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A number of solutions have been obtained to describe the size distributions and average particle 
size for nucleation and reaction controlled growth of precipitates; this includes the solutions for 
constant nucleation rate, the exponential nucleation law, Kashchiev's equation and some 
m01tistep nucleation models. The increase in the average particle size is related to increase in 
maximum size. Time-dependent effects occur if nucleation is affected by an induction time or 
a decay time. 

1. I n t r o d u c t i o n  
Particle nucleation and growth is relevant for a variety 
of processes in materials science and engineering; this 
includes crystallization of oxide glasses [1-7] and 
metallic glasses [8-11]. Precipitation by nucleation 
and growth from oversaturated liquids is also a prom- 
ising technique for obtaining reactive and homogene- 
ous powders. 

The Johnson-Mehl-Avrami (JMA) theory [12-16] 
is probably the most cited model for the kinetics of 
nucleation and growth. It has been used to describe 
precipitation and decomposition of solids. The JMA 
theory describes the time dependence for fraction re- 
acted but it does not describe the average particle size 
against time and size distributions; this might be as 
important as the fraction reacted. Note that particle 
counting and Size measurements used to be tedious 
and time consuming, but this has been greatly im- 
proved by high resolution electron microscopy and by 
automatic image analysis. 

The kinetics of nucleation is often complex. The 
simplest model is a linear law for Constant nucleation 
rate, which corresponds to a very large number of 
embryos or active sites. The Kashchiev equation [17] 
includes the effect of an induction time. Consumption 
of embryos or active sites is expected to cause a de- 
crease in nucleation rate and this leads to an exponen- 
tial law. However, a number of systems do not fit any 
of these simple laws and multistep nucleation has also 
been proposed [18, 19]. Particle to particle impinge- 
ment may occur for large volume fractions of precip- 
itate and this corresponds to lower nucleation rates 
and a lower rate of transformation [20, 21]. 

Reaction controlled growth is usually described by 
constant growth rate of individual particles. However, 
high temperature observation is often nearly impos- 
sible and samples must be quenched and analysed at 
room temperature; this prevents observation of indi- 
vidual particles at firing temperatures and finding the 
laws that describe nucleation and growth must thus 
rely on the time dependencies found for particle count- 
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ing, particle size distributions and average particle 
size. This also requires reliable mathematical methods. 

2. Solut ions for nucleation and 
g rowth  

Constant nucleation rate is expected for a large num- 
ber of potential nucleation sites or embryos; this gives 
the simplest nucleation law 

N T  = kt (1) 

w h e r e  NT is the number of particles nucleated, t is time 
and k is the rate constant. This law is most likely for 
the initial stage of nucleation. However, formation of 
a stable particle also corresponds to a decrease in the 
number of embryos or potential nucleation sites, 
dNT/dt  = ( N o -  NT)/tN, where N~ is the maximum 
number of particles nucleated after a very long time 
and tN is the nucleation time. Integration gives 

NT ---= N~(1 - e - ' )  (2) 

where 

z = t/tN (3) 

In addition, a nearly linear nucleation law is often 
found only after an induction time ti; this is given by 
Kashchiev's law [17] 

N T = k t V( t / t l )  (4) 

V(~) = 1 - ~2/(6~) - 2 ~ ( - 1)"/[n2~exp(n2~)] 
n = l  

(5) 

A number of authors have also suggested solutions 
for multistep nucleation [18, 19]. These solutions a r e  

usually based on assuming that nucleation occurs by 
a series of elementary steps which can be written [18] 

dN, /d t  = k ,_ ,  N , _ ,  - k ,N ,  (6) 

for i =  1,2 . . . . .  and dNo/dt = - K o N o .  E q u a t i o n  
6 can be solved for ko = kl = k2 = . . .  and initial con- 
ditions No(0) = No, N1 (0) = N2(0) = N3(0) = . . .  = 0. 
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This yields 

Ni(t) = No/( i !)( t / tN)iexp(  - -  t/tN) (7) 

However, the kinetic constants ki may change for 
different cluster sizes and numerical methods are often 
required to obtain accurate solutions [22, 23]. An ap- 
proximate solution for small times (kit ~ 1) is [19] 

Np = kt  p (8) 

For  example, the solution NT = kt  3 describes the kin- 
etics of decomposition of BaN6 [24]. 

Equation 7 predicts that the number of particles 
may decrease with increasing time when t >> tN; this 
is arguable, except during a coarsening regime. 
However, the rate of nucleation can be written 
dNT/d t  = kpNp rather than Equation 6 on assuming 
that nuclei form on exceeding a critical size p, and 
combination with Equation 7 thus yields 

dNT/dt = (k/tN)(t/tN) pexp ( - t/tN) (9) 

where k is a kinetic constant and tN corresponds to 
a decay time. Integration yields 

p - 1  

NT/(kt~ +1) = p! - e - ' [ z  p + ~ p ( p  1 ) . . .  
j=O 

x (p -- j ) r p - 1  - j ]  (10) 

where �9 = t/tN, as previously defined for the exponen- 
tial law. 

Two alternative solutions can be used to compute 
the size distributions 

f (a , t )  = N ~  ~ (~N/~t ) / (da/d t )  ( l la)  

f (a , t )  = - [1 /UT] . (aU/aa)  ( l lb)  

where N(a,  t) is the number of particles with sizes 
equal to or larger than a. Note that N(a,  t) decreases 
with increasing particle size. 

The time dependence for average particle size can 
also be computed as 

J 
~arrl 

a~v = a f (a ,  t) da (12) 
go 

where the maximum size am is that for the oldest 
particle nucleated at time t = 0 and the minimum size 
do js for the nucleus. If the nucleation time of a particle 
is to < t its age reduces to t - to which corresponds to 
growth. For  growth controlled by interracial reaction 

a = ao + R ( t  - to) (13) 

Therefore, the number of particles N(a,  t) of sizes equal 
to or larger than a corresponds to all the particles 
nucleated before or at time to. For  example, 
N(a,  t) = Kto  for the linear nucleation law, etc. 

3. Cons tan t  nucleat ion rate 
The solutions for the number of particles of sizes equal 
or larger than a, size distribution f (a,  t), and average 
particle size a,v can be obtained on combining Equa- 
tions l, l la ,  12 and 13 

N ( a , t )  = kto = k . ( t -  a l e  + ao /e )  
(14) 

f ( a , t )  = 1 / ( R t ) =  1/(a m - - ao )  (15) 

(aa v - -  ao)/(Rt) = (aav -- ao)/(ar, -- ao) = 1/2 
(16) 

where a m = a 0 -Jv R t  (Equation 13) is the maximum 
particle size. Equation 16 shows that the rate of in- 
crease in average size is half the growth rate for the 
largest particle. 

4. Exponent ia l  nuc leat ion  law 
Combination of Equations 2, l lb ,  12 and 13 gives the 
solutions for decreasing exponential nucleation and 
growth controlled by interfaciat reaction. Details of 
the required integration are omitted for easier reading. 

N(a,  t) = No  - N o e - *  exp[(a  - ao)/(RtN)] (17) 

[(a -- ao)/RtN] exp [(a -- ao)/(RtN)] 
(am -- ao)f(a,  t) = 

exp [(am -- ao)/(RtN)] -- 1 

(18) 

(aav -- ao)/(am - a0) = 1/(1 - e -~) - 1/z (19) 

The time dependencies for the average particle size 
and for the size distributions are relatively simple. 
Fig. 1 shows that the size distribution is nearly con- 
stant for small times ~ ~ 1, as predicted by the solu- 
tion for constant nucleation rate, and becomes 
increasingly narrower for large times. 

5. K a s h c h i e v ' s  n u c l e a t i o n  l a w  
Combination of Equations 4, 5, 11b, 12 and 13 gives 
the relevant solutions when Kashchiev's equation is 
used to describe nucleation. Details of the integration 
are still more complex than for the previous cases, and 
are omitted for the sake of clarity. 

U(a , t )  = k [ t  -- (a -- ao) /R]  -- khlr2/6 

oo  

- 2kq  ~ ( -  1 ) " n - Z e x p ( -  n2z) 
n = l  

• exp[n z(a - ao) / (Rh)]  (20) 
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Figure 1 Size distributions for exponential nucleation (Equation 2) 
and reaction controlled growth. The values of z are shown in the 
figure. 
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where 

and 

(am -- ao)f(a, z) = Vt(x) /V( 'c)  (21) 

(aav -- ao)/(aro -- ao) = V2(z) /V(z)  (22) 

z = t/ t ,  = ( a m -  ao)/ (RtI)  (23) 

X = ( a  m - -  a ) / ( R t , )  (24) 

VI(~) =-- 1 + 2 ~ ( - -  1 ) "exp( - -  n2~) (25) 
n = l  

V2(~) = 1/2 - rt2/(6%) 

- -  2 ~  ( - -  1)"[1 - e x p ( - -  nZ~)] (n4~  2) 
. = 1  

(26) 

The solut ions of functions V(~), Vt(~) and Vz(~) are 
shown in Table  I, and  Fig. 2 shows the time depend- 
ence for the average particle size and  for the number  of 
particles. The corresponding asymptotic  solut ion cor- 
responds to cons tant  nuclea t ion  rate (Equat ion 16). 
Fig. 3 shows that  size dis t r ibut ions also tend to the 
corresponding solut ion for cons tant  nucleat ion rate 
(Equat ion  15). 

TABLE I Solutions for V(~), VI(~) and V2(~) 

V(~) Vl (~) V~ (~) 

0 0 0 0 
0.2 0.0000 0.0000 0.0000 
0.3 0.0002 0.0017 0.0000 
0.4 0.0016 0.0117 0~002 
0.5 0.0058 0.0361 0.0007 
0.6 0.0139 0.0749 0.0020 
0.7 0.0261 0.1248 0.0041 
0.8 0.0419 0.1814 0.0071 
0.9 0.0607 0.2409 0.0110 
1 0.0817 0.3006 0.0157 
1.2 0.1278 0.4140 0.0269 
1.4 0.1760 0.5142 0.0400 
1.6 0.2238 0.5995 0.0541 
1.8 0.2696 0.6709 0.0687 
2 0.3128 0.7300 0.0834 
2.5 0.4077 0.8359 0.1188 
3 0.4849 0.9004 0.1511 
3.5 0.5473 0.9396 0.1797 
4 0.5979 0.9634 0.2049 
5 0.6737 0.9865 0.2462 
6 0.7267 0.9950 0.2783 
8 0.7945 0.9993 0.3240 

10 0.8355 0.9999 0.3544 
12 0.8629 1.0000 0.3761 
15 0.8903 1.0000 0.3988 
20 0.9178 1.0000 0.4225 
25 0.9342 1.0000 0.4372 
30 0.9452 1.0000 0.4473 
40 0.9589 1.0000 0.4601 
60 0.9726 1.0000 0.4731 
80 0.9794 1.0000 0.4797 

100 0.9836 1.0000 0.4837 
150 0.9890 1.0000 0.4891 
200 0.9918 1.0000 0.4918 
300 0.9945 1.0000 0.4945 
500 0.9967 1.0000 0.4967 

1000 0.9984 1.0000 0.4984 

0.5 8 

0.4 //,/i///////// 6 
~ ;  s  

'~ 4 Z  ~ 

~ 0.2 / "  
/ , r  

/ II 2 
0.1 

O . O r  4 / I I . I 0 
-0  2 4 6 8 

t/t~ 
Figure 2 Time dependencies for the average particle size when 
nucleation is given by Kashchiev's law (Equation 4) and reac- 
tion controlled growth. The dashed line represents the number of 
particles. 
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Figure 3 Size distributions for Kashchiev's nucleation law and reac- 
tion controlled growth. The numbers show the values of t/ti. 

6. Multistep nucleation 
Equat ions  8, l l b ,  12 and  13 also give relatively simple 
solutions for mult is tep nucleat ion 

N ( a , t )  = k t~  

= k( t  + a o / R  --  a / a )  p (27) 

(am -- ao ) f (a , t )  = p[(am -- a)/(am --  ao)] p-1 

(28) 

(aav - ao)/(am - a0) = 1/(p + 1) (29) 

Complex alternative solutions are obta ined on as- 
suming consumpt ion  of first order embryos and  irre- 
versible change from order p to p + 1 (Equat ion 9 or 
10). F r o m  Equat ions  9 and  13 

( ~ N / ~ t )  = k2 ( t  q- a o / R  --  a / R )  p 

• exp [(a -- ao) / (RtN)  -- x)] (30) " 

In  addit ion,  combina t ion  of Equat ions  10, 1 la, 13 and  

6 7 1 7  
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Figure 4 Average particle size for multistep nucleation (Equations 
9 and 10) and reaction controlled growth. The numbers  are the 
values of p. Alternative representations are shown to demonstrate  
the asymptotic solutions for short  times (dashed lines) and for 
longer times (full lines). 

30 gives the size distribution 

(a m - -  ao)f(a,'c) = [ ( a m  - -  a ) / ( R t N ) ]  p+I  

x exp [ ( a  m - -  a ) /  

(Rtr~) ]/M(p, z) (31) 
p - 1  

M(p,z) = p! -- e - ' [ z  ~'+ Z P ( P -  1 ) . . .  
j = 0  

• (p - j)x e - l - J ]  (32) 

where z = t / t~ = (am - ao)/(Rt~). Note that Equa- 
tion 32 is the same as Equation 10. The average 
particle can also be obtained on combining Equations 
12 and 31. Integration yields 

(a,v -- ao)/(am -- ao) = 1 -- M(p  + 1,r)/['c M(p, ~)] 

(33) 

The limiting solutions for small and for large times are 

(aav - -  ao) / (am - -  ao) = 1/(p + 2) for t ~ tN 

(34) 

(a.v -- ao)/(am -- ao) = 1 -- (p + 1)/z for t >> t N 

(35) 

Fig. 4 shows some typical results for this multistep 
nucleation mechanism. The limiting trend for large 
times (Equation 35),is nearly accurate for t > 1.4 
(p + 1)tr~ and the predictions for short times converge 
to Equation 34 for t < ty/2. Fig. 5 also shows the 
evolution towards typical size distributions for longer 
times. 

7. Conclusions 
The dynamics of nucleation and reaction controlled 
growth of disperse particles has been examined. The 
time dependence for the average particle size is usually 
a simple solution, for several nucleation laws. The 
simplest cases give similar time dependence for growth 
of the largest particles and for the average particle size, 
except for a time-independent factor. This is possible 
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Figure 5 Particle size distribution for multistep nucleation (Equa- 
tions 9 and 10) and reaction controlled growth. The numbers  are the 
values of v = t/tN. 

for constant nucleation rate and for simple multistep 
nucleation laws. Analytical solutions have been de- 
rived for time-dependent effects when nucleation is 
given by the exponential law, Kashchiev's law or 
a multistep nucleation law with a decay factor. 
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