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Abstract  Due to the fact that in contact problems the contact 
area is not known a priori, a sufficient discretization to obtain 
a convergent finite element solution cannot be supplied from 
the outset. Therefore it is necessary to use adaptive finite 
element methods to adjust automatically the mesh sizes not only 
in the bodies under consideration but also in the contact zone. 
In this paper we develop an adaptive method for geometrically 
linear contact problems, which also includes elastoplastic 
material behavior. The radial return algorithm is used to derive 
the error estimator for one time increment of the solution 
process. The error estimator is based on the Zienkiewicz-Zhu 
projection scheme, which is extended to account for the special 
situation in the contact interface. 

1 
Introduction 
Contact problems in engineering are often associated with very 
complex geometries and nonlinear constitutive behavior. For 
such problems only numerical methods, like the finite element 
method, yield solutions of the associated mathematical model. 
The finite element method has been proven to be a flexible 
tool, especially when applied to nonlinear problems of 
engineering. Since numerical methods yield approximate 
solutions it is necessary to control the errors inherited in the 
method. During the last ten years research activities have been 
focused on adaptive techniques providing automatically 
a numerical model which is accurate and reliable. 

In this paper we develop an adaptive method for elastoplastic 
contact problems which ensures successive improvement of the 
numerical solution via an iterative solution procedure to refine 
the finite element mesh. This method will be formulated for 
frictionless contact problems for the case of geometricallylinear 
elastoplastic bodies. 

The objective of  adaptive techniques is to obtain a mesh 
which is optimal in the sense that the computational costs 

Communicated by S. N. Atluri, 18 August 1995 

P. Wriggers, O. Scherf 
Institut ftir Mechanik, Technische Hochschule Darmstadt, 
Hochschulstr. 1, D-64289 Darmstadt, Germany 

Correspondence to: P. Wriggers 

The support of the Deutsche Forschungsgemeinschafl (DFG) under 
contract 751604 D2 is gratefully acknowledged. 

In memoriam of I. C. Simo 

involved are minimal under the constraint that the error in the 
finite element solution is beyond a certain limit. Since the 
computational effort can be linked to the number of unknowns 
of the finite element mesh the task is to find a mesh with 
minimum number of unknowns or nodes for a given error 
tolerance. In general, adaptive methods rely on error indicators 
and error estimators which can be computed a priori or 
a posteriori. For an overview over different techniques, see e.g. 
Johnson [5] and references therein. Based on the error 
distribution a new partially refined mesh can be constructed 
which yields a better approximate solution. To obtain an 
optimal mesh in the sense of  an overall equal solution quality 
it is desirable to design the mesh such that the error 
contributions of the elements are equidistributed over the mesh. 
During the last years a growing number of papers has been 
devoted to this topic and applied to problems of solid and fluid 
mechanics, see e.g. Zienkiewicz and Taylor [25], Zienkiewicz 
et al. [24], Peraire et al. [15]. 

The methods rely on error estimators which have been 
developed so far in different versions. The estimators which 
are most frequently used in solid mechanics for elastic problems 
are residual based error estimators, see e.g. Babuska and 
Rheinboldt [2], Babuska and Miller [1], Johnson and Hansbo 
[7], or error estimators which use superconvergence properties, 
see e.g. Zienkiewicz and Zhu [26], [27]. In the case of plasticity 
the situation is more complex and so far no mathematically 
sound estimators exist for classical ]2-flow theory of plasticity. 
A first result has been obtained by Johnson and Hansbo [7] who 
developed an adaptive strategy for small strain elastoplasticity 
using the Hencky model. Due to the physical restrictions of 
the Hencky model this method cannot be applied to standard 
elastoplastic problems in engineering. 

For ]2-flow Ortiz and Quigley [14] have developed a criterion 
for mesh adaption using the notion of the space of bounded 
variations. This criterion was successfully applied to strain 
localization problems. Peric et al. [16] have discussed different 
error estimators based on the dissipation functional, the energy 
norm and the rate of plastic work. The a posteriori error 
estimators rely on a post-processing concept and with this on 
superconvergence properties which mathematically only can be 
proven for meshes with a certain regularity. These estimators 
and the related adaption criteria have been compared by 
means of a strain localization problem. All developed error 
estimators can be applied successfully to certain classes of 
problems. However up to now a rigorous theoretical 
background is lacking. 

In this contribution we will develop an error estimator for 
J2- flow including contact constraints using results provided by 
Johnson and Hansbo [7] for the Hencky model. It will be shown 



that the error estimator can be applied within a time increment 
of the solution algorithm using return mapping schemes. For 
frictionless contact problems a posteriori error estimators 
have been derived for linear elastic bodies, see e.g. Lee et al. [ 11 ], 
Wriggers et al. [23]. Here we present a new methodology to 
consider implicitly the physical behavior in the contact 
zone. This method can be applied in conjunction with 
smoothing procedures to compute an improved solution for 
the stresses. 

The paper is organized as follows. First the boundary value 
problem for elastoplastic solids is summarized. Then we state 
the kinematicaI constraint conditions associated with contact 
and develop the weak formulation based on the penalty 
regularization. A summary of the basic return mapping 
algorithms for elastoplasticity provides the basis for 
a reformulation of the incremental equations for the error 
estimation. After the spatial discretization using finite elements 
the error estimators for contact and elastoplasticity are 
presented. Finally an algorithm for the adaptive method is 
developed which relies on the derived error estimates applied 
to the incremental nonlinear problem. The h-adaptive algorithm 
is applied to a test example. 

2 
Formulation of the elastoplastic continuum problem 
Let us recall the basic equations of an elastoplastic solid for the 
case of metal plasticity undergoing small strains. We denote 
by e the total strains which are decomposed additively into an 
elastic, e~, and a plastic part  e p as follows 

g(u) = gr + sP(u) with g(u) = �89 (Gradu + Gradru). 
(1) 

Local equilibrium yields 

divo" + 1~ = 0, 

with given body forces I~. The standard boundary conditions 
are 

u = O  on F ,  and o - n = t  on F~, 

where n denotes the outward unit normal vector on F and t are 
applied boundary loads. 

Equations (1) to (3), characterizing the displacements u, are 
equivalent to the following weak formulation: Find u s  Yf such 
that 

~ [ o ' ( u ) : g ( v ) - l ~ . v l d l 2 -  ~ t ' v d F = 0  Vv, (4) 
a G 

where v denotes the virtual displacement or test function. 
Furthermore we can summarize the constitutive equations 

for an elastoplastic solid with linear isotropic hardening. The 
stresses a and the hardening variable q can be obtained for 
a homogeneous material from a free energy function T(g ~, ~) 
according to 

OT OT 
- -  , 

a=(?e~ and q (3~ (5) 

Since we restrict ourselves to classical plasticity and linear 
hardening the free energy function is given by 

T(ee, ~) = �89 +�89 (6) 

where C is the elasticity tensor and K denotes the hardening 
modulus. This leads with (5) to the following constitutive 
relations 

a ' = C : ( e - g P )  and q=--Ko~. (7) 

The elastic region is determined from the yield condition 

f(,r, ~) = Isl - ~ (Yo + K , )  < o. (8) 

Here s = ~r-13 tr a 1 denotes the deviatoric stress and Y0 is the 
initial yield stress. The flow rule and hardening law are given for 
associated plastic flow by 

~ P = 7  = 7 ~  and ~?=7 = ~  �9 (9) 

The loading, respectively unloading, conditions can be stated 
in Kuhn-Tucker form 

7=>0, f ( o - , 7 ) < O  and ?f((r, cO=O, (10) 

which completes the elastoplastic model together with the 
consistency condition 

3;?(o', cx) = 0 .  (11) 

3 
(2) Formulation of the contact problem 

Let us consider two bodies ~ ' ,  ~ = 1, 2, each of them occupying 
the bounded domain ~2 ~ ~ R 2. The b o u n d a r y / ~  of a body ~ 
can in general be splitted into three parts: F [  with prescribed 
surface loads, F [  with prescribed displacements and ~ where 

(3) the two bodies .~2 ~ and ~z come into contact. Next the 
contact conditions, the weak form of the associated problem 
and the penalty regularization of the contact constraints will 
be stated. 

3.1 
Contact kinematics 
Assume that two bodies come into contact. In that case we have 
to find the minimum distance of a point on the surface of one 
body with respect to the other one. The associated mathematical 
formulation for this case can be found in e.g. Laursen and 
Simo [10], Wriggers and Miehe [22]. It yields the 
non-penetration condition in terms of the coordinates 
x ~ = X ~ + u ~ of the current configuration of the bodies ~ 

[x 1 _ ~2(~)1 .n c ~ 0. (12) 

Here ~ denote the surface coordinates of body .~2 and n c the 
surface normal on F)  with respect to the current configuration. 
The point 22 (~) is found from the minimal distance problem 
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which associates to every point x 1 on / '~  a point 2z (~-) on/-2 via 

IIx ~ - ~ ( ~ ) I I  = min Ilx ~ - x~ l l ,  ( 1 3 )  
xZ =_ F~ 

see e.g. Wriggers and Miehe [22]. Since we restrict ourselves 
in this paper to the case of small deformations we can use the 
displacement field instead of the deformation itself. The 
associated linearization then leads to the non-penetration 
condition 

(U 1 - -  112) .n~ + g > O, (14) 

where the inital gap g between the two bodies is given by 
g = (X ~ _ ~Z).n~. n~ is the surface normal with respect to the 
reference configuration on F~, 

In view of the penalty formulation which will be applied to 
solve the contact problems we introduce a penetration function 
as follows: 

Un = {(ul -- fiO)'n~ + g 
if (u 1 - f i 2 ) . n ~ + g < O  

(15) 
otherwise. 

Function (15) indicates the penetration of one body into the 
other and shows in which parts o f / ' ~  the constraint equations 
preventing penetration have to be activated. Thus (15) can be 
used to determine the contact area. 

Remark  In the case of contact between a rigid surface and 
a deformable body the above equations also hold. Then we set 
fi2 __ 0 and n~ represents the normal of the rigid surface. 

u~- has already been defined in (15) and v, = (v ~ - q 2 ) , n  e The 
penalty parameter ~ is a positive constant. For linear elasticity 
it can be shown, see e.g. Kikuchi and Oden [8] or Carstensen 
et al. [3], that the solution of the regularized problem will 
converge to the solution of the original contact problem as 

tends to infinity. 

4 
Return mapping algorithm for elasto-plasticity 
For the solution of an elastoplastic problem we have to integrate 
the evolution Eqs. (7) to (10) governing the plastic flow. For 
this purpose the so called return mapping algorithms are 
applied, which have been established during the last years 
and represent now the standard tool for the solution of 
elastoplastic problems, see e.g. the overview article by Simo [ 18]. 

The solution of the elastoplastic evolution equations leads 
to an incremental problem in which a time discretization of 
the interesting time interval { t  o, tl  . . . . .  t~, t § . . . . .  t~} is used. 
Within a time step Its, t+~] we have the internal variables 
s~ and ~ as initial data. Furthermore we assume that the 
displacement field u+~ and thus the strains g(u +~) are known 
which e.g. has been computed by the spatial finite element 
method. Since the return mapping algorithms are very well 
established we like to state here only the resulting equations 
which have be used for our own computations and which will be 
needed subsequently for the error estimation. For a concise 
treatment of these algorithms, see Simo [18]. 

We use the standard implicit backward Euler algorithm 
for Eqs. (1), (7) to (10) which yields the following algorithm: 

�9 Compute a 'trial' state 

3.2 
The weak form of the boundary value problem with contact 
In the previous section we distinguished between the 
deformations x ~ to define the penetration function. This is no 
longer necessary since the subsequent equations are valid for 
every point X e ~  ". Therefore we omit the index a in the 
following for convenience knowing that in case of different 
constitutive equations for ~ and ~2 we have to make 
a distinction. 

If contact constraints are present, the weak formulation 
(4) can be recast as follows: 

Stnr+l = 2//(en+ 1 -- ePn) (19) 

~ (20) ~ n + l  ~ ~Xn 

�9 Perform the return map 

- -  tr - -  2,uAyn,~+i (21) 8 t2+i  - -  S n +  1 

c~+1 = ~n+l + A?, (22) 

where the definitions for the deviators 

j" o'(u):g(v--  u) d.(2_>_ j'b-(v -- u) d-Q+ j" t ' ( v -  u ) d F  (16) 

and O-= U J 2  " , /~  - U~, G" The contact problem is now to 
find u e . Y  such that (16) is fulfilled for all v e J d  with 

Jd  = {veYrl (v  ~ - ' ~ 2 ) . n ~ + g > 0  on P~} (17) 

1 1 s , + l = a ~ + l - - 5 t r o - ~ + l l  and e , + l = G + l - s t r G + l l  (23) 

and the normal to the yield surface 

S tr 
~+1 _ S~+l (24) 

nn+ 1 -- s t  r ]Sn+l[ 
n + l  

Due to the inequality constraint on the displacement field 
this problem is nonlinear even for the linear elastic case. 

Here the solution of the contact problem is obtained using 
the penalty method, see e.g. Luenberger [12]. This technique 
replaces the variational inequality by an unconstraint 
problem with regard to the contact constraint (14) as follows: 
Find u~Y" such that 

~ a ( u ) : g ( v ) d l 2 +  ~ eu;GdV=~b.vdl2+ ~{.vdF VvEW. 
n r~ n G 

(18) 

have been used. For linear isotropic hardening the consistency 
parameter A 7 can be stated in closed form 

A? f~t+l with f , + l _ ] s , + l  ] ,  _ tr __ .~ /~(Y0+KG+0 . t r  (25) 
2 /~+}K 

This completes the update of the deviatoric elastoplastic stresses 
sn+ 1 and the hardening variable ~n+l within one time step. 
This local update has to be included in a global Newton iteration 
for the solution of the boundary value problem at hand. 



For later use we will now solve Eqs. (19) to (25) for the 
total deviatoric strain %+~. After some algebra we arrive at 

en+ l - - e~=~- f iSn+ l+  ~ Sn+ 1 [Sn+lJ Sn+ 1 . (26) 

Noting that the yield condition is at time t~ given by 

L = _-<0 (27) 

we can define an incremental projection operator H(s  +~) in 
an analogous way as in Johnson and Hansbo [7]. 

f s~+~: for elastic loading 

H(G+I )  = ~ 1 , 1  (28) 
],'~--~',s,~+x: for plastic loading 

and obtain for the strain deviator e+~ 

1 3 
e+~ -- e~ = ~ s ~ +  1 + ~-~ (s,+ 1 - -  l I ( S n §  ) ,  (29) 

To arrive at an expression for the total strain G+~ we have to 
add in (29) the elastic volumetric strains which then leads to 

iterative scheme for the displacement field at time t+~: 

z z+l = , ii1+1 I Jr_ a u ; +  1, DG(Uhn+l) luG+lkUh -- a(Uhn+,)' =hn+l = Uhn+l 
(33) 

with the starting value: u~, + ~ = Uh. The operator D denotes the 
tangent matrix of G which can be obtained for elastoplastic 
problems with the aid of the derivation given in the classical 
paper by Simo and Taylor (1985). Since the contact kinematics 
are assumed to be linear, see (14), the nonlinearity associated 
with the contact is only due to the changing number of 
contact constraints within the iteration. 

6 
Error estimator for contact and elastoplasticity 
In this section we will present an error estimator which can 
be used for elastoplastic contact problems. This estimate relies 
on smoothing procedures in the sense of the Zienkiewicz and 
Zhu [26] error estimators and can be applied to J2-flow theory. 

Let u+~ denote the exact solution of (18) for the given time 
discretization by the return mapping schemes, see Sect. 4 and 
let Uhn.~ denote the discrete FEM-solution of (32). To simplify 
notation and for convenience we will omit the index 
n + 1 in the following derivations, thus u + ~ ~ u and uh~ + ~ --* u~. 
With 
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1 1 3 
G+I - e~ = ~s  1 + __9--~tr o-n+11 + ~ [s.+ 1 - H(G+I) ] ,  

(30) 

where K denotes the bulk modulus. 
Note that Eq. (30) is valid within a time increment [t,,, t+  1] 

and e~ is an initial data. So far we have only performed 
a discretization in time and not assumed that the field 
variables result from an approximate solution, e.g. by using 
the finite element discretization. 

A 
e = u - u h (34) 

we define the error in the displacement field within the time 
step under consideration. 

To derive an error estimator we substract the finite element 
approximation of (30) from (30) leading to 

1 1 
( e - e ~ ) -  (~h -- e~n) = ~ ( S  -- Sh) + t r ( o ' -  ~ )  1 

5 
Spatial discretization by finite e l ements  
To discretize the linear elastoplastic contact problem defined 
above we divide the domain .(2 occupied by the bodies ~ into 
non-overlapping finite elements T of diameter h r and introduce 
a standard finite element space 

3 
+ ~ [ 8 - - [ / ( S ) - - ( $ h - - / / ( S h ) ) ] .  

The multiplication of this equation by (~r -  a h) and its 
integration over the domain .(2 yields 

(35) 

~ h  = { v ~ f [ v ~ C ( s  VIT~[~(T)]ZVT},  (31) 

where ~ ( T )  is a space of polynomials of degreepr  on T and 
Pr is a positive integer. Moreover the boundary is assumed 
to be piecewise affine such that the triangulation covers .(2 
exactly and the type of boundary condition does not change 
on a side of an element. The discrete finite element problem 
yields now in the time increment [t~, t§ Find Uhn+IE3(P h such 
that 

G(Uhn+l ) = ~ {T(Uhn§ ~ ~-)~ ~ t ' v  h d r  

+ SS(Uh~+l)2(Vh)ndF=o VVhffY/" h. 
r~ 

(32) 

To solve this nonlinear equation within the time step 
Newton's method is applied which leads to the following 

liar-- ahN~-, < j'[e(~) - (e~ --  ePhn)] :(0"-- Gh)d.(-2. 
s 

(36) 

In this step we have further used that Is - H(s) - -  ( s  h - [ ~ ( $ h ) ) ]  : 

(s - Sh) > 0, a result obtained by Johnson and Hansbo [7]. 
rl'll~-~ denotes the complementary energy norm, defined by 

(37) 

The equivalence of this norm to the energy norm can be shown 
easily by inserting the constitutive equations for elasticity into 
the last expression leading to ]1 a -  G 1[~ , = ][eHE.A 2 

Equation (36) is almost equal to that reported in Johnson 
and Hansbo [7] for the Hencky model. The only difference is the 
appearance of the initial data, the exact, e~, and the 
approximated, e~n, plastic strains at time t n. 
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A possibility to derive an error estimator for elastoplasticity 
is provided by a reformulation of Eq. (36). We observe that 
the total strain can be split into an elastic and a plastic part 
which yields 

~n+l = <--1 -}- ~nP+l-+ en-1 - -  G --'~ ~ne+l -[- Ae~n+l' 

where we have defined the increment of the plastic deformation 
as the difference AG+~ = G+~ - ~.  Thus Eq. (36) leads to 

(39) 

This equation can be interpreted as follows. The first term 
denotes the error due to the plastic dissipation within the 
time increment whereas the second term is related to the elastic 
response in the plastic zone. Both terms can now be 
approximated by using smoothing procedures leading to 
ZZ-~e error measures. Note that g~ is not in general a gradient 
of the 'elastic' displacement field. Thus the development of 
a residual error estimator is not possible in the standard way. 
With the projections 

P [~  - e ( u 0 q  = 0, 

p [A~p - ae~] = o, 

p [ ~ r -  ah] = o ,  

which can be a L2-projection or a discrete projection scheme, 
e.g. basing on superconvergent properties of the finite elements, 
we obtain the final result 

II o--  o-h II~, _-< j [ (A~P- AePh) �9 (~- -  ~r h) + (e -- gh)" (~r-- G)]  d.Q. 
0 

(41) 

Note that the error estimator (41) is in accordance with 
the error estimator proposed by Perk  et al. [ 16] who introduced 
an error measure of the plastic dissipation on a more ad hoc 
basis for problems with strain localization which we 
have so far excluded in our formulation. 

This error estimate has been developed for one time step 
within the numerical simulations of an elastoplastic flow 
problem. So far we did not address the error inherited in the 
time integration procedure. This would be the next step which 
will then allow the adjustment of the time increments. Results 
concerning the accuracy and convergence properties of 
different return mapping schemes can be found in e.g. Krieg 
and Krieg [9], Ortiz and Popov [13], Simo [17] or [18]. 

The error estimator (41) does not include special boundary 
terms for the contact contributions. The estimate for the contact 
area is in this case included implicitly since the integral in 
(41) has to be evaluated with respect to fZ= ~)~f2 ~ and thus 
includes also the contact interface. 

To compute e ,  z~e and ~', we apply the superconvergent 
patch recovery technique, proposed by Zienciewicz and Zhu 
[27]. This technique uses points within a finite element, 

where the quantities related to the gradient of the solution, 
e.g. strains and stresses, exhibit a higher order of convergence. 
From these sampling points the stresses and strains are 
projected locally onto a node by using an element patch, which 
consists of all elements connected with the node considered. 

(38) A polynomial expansion of the function describing the 
derivatives is then fitted in a least square sense to the sampling 
point values within the patch. For the expansion the same 
polynomial degree as for the basis functions is choosen, with 
the object to preserve the higher convergence rate. In a next 
step the nodal values are calculated by inserting the nodal 
coordinates into the polynomial expansion. Finally, the 
improved solution is interpolated globally with the recovered 
nodal values and the standard basis functions, which are also 
used for the interpolation of the displacements. For a detailed 
description of the methodology we refer to Zienkiewicz 
and Zhn [27]. 

Since we are concerned here with frictionless contact, we 
can assume a principle stress state in the contact zone. 
According to local equilibrium the normal stress must be 
equal in adjacent points on F~ and F~. This physical 
information can be used during stress smoothing to consider 
implicitly the presence of contact. For that purpose we search 
the closest located node I on F~ 2 to a node K on F), see Fig. 1. 
All elements, which are connected with node I, determine 
the extended patch, while all elements connected with K define 
the standard patch. Next, we compute in the Gaussian points 
of all patch elements the principal stresses. As a consequence 
of the contact physics we can now use for the projection 
of the normal stress the sampling points in the standard and 

(40) 
in the extended patch. Concerning the stress tangentialto F c, we 
have to take in general different stress states on F] and F 2 into 
account. Thus only elements connected with K can be 
considered for the projection of the tangential stresses. The 
recovered principal stresses must then be transformed to global 
coordinates, since on nodes, which are not contained in H i, 
the stress tensor coefficients are projected directly. Therefore 
we need the principal axes in K, which are associated 
with the normal vector, given by 

[nx ]  1 
n~K = (n; + nlc), (42) 

n y = ~  

Fig. 1. Element patch, contact interface @ Gaussian point, extended 
patch x Gaussian point, standard patch 



see Fig. 1. The transformation is then performend in a standard For the displacement field transfer we use the standard 
way: interpolation 

* * r [ n r n x ]  I1;+I~-2NI(x.[)U*I' 
O'K, glo b = NaK,pn~N , N = . (43) t 

L J - -  nx ny 

7 
Adaptive mesh refinement 
The adaptive refinement strategy for the elastoplastic contact 
problem is developed in this section. For this purpose we first 
state the refinement criterion which is based on the 
considerations of the previous sections. After that we shortly 
discuss our implementation for the transfer of field and history 
variables. Finally the overall solution algorithm is introduced. 
For further reference we would like to summarize the 
error estimator developed in the last section: 

E~=j" * * ~ -- [(Z~& -- A&h):(o- -- oh) + ( ~  -- gh):(~- ~rh)]d,Q. (44) 
T 

7.1 
Ref inement  strategy 
The object of an adaptive algorithm is usually stated as 
a nonlinear optimization problem: construct a mesh such 
that the associated FEM-solution satisfies 

rl - ~ 1 / ~ ,  = Ilu -u~H~ ~ ~ E~ ~ TOL, 
v T 

(45) 

with TOL being a given tolerance. Furthermore the expense 
to compute u h or r should be nearly minimal. As a measure of 
computational work the total number of degrees of freedom 
is chosen. Since the exact solution u is not known we 
demand that the sum of the error contributions of all elements 
yields 

E~ <_ TOL 2, (46) 
T 

which guarantees that (45) is fulfilled. (46) serves as a stopping 
criterion in the adaptive process. To minimize the number 
of degrees of freedom during refinement, we require that the 
mesh is an optimal mesh, i.e. that the error E~ is equally 
distributed between elements: 

E 2 = N/~ 2. (47) 
T 

N denotes the number of elements in the mesh. Finally (47) 
yields together with (46) the refinement criterion 

TOL 2 
E~ < - -  (48) 

= N 

7.2 
Transfer of field and history variables 
An incremental solution procedure in conjunction with mesh 
refinement and mesh smoothing requires a general projection 
scheme for various field variables from a mesh J '  to a mesh 

(49) 

where x 1 denote the coordinates and u~ +~ the displacements 
of nodeJ in J - '  +1. The nodes I in  3- '  belong to an element Te ~ ' ,  
which contains node ]. N~ are the basis functions connected 
with nodes I. 

The field of history variables is projected in a similar manner. 
Since the history variables are computed at the Gaussian points 
we use a 'virtual' triangular mesh ~,ll', defined by the Gaussian 
points of J- ' .  Further we search for the element M ~ I I '  which 
contains a Gaussian point G; +1 of an element T ~ J  --'+1. M is 
defined by its virtual nodes G;. If G~ +1 is not contained 
in ~r ', a case which can appear if G; +~ is situated near the 
boundary of J ' ,  the element M located closest to G; +~ is used. 
Then the interpolation is performed as follows: 

h} +1 = ~ N~(xl)h ;, (50) 
I 

with h} +~ as the history variables at point G; +1. xj denote the 
coordinates of G; +I and h'z are the history variables at point G;. 
The basis functions N~ are associated with G; and extended 
outwards the area of M if G;+14~?/'. 

7.3 
Solution algorithm 
Now we state the overall algorithm of our h-adaptive method 
for contact problems in plasticity. The algorithm includes the 
following steps: 

1. Set initial values: 1 = 0, 20 = 0, A2, i = 0 
2. Generation of start mesh: Y,  
3. Loop over load increments: 2~+ 1 = 2~ + A2 

3.1 IF/]'I+~ > 2max ~ S T O P  
3.2 Iteration loop to solve nonlinear problem 
3.3 Mesh optimization 

�9 Compute E~ 
�9 IF y ' E 2 <  TOL2~GO TO 3. 
�9 IF Er a > TOLg/N~refine element T 
�9 Set i = i + 1  
�9 Generate new mesh .Y-, 

Delaunay triangularization 
Smoothing 

�9 Interpolate displacement and history variables 
on the new mesh 

�9 GO TO 3.2 

8 
Numerical example 
The introduced adaptive algorithm has been implemented in 
the Finite Element Analysis Program (FEAP), developed by 
R. L. Taylor, see [25]. The mesh is defined via a parametric 
surface description of the boundaries. All loads, boundary 
constraints and contact constraints are defined with respect to 
these surfaces. A Delaunay triangularization is then used to 
create the successive meshes during the adaptive process; 
for the associated algorithm, see Sloan [21]. Throughout the 
computations we apply linear triangular elements. 
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We consider now a problem, where an elastic sphere 
(Young's modulus E = 2.1.107, Poisson's ratio v = 0.3) comes 
into contact with a beam, see Fig. 2 for the initial mesh. The 
material of the beam is elastoplastic (E = 2.1.105, v = 0.3, 
Y0 = 500, K = 5000). Plane strain conditions are assumed. The 
geometry of the problem is defined by the following data: 
Length of the beam l = 4, height of the beam h = 1, radius of 
the sphere r = 1. Both ends of the beam are clamped and at the 
upper boundary of the sphere a uniform pressure is applied. 
This load is increased linearly to a final value of 175 with 
7 time steps of At = 0.5. Due to the symmetry of the problem, 
only half of the structure is discretised. The tolerance for the 
adaptive algorithm is given by TOL = 0.1. 

In a sequence of pictures, Figs. 2 to 15, we show the 
development of the plastic zone in combination with the values 
of the error indicators and adaptive mesh refinement. 

Fig. 5. Second mesh, 633 nodes, 1126 elements 

Fig. 6. Second mesh, plastic zone, t = 1.5 

Fig. 2. First mesh, 353 nodes, 607 elements 

Fig. 7. Second mesh, plastic zone, t = 2.5 

Fig. 3. First mesh, plastic zone, t = 1.5 

Fig. 8. Second mesh, error distribution 

Fig. 4. First mesh, error distribution 

Refinement occurs at time t = 1.5, t = 2.5 and t = 3.0. At these 
times the plastic zone is depicted before and after mesh 
refinement. Additionally, the plastic zone for the time t = 3.5 
is shown. Plastic regions are denoted by darkgrey and elastic 
regions are plotted in lightgrey color. Elements, which error 
values violate (48), are indicated in Figs. 4, 8 and 12 



Fig. 9. Third mesh, 1416 nodes, 2640 elements Fig. 13. Final mesh, 2785 nodes, 5299 elements 95 

Fig. 10. Third mesh, plastic zone, t = 2.5 Fig. 14. Final mesh, plastic zone, t = 3.0 

Fig. l l. Third mesh, plastic zone, t = 3.0 Fig. 15. Final mesh, plastic zone, t - 3,5 

Fig. 12. Third mesh, error distribution Fig. 16. Reference mesh, plastic zone, t = 3.5 

lightgrey, whereas elements, which are not refined, are 
represented darkgrey. We observe that the error occurs mainly 
in the plastic region and in the contact interface. 

Since the FE-solution of elastoplastic problems depends 
on the history, an inaccurate approximation of the history 
variables is attended with irreversible negative effects 

concerning the results of the succeeding time steps. Therefore 
we compare the solution of our adaptive computations with 
the results obtained by using a uniformly refined reference 
mesh with 7721 nodes and 14960 elements. The associated 
picture of the plastic zone at time t = 3.5 is given in Fig. 16, 
which compares well with Fig. 15 of the adaptive method. 
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The dis t r ibut ion of the normal  stress in 1-direction o- H (see 
Fig. 2 for the associated coordinate system) is shown for the 

Point adapted mesh at t ime t = 3.5 in Fig. 17. Figure 18 reports 
the a l l -d is t r ibut ion for the reference mesh. The same scale is 1 
used for the isolines in both  stress plots. Only very small 1 
deviations can be observed. 1 

Finally, we compare in Table 1 the displacements at several 2 
points  in the structure obta ined by  the refined mesh and  the 2 
reference mesh at t ime t = 3.5. In addit ion,  we give for 3 
point  1 the displacement  computed  with 4-node quadrilateral  3 
elements in an enhanced  formulat ion,  see Simo and  Rifai [19], 
at t = 3.5. This type of e lement  has the advantage to show no 
locking effects in the case of bend ing  problems and 

SIGMA11  
Min = -2.16E+03 
Max = 1.45E+03 

-9.47E+02 
-4.931::+02 

...... ~ .......................... :: ............... 3.85E+01 
~ 4.161::+02 

8.70E+02 

Fig. 17. Adaptive computation, c7 H, t = 3.5 

SIGMA11 
Min = -1.86t=+03 
Max = 1.321=+03 

.................. , ...... 9.47E+02 

Niiiiii;,i;,iiii  .3.821=+Ol 
4.121=+02 
8.701=+02 

Fig. 18. Reference mesh, a11' t = 3.5 

Table 1. Displacements, t = 3.5 

1-displacement 2-displacement 

0 -- 1.841.10 2 Refined mesh 
0 -- 1.886.10 2 Reference mesh 
0 - 1.856.10 -2 Enhanced 40 x 20 
0 - 2.640.10 -2 Refined mesh 
0 - 2.673.10 -2 Reference mesh 

- 3.267.10 3 - 1.698.10 -2 Refined mesh 
- 3.338.10 -3 - 1.737.10 -2 Reference mesh 

incompressibi l i ty  constraints.  We discretise only half of the 
beam and  use a mesh with 40 elements in 1-direction and 20 
elements in 2-direction. In this mesh the load is applied as a 
single load at the center of the upper  side of the beam. 
The coordinates of point  1 are (0, - 2), of point  2 (0, - l) and of 
point  3 (0.4, - 1). The associated coordinate system is shown 
in Fig. 2. As for the stresses, only small deviations are observed. 
The differences between reference and  adaptive solution 
stem from the finer resolut ion of the the reference mesh in 
the elastic zone. 
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