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discontinuities in solid mechanics using 

Abstract Numerical simulation of strong discontinuities by 
using standard stress-strain constitutive equations including 
strain-softening is addressed. The concept of strong 
discontinuity analysis is introduced and driven, as a matter of 
example, into a standard continuum damage model. Then, the 
relevant features that make the constitutive equation compatible 
with the appearance of strong discontinuities are extracted. 
Those features are used in the design of a specific finite element 
approach to the strong discontinuity problem which is placed 
in the framework of the assumed enhanced strain methods. 
Numerical simulations show that mesh size and mesh alignment 
dependencies, typical of some continuum approaches, can be 
removed. 

1 
Introduction 
Strong discontinuities are understood here as jumps in the 
displacement field appearing in solids across discontinuity 
paths which are material surfaces. Strong discontinuities are 
of considerable interest in many engineering fields when the 
aim of the analysis is to approach limit situations close to 
intensive damage or collapse. Cracks in concrete or rocks, slip 
lines in soils and shear bands in metals (when observed from 
a macroscopic point of view) are examples of strong 
discontinuities appearing at a certain time (in general unknown) 
of the loading history and whose initiation and development 
along the solid are aimed to be modelled by the analysis. 

The presently available methodologies for the numerical 
simulation of strong discontinuities could be classified in two 
families: discrete and continuum approaches. 

Discrete approaches, see for instance Dvorkin, Cuitino and 
Gioia (1990), Lofti and Shing (1994), characterize in different 
ways the continuous and the discontinuous parts of the 
body. The discontinuity path is either stress free or the stress 
field is defined via specific constitutive equations relating the 
traction vector and the displacement jumps. The continuous 
part is modelled in a classical Continuum Mechanics 
environment. In general they need appropriate additional 

Communicated by S. N. Atluri, 18 August 1995 

J. Oliver 
E.T.S. d'Enginyers de Camins, Canals i Ports. Technical University 
of Catalonia, Gran Capita s/n. M6dul C-1, 08034 Barcelona, Spain 

To Prof. Juan C. Simo 
"In memoriam" 

criteria for the determination of the direction of propagation 
of the discontinuity. 

Continuum approaches intend to keep the whole analysis 
in a Continuum Mechanics framework. The concept of strain 
is defined everywhere in the solid and, consequently, 
stress-strain constitutive equations can be considered. Then the 
discontinuity is numerically modelled via two basic ingredients: 
a) an implicit (sometimes not recognized) regularization of the 
displacement jumps which are approximated by high 
displacement gradients (strain localization) in a band whose 
width is characterized by the so called characteristic length 
which is taken as a material property, Belytschko, Fish and 
Engelmann (1988), or as a numerical parameter, Oliver (1989), 
and b) special constitutive equations whose particular structure 
leads to the well posedness of the partial differential equations 
governing the problem and allowing the strain localization 
to appear. The smeared crack methods using (regularized) local 
constitutive equations exhibiting strain softening, Oliver, 
Cervera, Oller and Lubliner (1990), non local constitutive 
equations, Pijaudier Cabot and Bazant (1987), Cosserat 
continuum, gradient plasticity, De Borst, Mulhaus, Pamin and 
Sluys (1992), viscoplasticity, Needleman (1988), (or in general 
visco-regularized constitutive equations) are examples of 
approaches belonging to this family. 

In this work, continuation of previous works on the subject, 
Simo, Oliver and Armero (1993), Oliver and Simo (1994), Simo 
and Oliver (1993), a somehow comprehensive approach is 
proposed. The concept of strong discontinuity analysis, whose 
aim is the identification of the key qualitative features that make 
standard stress-strain constitutive equations consistent with 
the appearance of strong discontinuities, is introduced. Special 
emphasis is placed in not involving any numerical method of 
simulation in this analysis. In particular, the analysis provides 
a set of consistent discrete (i.e., stress-displacement jump) 
constitutive equations at the discontinuity path, which link 
continuum approaches with the discrete ones. On the other 
hand a set of relevant points emerging from the strong 
discontinuity analysis can be directly used in the design of 
specific finite elements for capturing strong discontinuities, in 
such a way that many unsuitable features of classical continuum 
approaches (mesh-size and mesh-alignment dependencies, 
intrinsic limitations on the element size etc...) can be 
automatically removed. 

An outline of the reminder of the paper is as follows. Section 
2 introduces a suitable kinematic description of the 
discontinuous problem. Section 3 is devoted to the introduction 
of the strong discontinuity analysis which is applied to a family 
of continuum damage models in Sect. 4. In Sects. 5 and 6 the 
strong and weak forms of the resulting B.V.P are presented. 
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A family of finite element approximations to the strong 
discontinuity problem is then introduced in Sect. 7. Finally, 
Sect. 8 is devoted to present some numerical simulations. 
Conclusions are drawn in Sect. 9. 

2 
Kinematics: Discontinuous displacement field 
Let us consider the reference configuration f2 of a body 
exhibiting strong discontinuities along a discontinuity path 
5 ~ which is a material surface (fixed at the reference 
configuration) with a unit normal vector n (see Fig. la). For 
practical purposes we can assume that 5 p splits the body into 
two parts -(2 + and ,62- in such a way that a Heaviside (step) 
function H~, (x) (x being the material coordinates of the 
particles, Hs(x)  = 1 V x ~  + and H~(x) = 0 V x ~ - )  can be 
defined on f2. Let F. c ~f2 and F~ ~ ~.O (F~vF~ = ~.Q, 
F~ c~ F~ = ~ )  be the boundaries of-(2 subjected to the usual 
essential and natural boundary conditions, respectively. Let us 
consider, finally, an additional subdomain g2 h ~ f? surrounding 
5"(5 P c f2 h see Fig. lb), defined by the two arbitrary boundaries 
ahead of (SP~) and behind of ( 5 ~ )  the discontinuity surface, 
and splitted by 5 P into the subdomains ~ and f2[. It is 
assumed that the boundary F., where the essential boundary 
conditions are imposed, is outside K2h(F. n f2 h = ~3). Then, we 
can define a continuous function (ph (X) which is completely 
arbitrary except for the following two conditions: 

Ii h 

a 

X 
+ 

~h ~h 

~h 

~ h  

? 
Fig. 2a-b. Construction of the unit jump function 

q?(x) = 0 VxE. (2- \~2 ;  u(x, t) exhibiting a strong discontinuity in 5 ~ as: 

q~h(x) = 1 V x e n + \ t 2 ;  ~ (2.1) u(x, t) = fi (x, t) + J~[~. (x) ~u~ (x, t) (2.3) 

Let us now consider the function J/g%(x) defined as: 

X G ( x )  = H e ( x )  - ~oh(x) (2.2) 

It is straightforward to check that Jfl~ (x) (from now on termed 
the unit jump function) takes the value zero everywhere in 
~2 except in ~h (the support of J//~, see Fig. 2 for 1D cases) and 
exhibits a unit jump across 5C With these definitions in mind 
we can write a convenient expression for a displacement field 

a 

Fig. la-b. Definition of the discontinuity path 

where fi(x, t) is the regular (continuous) part of the 
displacement field and ~u~ (x, t) is a continuous displacement 
jump function. From Eq. (2.3) a jump in u appears on 5 p whose 
intensity is: 

[u+(x, t) -- u - (x ,  t)lxE e = ~u~ (x, t)Ix~e = ~u~5, (2.4) 

where superscripts (.)+ (.) refer to values in ~+  and J2-, 
respectively. Observe that the kinematic description (2.3) allows 
the essential boundary conditions to be applied exclusively on 
the term fi(x, t). This fact makes this kinematic description 
specially suitable for numerical simulations. As a matter of 
example in Fig. 3 the displacement field decomposition of 
Eq. (2.3) for 1D cases is depicted. 

The corresponding strain field can be obtained by computing 
the symmetric part  of the gradient of the displacement field 
(2.3), thus leading to: 

g= (Vu) s = ~ _ . ~ +  Be(~u~@n) s (2.5) 

bounded 
unbounded 

where superscript (.)s means the symmetric part of (.) and @ 
is the surface (line in 2D cases) Dirac's delta-function along 50. 

In Eq. (2.5) the term ~, is the regular part of the strain field 
collecting gradients of the continuous functions appearing in 
Eq. (2.3), thus exhibiting, at most, bounded discontinuities. 
The unbounded character of the term @([~u~ | s emerges 
from the gradient of the Heaviside function appearing in 
Eq. (2.2). 
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Fig. 3. Kinematics: decomposition of the displacement field 

3 
Strong discontinuity analysis 
The concept of strong discontinuity analysis applies to any 
standard constitutive equation. The goal of the analysis is to 
extract the key qualitative features that make such a constitutive 
equation consistent with the appearance of strong 
discontinuities and, thus, with the unbounded strain field of 
Eq. (2.5). For this purpose the following set of requirements, 
on the stress field provided by the constitutive equation, are 
imposed: 

I) The stress field is bounded everywhere in ~.  
II) The traction vector is continuous across S at any time of 

the analysis. 
lII) The normal n at any point of the discontinuity surface g7 

is provided by the stress field at the initiation time (the 
time where the discontinuity initiates at the considered 
point). 

Justification of condition I) comes from the non-physical 
sense of unbounded stresses (even at the discontinuity path 5p, 
where the strains are unbounded according to Eq. (2.5)). 
Condition II) emerges from the equilibrium conditions across 
the discontinuity path or, more formally, from the balance laws 
(see Simo and Oliver (1994) for more details). Finally, condition 
III) establishes the material character of Y,  thus precluding 
any evolution of n beyond the initiation time. 

As a matter of example, in the next section the strong 
discontinuity analysis of a classical constitutive equation, 
belonging to the family of continuum damage models, is 
addressed. 

4 
Strong discontinuity analysis of damage models 

4.1 
An isotropic continuum damage model 
Let us consider the family of constitutive equations defined by: 

r r= (1 -- d ) C : e  (4.1.1) 

where C is the elastic constitutive tensor, a the stress tensor 
and d the scalar damage variable (0 < d < 1). The value of the 
internal variable d is given by the corresponding damage 
condition and evolution laws. After some specialization, see 
Oliver, Cervera, Oiler and Lubliner (1990), the damage variable 
evolution can be integrated in dosed form at time t leading to: 

d~=G(rt); rt= max {r0, r~} (4.1.2) 
se(-oo,  t) 

In Eq. (4.1.2) r~ is an appropriate norm of the strains described 
below, r 0 is an initial threshold value and G(.) is 
a non-decreasing scalar function such that G(ro) = O, G(oo) < 1 
and G'(/~) __> 0 V #e [ro, oo). The variable r, describes, at time 
t, the size of the elastic domain in the strain space E,  defined as: 

E~:={glz~<=rt}; r " = ~  (4.1.3) 

Under such conditions it is straightforward to check that both 
d and r always increase along time (d > 0; ? > 0). Unloading 
and elastic and neutral loading are characterized by d = 0 
whereas ct > 0 corresponds to inelastic loading. By 
specialization of the function G (.) and the norm r~ in Eqs. (4.1.3) 
different qualitative behaviours can be modelled, see Oliver, 
Cervera, Oller and Lubliner (1990). For the sake of simplicity 
it is considered here a linear strain hardening-softening law 
with symmetric tension-compression behaviour defined by: 

{l l__~t  ~ t  rKr~ 
0 1 1 

d=G(r)= 1 -  r~ <r <r .... - j f r  o (for j f  <O) 

rma x < r 

(4.1.4) 

In Eqs. (4.1.4) • plays the role of hardening-softening 
parameter, a u is the uniaxial peak stress and E is the Young 
modulus. The corresponding uniaxial stress-strain law is 
presented in Fig. 4. Observe, from Eqs. (4.1.1) and (4.1.3) 2, that 
a new norm z ~, in the stress space, could have been defined as: 

r ~ = ~ = (1 -- d ) ~ =  (1 - d)z ~ (4.1.5) 

For the purposes of this analysis the norm z~ is more suitable 
than z~, therefore in the following the model will be described 
in terms of r~, keeping in mind that both norms are related 
through Eqs. (4.1.5). Finally, the dissipation for the considered 
model can be written in a suitable form as: 

2 v t  k l  - a / -  
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Fig. 4. Damage model: uniaxial stress-strain law 

where the term d/(1  - d ) can be expressed, under loading 
conditions, as: 

For the sake of simplicity we will restrict in the following to 
the particular case 1/.Yf* = 0 (the analysis could be continued 
for the general case but no relevant insight in the problem is 
gained), so that: 

1 1 
---- c~ ~ (4.2.4) 

Equation (4.2.4) states a crucial consequence of the stress 
boundedness requirement, that is: the distributional character 
of the softening parameter 3if whose inverse has the structure 
of a delta-function with intensity 1 /~ .  Parameter ~ will be 
termed from now on the intrinsic softening parameter. 

By substitution of Eq. (4.2.4) into Eq. (4.1.7) and then into 
Eq. (4.2.2) we arrive to: 

d 1 r o 
1 - -  d - 3 ~  g; g ( a )  = 1 (4.1.7) ~(~) 

Remark 4.1.1 Observe from Eqs. (4.1.5) and (4.1.7) that if 
the stresses are bounded (and different from zero) so is g. 
Also observe that negative values of the hardening-softening 
parameter ( X  < 0 ~ strain softening) keep the stresses 
bounded for any value (even unbounded) of the strain field (see 
Fig. 4 for 1D cases). This facts will be conveniently exploited 
in next sections. 

4.2 
Condition I): Stress boundedness  
The constitutive equation (4.1.1) can be conveniently rephrased 
a s :  

d o" (4.2.1) 

and, by substitution of the strain field (2.5) into Eq. (4.2.1), 
we arrive to: 

d 
C:~ q- fio~C:(~u~c~)rl) s , :  2~,,~ _ ) (4.2.2) 

bounded bounded unbounded 

Inspection of Eq. (4.2.2) reveals that if we impose the stress 
field to be bounded, then the first term of the left-hand side is 
bounded and so is the first term of the right-hand side due 
to the bounded nature of ~ (see Eq. (2.5)). Moreover, as 
we are looking for discontinuous solutions of the problem, 
then ~u~ # 0 and, thus, the last term of Eq. (4.2.2) is 
unbounded. Finally, in order to make the whole equation have 
mathematical sense, this unbounded term has to be cancelled 
by some additional unbounded (including a delta-function 
term in Eq. (4.2.2) the only available candidate being 
d/(1  - d) .  Since inspection of this term in Eq. (4.1.7) reveals 
that g is bounded ~ (see Remark 4.1.1) the only possibility is: 

1 1 1 

unbounded regular 

(4.2.3) 

1 The case ~ = 0 also applies here since g6 can be shown to be bounded 
in this case 

s 1 
[ tr--C:g] = 3 y I C : ( ~ u ~ ) n  ) - ~ g o "  1 (4.2.5) 

- 0  on ~2\ ,~  ~ j 

In order to Eq. (4.2.5) have mathematical sense the underbraced 
terms of the left and the right hand sides have to cancel in 
the continuous ([2\~7 ~) and discontinuous (~ )  parts of ~, 
respectively. Thus, the corresponding stress fields emerge 
from Eq. (4.2.5) as: 

rre2\~ = C: ~ (4.2.6) 

y? 
tr~ = ~ C: (~u~@n)  s (4.2.7) 

Remark 4.2.1 Equation (4.2.6) states the elastic behaviour 
in the continuous part of the body (12\~) in terms of the 
corresponding strain field g. A non linear behaviour could 
have been considered by using the whole Eq. (4.2.3) instead of 
the simplified Eq. (4.2.4). 

Remark 4.2.2 Equation (4.2.7) provides a discrete non-linear 
stress-jump constitutive equation at the interface 5 ~ which 
allows the determination of the complete stress tensor, 
Cy = Cy(~u~s, n) in terms of the jump ~u~. and the normal 
n. So, unlike what is usual in constitutive equations for 
discontinuity interfaces, not only the traction vector is involved. 
Moreover, this discrete constitutive equation is consistent 
(emerges naturally from the stress boundedness requirement) 
with the original continuous constitutive equation described 
in Sect. 4.1. 

Remark 4.2.3 Observe that the arguments employed to obtain 
Eq. (4.2.7) can be reversed in the following sense: if a) the 
distributional character of the hardening-softening parameter, 
Eq. (4.2.4), is enforced (consequently the elastic behaviour 
defined by Eq. (4.2.6) is imposed in .Q\~) and b) 
strain-softening is considered for the constitutive behaviour 
at ~ ( ~  < 0), then the stresses are boundedboth in ~ \ S  ~ (since 

is bounded in Eq. (4.2.6)) and in ~9 ~ (see Remark 4.1.1). 
Therefore, Eq. (4.2.7) automatically fulfills from the imposition 
of the standard constitutive Eq. (4.1.1) through consistency 
of Eq. (4.2.5). This argument reveals crucial to avoid the 
explicit imposition of Eqs. (4.2.7), which are specific (and 



sometimes difficult to derive) of the considered constitutive 
equation, and it will be exploited in the numerical simulation of 
the problem. 

4.3 
Condition II): Traction vector continuity 
Traction vector continuity across 5 a reads2: 

and from Eqs. (4.2.6) ad (4.2.7): 

n ' C : ~  = d4~ n .C:  ( ~ u ~ |  = '---~ n. C.n.  ~ u ~  
g s  g~ 

g(0>({uL., n)) 

(4.3.1) 

(4.3.2) 

Q= = n . O n  (4.3.3) 

where Q'  is the so called elastic acoustic tensor, Willam and 
Sobh (1987). 

Remark  4.3.1 Equation (4.3.3), in view of Eq. (4.2.7), provides 
the jump [ u ~  in terms of the regular part of  the strains gy 
and the normal n. Again, it is emphasized that Eqs. (4.3.3), 
dependent on the considered type of constitutive equation, 
need not be explicitly derived for simulation purposes. 
The relevant fact, exploited below, is that the traction vector 
continuity requirement of Eq. (4.3.1) provides the set of 
equations which determines the jump. 

4.4 
Condition III): Identification of the normal 
Let us consider a material point P belonging to the discontinuity 
surface 5 p and let t o < t be the time at which the discontinuity 
initiates at P (the initiation time) characterized by: 

{u} to) = {u} ~ = o 

~fl~(xp, to) = ~fl~o # 0 (4.4.1) 

Equation (4.2.7) can be rewritten as: 

g ~ r y  = ~ C :  ( ~ u ~ |  s (4.4.2) 

and taking time derivatives in Eq. (4.4.2) we get: 

g~,. ~rao + g y  6-so = ~ C :  (I7fiJJ.r s (4.4.3) 

where the character of material surface of ~ has been 
considered (ri = 0). Equation (4.4.3) holds at any time and, 
in particular, at the initiation time to, where according to 
Eq. (4.4.1), ~u~ ~ = 0, so that from Eq. (4.4.2) 0 _ g~ - 0 and 
Eq. (4.4.3) leads to: 

gO (rOw = # C :  {{ti}~174 s (4.4.4) 

On the other hand since at the initiation time ~ u ~  -- 0 and 
goy = 0 then g~ = ~o and d o = 0 (see Eqs. (2.5) and (4.1.7), 

2 No distinction is made between the traction vector at the positive 
(.(2+) or negative (f2-) neighborhoods of .Y, which are assumed to 
be the same from the balance laws Simo and Oliver (1994). 

respectively) and finally one can write from Eq. (4.1.1): 

0 __ rr~ -- C: ,g~ (4.4.5) 

Substituting Eq. (4.4.5) into Eq. (4.4.4) we arrive to: 

~ ' ~ r  o g~  c .  C:(~fi~o | = ~ y = ~ . ~ o  (4.4.6) 

and premultiplying both sides of Eq. (4.4.6) times C-*: 

(4.4.7) 

Equation (4.4.7) provides a set of equations for the 
determination of both V-ti~ ~ and n. In particular the normal 
n can be determined by taking advantage of the structure of the 
left-hand-side of Eq. (4.4.7). In fact, pre and post multiplying 
both sides of the equation by any vector t orthogonal to 
n, the left-hand-side of Eq. (4.4.7) cancels, therefore: 

t . ( [ t i~~174 = 0  ~ t ,~o t (4.4.8) 

so that: 

t . G . t = 0  g t  I t . n = 0  (4.4.9) 

Remark 4.4.1 Equation (4.4.9) is sufficient for the 
determination of the normal n at any point of ~ in terms of 
the regular (bounded) part of the strains g~ (or in terms of the 
stresses through Eq. (4.4.5)) at the initiation time. In particular, 
for 2D cases, when the normal and tangent vectors can 
be defined by an inclination angle 0 with respect to an 
orthogonal basis el and 52 as: 

n = cos0~t + sin0d 2 
t = - sin041 + cos0~ 2 (4.4.10) 

substitution of Eq. (4.4.10) into Eq. (4.4.9) leads, after some 
straightforward computations, to the following closed form 
solution for 0: 

_ -0 1 -0 _}_ ~ (g 1 2 )2  - -  ~I1 g22 (4.4.11) 812 _ _ _  

0 = atan e 01 5e 

providing two, in general different, possible solutions for the 
normal. 

4.5 
Dissipation: The fracture energy 
Let us now consider the dissipated energy along the deformation 
process. From Eqs. (4.1.6) and (4.1.7) the dissipation can be 
written as: 

1 , o,2- r0 _.o 
(4.5.1) 

and substituting Eq. (4.2.4) into (4.5.1) we arrive to: 

= 3~ 2r~  ~ (4.5.2) 
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Let us imagine the deformation process, leading to the 
formation of the strong discontinuity at a certain material 
point of  5 z, as follows: the process starts at time t = 0 with 
(z ~ d) = (0, 0), then the stresses increase elastically (with no 
dissipation) until the initial threshold value r0 is reached at time 
to,. when (z", d) = (r 0, 0), finally a monotonic loading process 
(d va 0) is driven up to the total stress relaxation at time 
t 1 with (r~, d) = (0, 1). The local energy release, u, along the 
process can be computed from Eq. (4.5.2) as: 

q r T~ 2 
u(x) = to y ~ dt = 3 ~ ~zjt. ~g y d ('c") = -- as 2~r~ (4.5.3) 

and the spent energy in the entire body can be obtained as: 

~ = ~ u d Q = ~ - 3 s o  r~ d l 2 = ~ - 2 @ d F  (4.5.4) 
o ~ 2~'~ 

The kernel of the last integral in Eq. (4.5.4) corresponds to 
the dissipated energy per unit surface at the discontinuity 
path 5:, which can be immediately identified as the so called 
fracture energy Gp that is: 

r0 
Gf- 2j7~ (4.5.5) 

Finally, considering Eq. (4.1.4),, Eq. (4.5.5) can be solved for 
a s :  

t 0 2  2 

.fir= 2Gf=- 2GIE (4.5.6) 

which states that the intrinic softening parameter o@ is 
a material property related to the fracture energy G:, Young 
modulus E and uniaxial peak stress G. The negative value of 
ar , is also stated there. 

5 
Field equations 
The field equations governing the boundary value problem 
can be written as: 

V . o ' + f =  0 in ~ \ 5 :  

u = u* in F~ 

o'. v =  t* in F .  

rr+.n = a - . n  in  ~9 ~ 

o-y.n = r r + . n ( =  a - . n )  in 

Equation (5.1), where f corresponds to the body forces, is the 
classical equilibrium equation for the quasistatic problem. 
Equations (5.2) and (5.3) state the essential and natural 
boundary conditions, respectively (u* and t* are the prescribed 
displacement and traction vectors, respectively, and v is the 
outward normal to the external boundary ~D). Equations (5.4) 
and (5.5) state the continuity of the traction vector across 
the discontinuity surface 5C In particular, Eq. (5.4), where 
a + and a stand for the stress fields on a"2 + and s respectively, 
involves the traction vectors (~r + .n and a - . n )  at both sides 
of 5 P whereas, in Eq. (5.5) the traction vector in the 

discontinuity surface (ay.n)  is also involved. Equations (5.1) 
to (5.3) are the field equations for classical (continuous) 
problems, Eq. (5.4) is included when considering weak 
discontinuities whereas Eq. (5.5) is specific of problems 
exhibiting strong discontinuities. 

6 
Weak formulation 
Let us consider the virtual work principle stating: 

o-: Vf/dS2= ~f. f/df2 + ~ t*. f ldr  (6.1) 
o o G 

for all the admissible test functions 0 ~ ,  where 1~ ~ is the 
space of the continuous kinematically admissible variations 
defined by: 

f ' :  = {Oecg ~ OI G = 0} (6.2) 

Integration by parts of Eq. (6.1), and standard arguments, 
lead to the following Euler equations for the variational 
problem: 

V .  a + f = 0 in O \ J  

o'. v =  t* in No 

~r+.n = a - . n  in .9 ~ (6.3) 

Comparing Eq. (6.3) with the field equations we realize that 
Eqs. (5.1), (5.3) and (5.4) are satisfied in weak form by 
application of the variational principle (6.1). Therefore, besides 
the standard essential boundary conditions (5.2), only the 
traction vector continuity condition (5.5) has to be locally 
enforced at the discontinuity surface ~ .  

7 
Finite element approximation 
For the sake of simplicity we will restrict in the following to 
2D cases, although the extension to 3D cases follows quite 
naturally. 

Let us consider a finite element discretization of ~2 based 
(5.1) on linear triangular elements as shown in Fig. 5. Let us also 

consider the band of finite elements crossed by ~ ,  defining the 
(5.2) subdomain t2~, and then the lines ~ and ~ [  which are 

constituted by the sides of the elements belonging to f2 h and 
(5.3) placed ahead of and behind of S:, respectively. Each element e of 

this band has one side (defined by the nodes i~ andjo  see 
(5.4) Fig. 5b) belonging to Jh-  (or to ~ [ )  and one node ke belonging 

to : ~  (or to Sz[). Let 5:~ be the straight segment of length 
(5.5) l e approaching ~ inside the element and n e the normal 

to S:~ (assumed to point to ke). 

7.1 
Displacement and strain fields 
Motivated by the kinematic description (2.3) we assume the 
following approximation to the displacement field: 

rl d 

(x, t) ~u~h(t) 

J/~e(x) = H ~ ( x )  -- Nk~(x) (7.1.2) 
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where N(x) is the standard shape function matrix, Zienkiewicz 
and Taylor (1989), a(t) is the nodal displacements vector, 
Hs= (x) is the Heaviside function restricted to the domain S2e, 
Nk(x) is the standard linear shape function corresponding to the 
node k~ and n t is the number of elements of the finite element 
mesh. Function d/Z~ (x) defined in Eq. (7.1.2) is depicted 
in Fig. 6 Therefore, in Eqs. (7.1.1) the term N(x).a(t) matches 
the regular (smooth) part ti(x, t) of the displacement field, 
and the essential boundary conditions have to be imposed 
on the corresponding nodal values a(t) as is usual in standard 
finite element approximations. The jump function ~u~(x, t) 
is approximated in a piece-wise constant manner (over 
the elements) and %(t) plays the role of the displacement 
jump corresponding to the element e. From Eq. (7.1.1) the strain 
field is computed as the local (at elemental level) gradient of 
the displacement field: 

nel 
eh(x, t) = (Vfih) s + ~' ( V j / h  @ ~)s (7.1.3) 

r ~  h - e e = l  

"~ e n h a ~  

where, from Eq. (7.1.2): 

V./g~,  = 6 s n  ~ -- VNk, V X6,.(~ e (7.1.4) 

and @. is the Dirac's delta-function, placed on 5~, and restricted 
to the domain S2. 

Remark 7.1 The displacement and strain fields defined in 
Eqs. (7.1.1) and (7.1.3) inscribe the proposed approach in the 
method of the incompatible modes, see Simo and Rifai (1990), 

h in Eq. (7.1.1), can be then interpreted and the term J # s ~ o  
as the incompatible mode corresponding to the element e. 

It is expected that the modal amplitudes % are zero for all 
the elements except for those defining the discontinuity path 
O h (see Fig. 5a). The term (Vd//~ | ~)s can be understood as 
the enhanced strain gh, piece-wisely defined on each element 
e, enriching the regular strain field g = (Vdh) s. 

When dealing, as is usual for coding purposes, with the 
strain (~ = {G~, ~,y, 7xy}) and the stress (a = {%, %, rv}) vectors 
instead of the symmetric strain and stress tensors, the strain 
field (7.1.3) can be reformulated from Eqs. (7.1.1) and 
(7.1.4) in a cartesian (x,y) system of coordinates as: 

nel 
gh kh -}- E ~h. ~h = G, gh=B.a ;  G=G~.~e (7.1.5) 

e ~ l  

cSs. nx _ 0Nk, 
e 0X 

G~(x) = 0 

c~Nk~ 
~Sae nff (~y 

0 

@,nx _ ONk, 
O x .  

Vxeg2 e (7.1.6) 

where B is the standard deformation matrix, Zienkiewicz 
and Taylor (1989), and n x and n), are the components of n e 
(n~ = {"x, C / .  

7.2 
Discretized set of equations 
We now consider the finite element approximation to the 
weighting space ~ of Eq. (6.2) given by: 

~ h = ( O h l O h  = N . a  0hLc = 0} (7.2.1) 
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Substitution of Eq. (7.2.1) into Eq. (6.1) leads, through standard 
arguments, to the following set of equations: 

~Br: ,Thd .O= ~ nr . fd~2+ ~ Nr.t* dE  (7.2.2) 

where superscript (.)T means transposition of (.). 
Equations (7.2.2) are the discrete counterpart of the weak 
form (6.1). 

As stated in section 6 the set of Eq. (7.2.2) would have to 
be complemented by the local enforcement of the traction vector 
continuity condition (5.5). Let us consider, instead, the 
following set of equations: 

j'G~r.o"~d.f2e=0 e =  1...n~l (7.2.3) 

G~= ~5~-- ~ ;  ~ / ' =  ny 

~FIy FI x 

Substitution of Eq. (7.2.4) into Eq. (7.2.3) leads to: 

1 f 1_ ;  l+e Y~ trh" ~/" d F =  tr h. JV" d.Q e 
~ e  S2~\~ e 

average on ~+ average on ~e\~'e 

(7.2.4) 

(7.2.5) 

7.3 
Regularization via delta-sequences. Regularized softening 
parameter. Integration rule 
In the present approach we have to get round the obstacle of 
dealing with delta-functions, as the ones appearing in 
Eqs. (4.24), (7.1.6) and (7.2.4). In order to circumvent the 
difficulties inherent to perform computations involving Dirac's 
delta-functions in standard computers, we proceed to regularize 
the formulation by defining a delta-sequence, through 
a regularization parameter k, which converges to 
a delta-function when k tends to zero (in practice k can be as 
small as permitted by the machine precision). Therefore, the 
delta-function fi~+ is replaced by a regularized delta-sequence 
6~. The simplest way to construct ~ is by considering 
a finite band ~ of width k (see Fig. 7.a), from now on termed 
the elemental discontinuity band, around the elemental 
discontinuity line Y~, and defining (see Fig. 7b): 

Go(x) = f! Vx~nke 
Vx~O~\o~ (7.3.1) 

In view of Eq. (7.3.1) the softening parameter d~ of Eq. (4.2.4) 
can be replaced in the constitutive equation by the regularized 
softening parameter ~k  defined as: 

Inspection of Eqs. (7.2.5) shows that they enforce Eq. (5.5) in 
average inside the element e. Therefore Eqs. (7.2.5) enforce, 
with mesh refinement, the traction vector continuity condition. 

Vx~nk (7.3.2) 
Vxs~2e\D ~ (elastic behaviour) 

Remark 7.2.1 Use of the weak form (7.2.5) instead of the 
local form (5.5) allows to inscribe the proposed finite element 
approach in the framework of the assumed enhanced strain 
(A.E.S.) methods, Simo and Rifai (1990). The resulting 
discretized set of equations: 

BT: a h d ~  = fext 
D 

G~ * r . o  "h d-Q e = 0 e = 1...nel (7 .2 .6)  
& 

is sufficient for the determination of the set of unknowns 
a and a~. 

Remark 7.2.2 Observe that matrix G~* fulfills the following 
condition: 

S G~ d ~  = 0 (7.2.7) 
G 

as can be shown from Eq. (7.2.4). It is also possible to check, 
from inspection of Eqs. (7.1.5) and (7.1.6), that the spaces 
generated by the regular strains gh and the enhanced strains 
gh, denoted by ~h and Y 7~h respectively, are such that: 

,~h n ~ h  = ~ (7.2.8) 

Conditions (7.2.7) and (7.2.8) are sufficient to guarantee 
consistency and stability of the proposed assumed enhanced 
strain approximation, see Simo and Rifai (1990). 
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Fig. 7a-b. Regularized delta-sequence 



Remark  7.3.1 To some extent the regularization parameter 
k plays, in the present formulation, the role of the so called 
characteristic length in some continuum models for capturing 
localization phenomena, Oliver (1989), which has a direct 
dependence on the mesh size. In both cases this parameter 
affects the slope of the softening branch of the constitutive 
equation but here k does not depend on the mesh size at all. 
Equation (7.3.2) 1 shows that, when k tends to zero, the limit case 
of perfect damage (W = 0) is approached. 

Consideration of the elemental discontinuity band 
12{ suggests an specific numerical integration rule for the 
described element. Inspection of the resulting formulation in 
previous sections, in view of Eqs. (7.3.1) and (7.3.2), reveals 
that the strains (and consequently the stresses) are constant 
in both the domain I2~ and ~e\s Thus, after examining 
the set of equations to be solved (7.2.6) we conclude that only 

W 2 = kle W1 = ~e -kle 

H2 = kH Sl = 

Fig. 8. Numerical integration rule and regularized hardening-softening 
parameter 

one integration point is needed in each of those domains, whose 
weight is the corresponding area as indicated in Fig. 8. 

8 
Numerical simulations 

8.1 
Uniaxial plane-stress test 
In Fig. 9 the considered geometry and boundary conditions 
are depicted. Under the assumed plane stress conditions the 
analytical solution of the problem can be obtained: perturbation 
of the peak stress ~u at a certain material point leads to the 
formation of a strong discontinuity, along a straight line 
passing through the perturbed point. The inclination angle 
0 of the discontinuity line with respect to the x axis is given by: 

O = ~ / v  (8.1.1) 

where v stands for the Poisson's ratio. The analytical solution 
also exhibits an uniaxial and uniform stress field given by: 
cr x = a, ay = O, z v = O. In Fig. 10 numerical simulations for 

T 
Y 

if 

2 6 
" x tang 0 = V 

Fig. 9. Uniaxial tension test: definition of the problem 
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test: results with the 
structured mesh 



12 

v = 0.4 are presented. Thus, from Eq. (8.1.1), a value of 
0 = 32.21 o is expected for the inclination angle. In a first stage 
a finite element mesh with a structured band of elements defined 
by two parallel lines with this inclination is considered (see 
Fig. 10.1). The peak stress of the upper element of this band 
is slightly reduced (1%) in order to trigger the discontinuity. 
Fig. 10.2 shows the deformed mesh (amplified 100 times) 3 
which corresponds to an almost rigid body motion of the frontal 
part of the specimen. Observe that the jump is perfectly captured 
by the inclined band as is stated in Fig. 10.3 by the contours 
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Fig. 11. Uniaxial tension test: Sensitivity analysis with respect to the 
regularization parameter, k, and the finite element size, h 

of the total displacement field, which uniformly group inside 
this band. Fig. 10.4 shows the principal stress field which is 
uniaxial and perfectly uniform. 

Results in Fig. 11 are force-displacement ( f -  fi) curves at 
the end of the specimen for different values of the regularization 
parameter (k = 1.Oe-03 and k = 1.0e-09) and the width the 
structured band (h = 1.0 and h = 0.01). In both cases the 
differences are indistinguishable in the plots, so complete 
insensitivity with respect to the value of the regularization 
parameter, assumed to be small enough with respect to the 
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Fig. 13. Uniaxial tension test: force-displacement curves for the 
structured and the unstructured meshes 
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Fig. 12. Uniaxial tension test: 
results with the unstructured 
mesh 

3 For all the results presented here, postprocessing is based on the 
nodal values corresponding to the regular displacement field fih (X, t) 
(see Eq. (7.1.1)). Thus, the enriching incompatible modes are not 
considered for postprocessing purposes 

size of the element, and to the size of the finite elements 
capturing the jump (mesh size objectivity) is shown. In a second 
stage the same problem is analyzed with a completely 
unstructured finite element mesh (see Fig. 12.1). Again the 



computed deformed mesh (Fig. 12.2), contours of the total 
displacement (Fig. 12.3) and the principal stress field (Fig. 12.4) 
are presented. The results are exactly the same than in the 
previous case. The only difference is that, now, the discontinuity 
is captured by a band of elements which zig-zagges through 
the mesh. It can be checked that it is possible to place 
a straight line inside this band with the expected inclination 
angle (0 = 32.31~ 

In Fig. 13 the force-displacement curves at the end of the 
specimen are compared for the structured and the unstructured 
mesh cases. Both curves are indistinguishable in the plot, thus, 
complete insensitivity with respect to the mesh alignment 
is exhibited. 

8.2 
Mode I fracture simulation 
A more general test corresponds to a Mode I fracture simulation 
of the notched specimen depicted in Fig. 14.a, using the finite 
element mesh of Figure 14.b. The mesh is completely 
unstructured and refined around the zone where the 
discontinuity is expected to appear. Figure 15 shows the 
progression of the resulting crack for increasing times of the 
analysis. The discontinuity path can be identified by the 
contours of the displacement field, which group along the path 
of elements that capture the crack thus resulting in the dark 
paths of the figure. The crack initiates at the notch tip 

and then progresses verticaly as expected. Although the path 
of elements crossed by the discontinuity line zig-zagges 
vertically along the mesh, the discontinuity line (not plotted) 
is exactly a vertical line. 

Figure 16 shows the deformed mesh (amplified 300 times) 
at the end of the analysis and a projection of the total 
displacement along the third dimension. Observe the symmetry 
of the deformed mesh (not imposed in the analysis since the 
mesh is unsymmetric), the strong localization of the 
apparent strain along the band of finite elements capturing 
the discontinuity and the linear variation of the apparent 
jump. 

9 
Concluding remarks 
The main conclusion of the preceding work is that continuum 
approaches, based on standard (local, rate-independent, 
stress-strain) constitutive equations, can be recovered for the 
purposes of numerical simulation of strong discontinuities. 
Classical drawbacks inherent to such a type of approaches 
(mesh-size and mesh-alignment sensitivities) can be removed 
by making use of the following ingredients: 

I) The strong discontinuity analysis. It provides the 
theoretical framework in which numerical simulations 
have to be settled. In particular the following key points 
can be extracted: 
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Fig. 14a-b. Mode I fracture simulation: a geometry and loading 
b finite element mesh 

ii) 

- The distributional character of the softening parameter 
- The elastic (in general strain-hardening) behaviour 

outside the discontinuity surface. 
- The strain-softening behaviour at the discontinuity 

interface. This provides a discrete constitutive equation, 
consistent with the continuum constitutive equation. 
Although this discrete equation can be explicitely 
derived and used in a discrete approach, see Armero 
and Garikipati (1995), there is no intrinsic necessity to 
perform such a derivation, and, as shown above, the 
actual analysis can be kept in a continuum framework 
by resorting to regularization procedures. 

- The traction vector continuity condition, at the 
discontinuity surface, provides the jump. 

- The stress field, at the initiation time, provides the value 
of the normal to the discontinuity surface. 

Specific finite element approaches. Standard (continuous) 
finite elements have to be enriched to be able to capture 
discontinuities without resorting to local mesh refinement 
as, for instance in Zienkiewicz, Huang and Pastor (1995). 
In this work excellent results have been obtained, for 
2D cases, by using incompatible discontinuous modes 
enriching the regular displacement field provided by 
standard linear triangles. A relevant feature of the presented 
finite element approach is that special alignments of the 
element sides (as in Larsson Runesson and Ottosen (1993)) 
are not required here. On the other hand the approach 
can be placed in the general framework of the assumed 
enhanced strain methods, thus enjoying all the advantages 
of these methods (in particular the easiness of 
implementation). Since the support of the incompatible 
modes is the element, they can be condensed at elemental 
level, thus, not contributing to enlarge the size of the 
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Fig. 16. Mode I fracture simulation: Up) deformed mesh (amplified 
300 times) Down) 3D representation of the jump (the total displacement 
values are plotted along the third dimension) 

J 

J 

" \  (9 Fig. 15. Mode I fracture 
simulation: from 1) to 4) 
progression of the 
discontinuity path for 
increasing times of the analysis 

non l inear  discretized system to be solved. The use of 
regularized del ta-funct ions and  regularization of the 
softening parameter  has proved successful for a wide range 
of the regularization parameter  values. 
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