9 5 0  0 . 2 7 8 3  0 . 9 0 6 5  0.4532 
8 0 . 7 9 4 5  & 9 9 9 3  0 . 3 2 4 0  0 . 9 3 2 4  0.4662 

10 0 . 8 3 5 5  0 . 9 9 9 9  0 . 3 5 4 4  0 . 9 4 7 0  0.4735 
12 0.8629 1.0000 0.3761 0.9363 0.4782 
15 0.8903 1.0000 0 . 3 9 8 8  0 . 9 6 5 4  0.4827 
20 0.9178 1.0000 0.4225 0.9743 0.4872 
25 0.9342 1.0000 0 . 4 3 7 2  0 . 9 7 9 6  0.4898 
30 0.9452 1.0000 0 . 4 4 7 3  0 . 9 8 3 0  0.4915 
40 0.9589 1.0000 0.4601 0.9873 0,4937 
60 0.9726 1.0000 0.4731 0.9916 0.4958 
80 0.9794 1.0000 0 . 4 7 9 7  0 . 9 9 3 7  0.4969 

100 0.9836 1.0000 0 . 4 8 3 7  0 . 9 9 5 0  0.4975 
150 0.9890 1.0000 0.4891 0.9967 0.4983 
200 0.9918 1.0000 0.4918 0.9975 0.4989 
300 0.9945 1.0000 0 . 4 9 4 5  0 . 9 9 8 4  0.4992 
500 0.9967 1.0000 0 . 4 9 6 7  0 . 9 9 9 0  0.4996 

1000 0.9984 1.0000 0 . 4 9 8 4  0.9995 0.4998 

Cable and Frade [13] showed that the growth con- 
stant 13 is also reasonably suitable to describe diffusion 
controlled growth from finite initial size ao. If the 
nucleation time is to the age of the particle reduces to 
t - to and growth is thus nearly described by 

a z .~ a z + 4 [ 3 Z D ( t - -  t o )  (15) 

Transient effects for a mixed growth mechanism, inter- 
facial energy, etc. are ignored. 

3. Size square d is t r ibut ions  and 
average size square 

Equation 15 reduces to a linear relation between the 
square particle size and time 

s = So + R ' ( t  - to)  (16) 

where s = a 2, So = a~ and R' = 4132D; this gives a time 
dependence for the size square which is identical to the 
time dependenc e of the particle size for reaction con- 
trolled growth [1]. The solutions described in Part  
I can thus be useful also for diffusion controlled 
growth on replacing the size square s = a 2 for size a. 
The relevant solutions are shown in Tables II  and III. 
The auxiliary functions are V(~) (Equation 5), M (p, ~) 
(Equation 9) and 

VI(~) = l + 2 ~ ( - - 1 ) " e x p ( - - n 2 ~ )  (17) 
n=l 

TABLE II Square size distributions for nucleation and diffusion 
controlled growth. The relevant rate constant is R' = 4132D and the 
solutions for VI({) and V(~) are shown in Table I 

Nucleation law Distribution function 

1 1 / ( s~  - -  So) 

2 [(s - -  S O ) / ( S  m - -  So)]exp[(s -- So)/(R'tn)] 

where a is the particle size and N (a, t) is the number of 4 
particles with sizes equal to or larger than a. Those 
size distributions are used to compute the average 6 

size aav 7 and 8 ftam 
aav  = a f ( a ,  t )  d a  ( 1 2 )  

O 

where ao is the minimum size and a m is the maximum 
size. 

Diffusion controlled growth from zero has been 
solved analytically and for an isolated spherical par- 
ticle in a very large matrix this reduces to [10] 

a = 213~/(Dt) (13) 

;o (Coo - C a ) / [ C a ( 1  - - v a C a ) ]  = 213 z e x p { -  132 1 

2 
X[(1  --  X) - z  - -  2 e x  - -  1]}dx .  (14) 

w h e r e  vA is the  so lu t e  pa r t i a l  m o l a r  v o l u m e  in 4 

the  ma t r ix ,  C~ is so lu t e  c o n c e n t r a t i o n  at  the  p a r -  6 

t i c l e - m a t r i x  in te r face ,  C ~  c o r r e s p o n d s  to  t h e  o u t e r  
b o u n d a r y  c o n d i t i o n ,  Ca is the  c o n c e n t r a t i o n  in the  7 and 8 

pa r t i c l e  a n d  ~ = 1 - v A C a .  

RtN { e x p  [ (Sm - -  So)/(R'tn)] -- I } 

V: (x ) / f ( s~  - So) V(t)]; 
x = (Sm -- s)/(R'q), ~; = t/t~ 

p (s~. - s)P- l l ( s . ,  - So)P 

[ (Sm - -  s) / (R' t • ) ]P + 1 e x p  [-(sin - -  s)/(R'tr~)] 

( S m - S o ) M { p , r )  

TABLE III  Average square size versus time for nucleation and 
diffusion controlled growth. The solutions for V2(~) and V(~) are 
shown in Table I 

Nucleation law (s,v -- so)/(s~ - So) 

1/2 
1/(1 - e - r )  - 1 / t ;  

= t/tN 

V2(z)/V(t); 
t = t/tl 

1/(p + 1) 

1 -- M(p  + 1, "r)/[zM(p, "c)]; 
"c = t / tN 
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V2(~) = 1/2 - "g2/(6~) 

2 ~ ( -  1)"/[1 - e x p ( -  n2~)]/(n4~ 2) 
n = l  / 

(18) 

and 

where 
4. Size distributions and average 

particle size 
4.1. Constant nucleation rate 
The number of particles N(a, t) for sizes equal to or and 
larger than a may be related to nucleation time to for a~v 
the generic particle size a; this reduces to 

g ( a ,  t) = NT(to) (19) 

where NT is given by the required nucleation law. 
Therefore, combination with Equations 1 and 15 
yields 

N(a,  t) = k[ t  - (a 2 - aE)/(4~2D)] (20) 
where 

From Equations 11, 12 and 20 and after rearranging 

[(a 2 - a2)/a] f(a,  t) = 2 (21) 

aav/a m (2/3) (a3m 3 3 = - -  a o ) / ( a m  - -  am a2) (22) and 

Note that the time dependence has been replaced by 
the maximum size am = (a 2 + 4~2Dt) ~/2, which might 
be useful to assess if the same mechanism fits several 
sets of experimental data. The solutions for the size 
distributions are also suitable to test the agreement 
between theory and several sets of data. 

4.2. Exponent ia l  nuc lea t ion  law 
The solutions for the exponential nucleation law can 
be obtained on combining Equations 2, 11, 12 and 15. 
This yields 

N(a,  t) = No e -~ exp[(a 2 - aZo)/(4~EDtN)] (23) 

exp [(a 2 -- aZo)/(4132DtN)] 
(2f12DtN/a) f(a,  t) = 

exp [(a 2 -- ag)/ (4fFDtN)]  -- 1 

(24) 

a.v/am = [ E ( w ) -  E ( y ) ] / [ x / w ( e  w-y - - 1 ) ]  (25) 

y = a~/(4132DtN) 

w = a2/(4~2DtN)  

E(~) = .f~x/x eXdx (26) 

The size distributions is again related to the max- 
imum size rather than time, and some examples are 
shown in Fig. 1. The time dependence for the average 
particle size varies with the ratio ao/(4~2DtN) but can 
be computed by using the values of E(~) shown in 
Table I. Some solutions are shown in Fig. 2. 

4.3. Kashchiev's nucleation law 
The size distributions and average particle size for 
Kashchiev's law and diffusion controlled growth are 
derived from Equations 4, 5, 11, 12 and 15 

N(a,  t) = k i t  - (a 2 - ag)/(4[~aD)] - k•2t,/6 

- 2 k q ~ ( -  1 ) " n  
2 

n = l  

x exp [n2(a 2 - a2)/(4132Dh) - n2t/q] 

(2~2Dt, /a)  f ( a ,  t) = Vt (x) /V(Xm) 

(27) 

(28) 

x = (a n -  aZ)/(4~ZDt,) 

X m = (a 2 -- a2)/(4~zOtl)  

(2/3) [(a 3 - 3 2 = ao)/(am - aZ)]/V('c) 

-t- 4am[Z V('c)] -1 ~ ( - 1)"n2H(n2w) 
t l = l  

- 4ao['C V('0] -1 ~ ( -  1)"n 2 
n = l  

x exp( - nZz) H(n2y)  (29) 

H(~) = x / (x /~)  e x-~ dx  (30) 
o 

y = a o / [ 2 ~ / ( D q ) ]  

W = a m / [ 2 ~ / ( D t l )  ] 

T = t / t i  

The solutions of V(~), VI(~) and H(~) are also shown 
in Table I. However, computing the solutions for the 
average particle size (Equation 29) is cumbersome, 
which explains the use of an alternative time depend- 
ence for the average size square as described in 
Table III and shown in Fig. 3. Some size distributions 
are exemplified in Fig. 4. 

4 . 4 .  Mult i s tep  nuc lea t ion  
The solutions for multistep nucleation can be ob- 
tained on combining Equations 6, 11, 12 and 15. This 

1..5 �84 

~ 1.0 1 

~0.5 

0.0 . . 
0.0 0.2 0.4 0.6 0.8 1.0 

a 2 _ao 2 

am 2 -ao 2 

Figure 1 Particle size distributions for exponential nucleation 
(Equation 2) and diffusion controlled growth. The values of z = t/tN 
a r e  shown in the figure. 
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0 2 4 6 8 

Figure 2 Time dependence for the average to maximum size ratio 
a/(a~-b 4~ 2Dr) when nucleation is given by the exponential law 
(Equation 2) and growth is diffusion controlled. The values of 
ao/[2f3x/(DtN) ] are shown in the figure. 

0 I I I I 

0.0 0.2 0.4 0,6 0.8 .0 
a 2_ao 2 

am 2 -ao 2 

Figure 4 Size distributions for Kashchiev's nucleation law and dif- 
fusion controlled growth. The values of t/q are shown in the figure. 
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Figure 3 Time dependence for the average square size if nucleation 
is given by Kashchiev~s law (Equations 4 and 5) and growth is 
diffusion controlled. 
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0.0 0.2 0.4. 0.6 0.8 .0 
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Figure 5 Size distributions for multistep nucleation (Equation 6) 
and diffusion controlled growth. The order p is shown in the figure. 

gives 

N ( a , t )  = k [ t  - ( a  z - a~) / (4~2D)]  p (31) 

f ( a )  (aZm - a2o)/a = 2p[1 - ( a  2 --  a~)/(a z --  aoZ)] p-1 

(32) 

I 
* l  + Z 

a, , /am = p (1 + z - -  x ) p - l [ x / ( 1  + z ) ] l / 2 d x  
z 

(33) 

z = a2/(4~2Dt) 

Some predic t ions  for the size d is t r ibu t ions  are  
shown in Fig. 5. These pred ic t ions  were made  t ime- 
independent .  On  the cont ra ry ,  the average size is t ime- 
dependen t  (Fig. 6), except  for negligible initial  size 
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ao ~ 0. In  this case 

f0 aav/a m = I(p) = p (1 -- x) p~I ~ / x  dx  

The solut ions  I(p)  are shown in Table  IV. 

(34) 

4.5.  M u l t i s t e p  n u c l e a t i o n  w i t h  a decay  
fac to r  

C o m b i n a t i o n  of  Equa t ions  7, 8 and 9 for nucleat ion,  
Equa t ion  15 for diffusion cont ro l led  growth  and  in 
add i t i on  Equa t ions  10 and  12 gives 

(2~2DtN/a) f (a ,  t) = [M(p, z ) ] - I  [(a2m _ a2) /  

x (4~2DtN)]Pexp[(a  2 --  a2.)/ 

• (4[32DtN)] (35) 
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Figure 6 Increase in average particle size versus time for multistep 
nucleation (Equation 6) and diffusion controlled growth. The figure 
shows the order p of multistep nucleation. 
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Figure 8 Average size for multistep nucleation (Equations 7, 8 and 
9) and diffusion controlled growth. The values of a~/(4f32DtN) are 
shown. The dashed lines correspond to p = 1 and the full lines 
to p = 10. 

T A B L E  IV Solutions for l(p) (Equation 34) 

p t(p) p X(p) 

1 0.6667 25 0.1746 
2 0.5333 30 0.1597 
3 0.4571 35 0.1481 
4 0.4063 40 &1387 
5 0.3694 50 0.1243 
6 0.3410 60 0.1135 
7 0.3182 70 0.1052 
8 0.2995 80 0.0984 
9 0.2837 90 0.0928 

10 0.2702 100 0.0880 
12 0.2481 150 0.0717 
14 0.2307 200 0.0619 
16 0.2165 300 0.0502 
18 0.2046 500 0.0386 
20 0.1946 1000 0.0257 

4 , 

2 

0.0 0.2 0,4 0.6 0.8 1.0 
a 2 ao2 

am 2-ao 2 

Figure 7 Size distributions for multistep nucleation (Equations 7, 
8 and 9) and diffusion controlled growth. The relevant parameters 
are: (a) p = 1,~ = 1;(b) p = 5,z = 1;(c)p = 1,~ = 2;(d)p = 5,~ = 2. 

aav/am = [(y  + "c)I/ZM(P, "c)] -~ 

;o x ( z -  x) p e  x-~ ( x + y ) t / 2 d x  (36) 

y = ag/(4132DtN) 

"c = t/tN = ( a ~ -  a~)/(4132DtN) 

These solutions for the size distribution and average 
particle size are both time-dependent (Figs 7 and 8). 
For t >> z, Equation 36 converges to 

aav ~ [5(Dt) t/2 [2 - (p + 1)/'r] (37) 

5, C o n c l u s i o n s  
The square size distributions and average square par- 
ticle size for nucleation and diffusion controlled 
growth were worked out from size distributions and 
average size for nucleation and growth controlled by 
interfacial reaction. These solutions are relatively 
simpler than the corresponding time dependence for 
the average size when growth is controlled by dif- 
fusion. 

The solutions for size distributions were normalized 
to assist the interpretation of experimental data and 
for easier testing of the agreement between theory and 
practice. 
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