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Summary. Previous results in the theory of large deviations for additive 
functionals of a diffusion process on a compact manifold M are extended 
and then applied to the analysis of the Lyapunov exponents of a stochastic 
flow of diffeomorphisms of M. An approximation argument relates these 
results to the behavior near the diagonal A in M 2 of the associated two 
point motion. Finally it is shown, under appropriate non-degeneracy condi- 
tions, that the two-point motion is ergodic on M 2 -  A if the top Lyapunov 
exponent is positive. 

Introduction 

Let M be a connected, compact C ~ manifold of dimension N and consider 
a diffusion {xt : t>0}  on M which is governed by the Statonovich stochastic 
differential equation 

d 

(0.1) dxt= ~ Xk(xt)odOk(t)+ Xo(xt)dt, 
k=l 

where X o . . . .  , X d are C~ fields on M and {(01 (t), ..., 0d(t))} is a standard 
IRa-valued Brownian motion. In particular, because the differentials are taken 
in the sense of Stratonovich, note that the associated generator is 

d 

(0.2) L = �89 Z X~ + X0. 
k=l  

Denote by {A t : t>0}  a (possibly Banach space-valued) additive functional 
of {xt : t >= 0}. Section 1 contains various general results about the large deviations 
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of --At as t ~ oo. As soon as these generalities are established they are applied 
t 

to two important  cases. The first of these is the case when --At is the M~ (M)-valued 
t 

(M 1 (M) denotes the space of probability measures on M) process given by 

(0.3) At= i 6xs ds, 
0 

where 6~ denotes the unit (Dirac) mass at xeM. In particular, when L is suffi- 
ciently non-degenerate that {x~: t >0} is ergodic with a stationary measure 

rnL~M 1 (M), the ergodie theorem predicts that ~at =~ rnL and the goal is to describe 
A 

t 

the rate at which large deviations of --At from mL occur. This is the case studied 
t 

originally by Donsker and Varadhan in [-11]. The second case is the one most 
immediately related to the other topics in this article. In this case At = Yt where 

d t t 

(0.4) Yt = ~ S Yk(X~)~ ~ Yo(xs)ds, 
k = l O  0 

for a given set {Y0, ..., Yd} ~-C~ IR~). Such a situation was discussed earlier 
in [21] in connection with the rate at which the solution {zt : t>0}  to a linear 
stochastic differential equation in IR N+ 1 implodes or explodes. In that setting, 

zt Iz, I 
M = S N, xt = ~ ,  and Yt = log - -  

Iz01" 
The main general large deviation result in Sect. 1 is Theorem 1.7. This theo- 

rem is stated in such a way that it covers both the above cases. Moreover, 
it contains one significant technical improvement over the results in [11], [20], 
and [21]. Namely, those earlier results demanded that the transition function 
for {xt: t>0}  be ~ related to m L whereas Theorem 1.7 only requires 
that an appropriate time-average of the transition function enjoy that property. 
In particular, it covers the situations when the set {X0 . . . .  , Xa} satisfies 
H6rmander 's  condition (i.e. it generates T~(M) at every xeM) and the controlla- 
bility hypothesis explained in Corollary 1.6. The major technical difficulties 
involved are dealt with in Theorem 1.5 and its Corollary 1.6, both of which 
seem to be new. Once these difficulties have been overcome, the proofs of Theo- 
rem 1.7 and Corollary 1.i0 follows the same pattern as the arguments given 
in [-20] and [21]. 

The first special case (the one when At is given in (0.3)) is treated in Corol- 
lary 1.11. The formula found for the rate function (denoted here by d instead 
of the more usual I) in terms of L is the same as the expression given in [11]. 
The second case (when At=yt and y, is the quantity in (0.4)) is the focus of 
Corollary 1.12. Initially the corresponding rate function (this one is denoted 
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by I) is identified as the Legendre transform (or convex conjugate) of the logarith- 
mic generating function A : IR ~ --* IR defined by 

(0.5) A(q)= lim _1 log(E[exp[(rh Yt)e.~]]) ' q~NY. 
t --+ OO t 

(The existence of this limit is part of the content of Corollary 1.12.) Subsequently, 
the Cameron-Martin-Girsanov transformation is used to find an alternative 
expression for I (cf. (1.17)). Although from the standpoint of large deviation 
theory it is the rate function I which is of paramount interest, it is the logarithmic 
generating function A which is most important for the analysis of Lyapunov 
exponents. To see this, recall the example discussed following (0.4) and note 
the obvious connection in this example between A and the stability properties 
of the original process {z t : t > 0}. Indeed, one sees that A is here what is called 
the moment Lyapunov function; and it is considerations of this sort which connect 
Sect. 1 with the other sections of this paper. 

In addition to what has already been said, there is one more technical 
advance contained in Sect. 1. Namely, in the case when the vector fields 
X 1 . . . .  , X d themselves (i.e. without Xo) generate the tangent space at each point 

d 

and Xo = ~ C~k Xk for some {ek}~----C~176 IR), then considerable improvement 
k = l  

can be made in the expressions for the rate function I and the logarithmic 
moment generating function A. These improved expressions appear in Theo- 
rem 1.25 and enable one to obtain what appears to be a new formula for the 
quadratic growth rate of A(q) as ]q I--+ oo. In an attempt not to encumber the 
presentation with somewhat unrelated details, most of the preparations for the 
proof of Theorem 1.25 have been put in the Appendix (where Theorem A.8 
may be of some independent interest). 

Turning to the contents in Sect. 2, denote by {it: t>0} the stochastic flow 
of diffeomorphisms determined by the vector fields X o . . . . .  X d through the sto- 
chastic differential equation (0.1). Thus, for each x eM,  {~t(x): t > 0} coincides 
almost surely with the solution {xt: t >  0} to (0.1) with initial condition x o =x .  
Next, denote by D ~t the derivative of this flow of (random) diffeomorphisms: 

D ~t(x): Tx(M) ~ Tr 

After giving M a Riemannian structure, it is shown that tel-0, ~)~-~ 
det(D~t(x))~lR fits into the framework of Corollary 1.12; and the associated 
A is interpreted as a measure of the extent to which the diffeomorphisms it 
fail to be measure-preserving. (See, in particular, Corollary 2.14, especially part 
ii).) In order to make a similar analysis of tElRv--~lD~t(x)(v)]~(O, co) for a fixed 
vETx(M)\{0}, it is necessary (just as in the example following (0.4)) to move 
to the associated sphere bundle SM. To be precise, let t~[O,~)~--~t(v)~SM 
be defined so that ~'~(v) is the element of SMr obtained by normalizing 
D~t(x)(v). Theorem 2.15 says that (under suitable non-degeneracy assumptions 
about the vector fields on SM determining the flow ~',) once again Corollary 1.12 
applies and yields information about the long time behavior of 
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log lD ~(x)(v)l. In particular, by analogy with the example following (0.4), the 
corresponding logarithmic generating function ~ is again called the moment 
Lyapunov function; and, as is explained in iv) of Corollary 2.14, it measures 
the failure of the diffeomorphisms ~ to be isometric. In addition, both A and 

are intimately connected with the Lyapunov exponents 21>. . .  >2N of it- 
Two of these connections are made explicit in (2.11) and (2.12). The remainder 
of Sect. 2 contains some comparisons of A to A and geometric interpretations 
of certain degenerate behavior of these functions (cf. Corollary 2.14 and Theo- 
rem 2.15). 

Because the analysis of Lyapunov exponents is based entirely on linearization 
of the equations governing the flow under consideration, it is not immediately 
clear to what extent predictions based on such an analysis can be relied on 
to give reliable information about the true behavior of the flow. Sections 3 
and 4 are devoted to an examination of this problem. Thus, the two-point motion 
(it(x), ~t(Y)) (x+y) is introduced. The state space for this process is the open 
IVI~MZ\A, where A is the diagonal in M 2. The ability of this process to stay 
on ~ can be seen as a consequence of the degeneration of its generator /~2) 
(cf. (3.3)) at A ; and it is the nature of this degeneracy which determines whether 
the two-point motion (as a process on 2~) is transient. The principle behind 
the analysis given in Sect. 3 is based on the idea that, as one moves toward 
A, properties of the two-point motion are increasingly accurately reflected by 
properties of D~t(x)(v) for small Ivl. In particular, near A, the generator TL 
of D~(x)(v) ought to be comparable to /j2) and should act as a source of 
comparison functions. The comparison functions produced in Theorem 3.18 
should be viewed as examples of this line of reasoning. (The proximity of TL 
to/~2) is clearest when one parametrizes a neighborhood of A in a polar coordi- 
nate system (r, 0)e(0, 6)x SM; and it is for this reason that polar coordinates 
are introduced.) 

Once the test functions in Theorem 3.18 have been constructed, their applica- 
tion to questions about the behavior of the two-point process is quite standard: 
they are used to find sub- and supermartingales with which to estimate the 
probability that, having gotten into a neighborhood of A, the two-point process 
will ever leave that neighborhood. Theorem 3.19 is devoted to the case in which 
the top Lyapunov exponent 21 is strictly positive; and what is shown is that 
the two-point motion in this case will, with probability one, exit a small neigh- 
borhood of A without ever touching A. In fact, rather precise estimates on 
the time spent in such a neighborhood are obtained. As a consequence of these 
considerations, one knows, of course, that the two-point motion is non-transient 
when 21 >0. This same conclusion can be drawn from the results in a recent 
paper by Ledrappier and Young [18]; although their technique does not yield 
the quantitative information contained in Theorem 3.19. The case when 21 <0 
is not treated in this article since it has been already handled (by quite different 
techniques) in [7]. 

Finally, in Sect. 4 the results obtained in Sect. 3 about the two-point process 
near A are used to show that, under suitable non-degeneracy conditions, the 
two-point process is positively recurrent on ~ if 21 >0. In fact, quite precise 
estimates are found for the mass assigned by the (unique) stationary measure 
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to neighborhoods of A (cf. Theorem 4.6). Like the results in Sect. 3, a pleasing 
aspect of the results in Sect. 4 is that they not only confirm qualitative predictions 
based on the Lyapunov exponents but show how one can extract quantitative 
information from a knowledge of the functions A and A. 

1. Some Large Deviation Results 

Let V o . . . .  , V~ be elements of Cff)(~-~N'~ R N) and define V~ for 
=(~1 . . . .  ,e~)e{0, . . . ,d}  ~ so that V~=Vk if e=(k)  and V~=[Vk, VB] if l>2 ,  fl 
=(cq,  ..., cq_0, and ez=k. Assume that there exist an l eZ  + and an e > 0  such 
that 
(1.1) ~ (V~, ~)~_-_e]~] 2 q~S N-'  

I~l_-<l 

Set Y 2 = O ~ = C ( [ 0 ,  oQ); IR N) and for each x~lR N denote by Qx the probability 
d 

measure on (f2, ~ )  which solves the martingale problem for 1 /2~  Vk 2 + Vo start- 
1 

ing from x. Then {Qx: x~lR N} is a Feller continuous strong Markov family. 
Next, for c e C~ ~ (IRN), define 

Given a function OsC~([O, oo)), define 

Q~(x, F)= ; O(t) QC(t, x, F) dt 
0 

for x ~  N and F e ~ .  

(1.2) Theorem. Let O~C~~ oo)) and ceC~(P,. N) be given, and define Q~(x, .) 
accordingly. Then, for each x6lR N, QC~(x, ") is absolutely continuous and there 
is a q~(x, ")~C~(IRN\{x}) such that QC~(x, dy)=q~(x, y)dy. Moreover, for each 
n>_O there is an M,6(O, ~), which depends only on the Vk'S and c, such that 

(1.3) 

m=o (o , )  (tA1) M" 

0 < r < l .  

Set p(y)--(2 + sin(y)) for y ~ R  1, and, for z = [y]~ lR  u x p, 1, set Proof 
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Let ~K denote (d + 1)-dimensional Wiener measure on 

O={OeC([O, oo); IR d+ 1): 0(0)= 0 and ,-.colim 10(t)ll+t =0};  

and let Z: [0, oo)xlRN+l x O--*IR N+I be a measurable map such that: i) for 

each z e R  ~+1, (t, 0)--* Z(t, z, o)=lX(t'z'O)[-- is a right-continuous progressively 
measurable solution to k 3 Y ( t ,  z, O) 

d + l  T T 

Z(T,x)=z+ ~" ~ Wk(Z(t,x)lodOk(t)+ I Wo(Z(t,x))dt T>O; 
k = 1 0  0 

and ii) (t, z)~Z(t ,  z, O) is an element of C~176176 oo)xlRN+l; IR N+I) for r162 
almost every 0. Set 

t 

R(t, z, 0)= .[ p(Y(s, z, 0)) ds 
0 

and observe that if z=[~] then 

Q~ c(X(g-~(s,z),z)ds),X(g-t(t,z),z)er]. 
Hence, 

co 

c X 

where g(0 = p(t/)c(~) for(  =[~[elRN x R t. 

Notice that, because of (1.1), 

d + i  

Y~ (~(z),~)g.,,+~+ y~ (W~(z),rt)~.,~+~__>~l~l 2, z e R  N§ and t/eS N+I 
k = l  2 < l a l < / v 4  

Hence (cf. [17], (3.4)), for each pe I-1, oo), the Malliavin covariance matrix 

A(t, z)= ((Z(t, z), Z(t, z))) 
of Z(t, z) satisfies 

II1/detA(t,z)llp<Ap/t v, (t, z)e(0, 1] x R  N+I, 

where Ap<oo and v~(0, oo) depend only on the Vk'S. Moreover, using (2.6) 
in [17], one sees that if Ap(z)= I11/det(A(1, z))]l Lp(~r) then 

I I 1/det (A (t + 1, z))ll Lp <,r < g ~ 1-Ap ( Z  (t, z)) p] 1/p <= Ap. 
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Thus, 
[I 1/det (A (t, z))l[ L, (,) < Ap/(t A 1) ~, (t, z)e(O, oo) x 1R N+ ~. 

Applying the integration by parts formula in Theorem (1.20) of [16], we conclude 
that for every tie.A/~N there is a measurable 7"~: (0, co)xlRU+t x O-~IR a such 
that for all qS~C~~ N) and (t, z)~(0, oe) xlR N+I 

and 

E~[O(R(t,z))p(Y(t,z)) exp( i g(Z(s,z))ds)(O ~ (o)(X(t,z))] 

= E ~ [ % (t, z)) ~ ( x  (t, z))] 

~A eM, t Ir 
II~e(t,z)llL,(,) < 1)~, Y, E~Elo(m)(R(t,z))14] ~/4 

m = O  

for some M~ < oo depending only on the Vk's and c. Combining the preceding 
with standard estimates for ~K(X(t, z)r r)), one quickly arrives at the 
required estimates in (1.3). [] 

(1.4) Corollary. Given an open set G in IR ~v, set z= in f{ t>0 :  x(t)(~G} and define 

Qo(t, x, F ) -  O(t) exp) ~ c(x(s)) d Zr(X(t)) d 
o 

for (t, x)e[0, oo)xlR N and F e ~ [ G  3. Then Q;(x, dy)=O;(x, y)dy where 
O~oeC~~ In fact, for each n>O there exists an M,<  oe, which depends 
only on the Vk's and c, such that 

Mn eMn T 
rlq;(x, . ) -O;(x ,  .)rlc~ < r~,~ If~'llc,(to,~> 

for xeG and O<r<diam(G)/2, where T = s u p { t > 0 :  0(t)+0} and G(r)={yeG: 
dist (y, G c) > r}. 

Proof Note that 

Q~ (x, V)-OCo(x, r )= EQxlexp ( i  c(x(s))ds) Q~o~(x(z), V), z N T ], 

where O~(') = ~P (z +.) .  Thus 

^ c  c qCO(x,y)--qO(x,y)=EQ= exp c(x(s))d qq,,(x(z),y),'c<= . 
L \ 0  

The required estimate follows from this and Theorem 1.2 above. [] 

(1.5) Theorem. Let M be a compact N-dimensional manifold and let m be a 
smooth probability measure on M (i.e. at every point there is a coordinate chart 
in which m(dz) =/~(x) dx 1 A .../x dxN where # is a smooth positive function). Sup- 
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pose that {Xo, ..., Xa} ~ F(TM) (the smooth vector fields on M) has the property 
that Lie(Xo . . . . .  Xn)(x)=T~M for all x6M. Given an x~M, denote by P~ the 

d 

solution on f2=f2 M to the martingale problem for L= 1 /2~  X2k + Xo starting at 
1 

x and define P(t, x, F)=P~(x(t)~F). Given ~C~((O, ~)), define 

Pq,(x, F)= ~ ~k(t) P(t, x, F) dt, x6M and FeNM. 
0 

Then Po(x, dy)=pe,(x , y) m(dy) where po~C~(M x M). 

Proof Let L* denote the formal adjoint of L with respect to m. Then L* 
d d 

= 1/2 E X~ + Y+ c where Y= - X o + E bk Xk for some choice of bk'S and c from 
1 1 

C~176 In particular, Lie(Y, X1, ..., Xd)=TM.  Moreover, if Pr* on I2 is the 
d 

solution to the martingale problem for 1/2y'  X~ + Ystarting from y~M and 
i 

P~, (y, F)= EP*,[~ t~(t) exp ( i c(x(s)) ds) Zr(X(t)) dt}, 

then for all q51 and ~bzeC~(M) 

I qS~ (x) (~ ~b 2 (Y) Po (x, d y)) m (d x) = ~ q~x (Y)(~ qS~ (x) P~ (y, d x)) m (d y). 

With the preceding remarks in mind, one sees that it is enough to check 
that for any c e C ~ (M) the measures 

t 

satisfy P~.(x, dy)=p~(x, y)dy with p~(x, ")eCoo(M) and sup ]lp~(x, ")llc-(M)< oo 
for each n >= 0. x~M 

To this end, let (W,, h) be a coordinate patch for M and choose open U1 
and U 2 so that /JI~U2 and (72~W. Next, define a o = i n f { t > 0 :  x(t)~U1} and 
use induction to define z , = i n f { t > a , '  x(t)r for n > 0  and a , = i n f { t > ~ , _ l "  
x(t)~ (71} for n_> 1. Then, for xeM and F~CCv~, 

c _ exp P; (x, r )  - y~ E "x c (x (s)) d ^c P~. (x(a.), e), a.<_ 
n = O  

where T = s u p { t > O :  O(t)q=O} and 

t 
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for s > 0  and yeW. Now choose {Vo . . . .  , V~}___C~(IRN; IR N) so that (1.1) holds 
and h.  Xk = Vk on a neighborhood of/22. Then, for ye  Wand FeMv,  

=Qo~ ( (y) ,h ( r ) )  

where (~oh-~(y, .) is defined relative to the Vk's. Hence, because there is an 
M < oe such that 

Px(~,<= T)< M e  -"~tais'(rj~'(v2)c), n>-O, 

Corollary 1.4 allows us to reach the required conclusions. [] 

(1.6) Corollary. Let M, m and {Xo . . . .  , Xe} be as they were in Theorem 1.5. 
Given ueC([0, oe); IR d) and x e M ,  denote by (b(., x; u) the curve which satisfies 
~b (0, x; u) = x and 

d 

�9 ( t , x ;u )=~u k ( t )Xk (4 ) ( t , x ;u ) )+X o(~ ( t , x ;u ) ) ,  t>=O. 
l 

Assume that, for each x ~ M ,  {~(t, x; u): t>O and ueC([0, oo); lRd)} isdense 
in M. Then there is a O~C~((O, oo)) + with ~ O ( t ) d t = l  for which the corre- 

(0, o~) 

sponding Po is a uniformly positive element of C ~ ( M  x M). In particular, there 
is a unique probability measure #=mL on M such that # is P(t, x, ")-invariant 
(i.e. # =  ~ P(t, x, ")#(dx)  for all t>0). Moreover, mr (dx )=#L(x )m(dx )  where 

M 

#L is a uniformly positive element of C ~~ (M). Finally, if f e  C ~ (M) and ~ fdmL = O, 
M 

then there is a unique U=UzeC| with the properties that L u = - f  and 
udmL=O. In fact, there is a K <  Go such that Ilusll < K  I[flI- 

M 

Proof Let q~leC~((0, oe)) + satisfying ~ Oa( t )d t=l  be given. Then 
Pole C ~ (M x M) +. Moreover, (o. ~) 

oo 

where {Py*: yeM} and c are as in the proof of Theorem (1.5) and T1 = sup { t>0:  
~,(t)4=0}. Hence, there is an ~>0 and an r > 0  such that, for each x e M ,  there 
is a y e M  for which pol(x, ")>e on B(y, r). (Here we have used B(y, R) to 
denote the ball of radius r with center y relative to some compatible metric 
on M.) Next note that, under the stated hypotheses, for every pair x and y 

T 

from M, there is a T>O such that ~ P(t, x, B(y, r/2))dt>O. Hence, if n > l  
o 

and Yl, --., y, e M  are chosen so that M =  ~) B(yl, r/2), then for each x e M  there 
1 
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T(x)  T 

is a T (x )>0  for which mAn S P(t, x, B(y i, r/2)) dt>O. Since xF--~ mAn S P(t, 
l <_iNn l <_i<_n 

0 0 

x, B(y~, r/2))dt is lower semi-continuous for each T>O, it follows that there 
T 

is a T > 0  and an q > 0  such that man ~ P(t, x, B(yl, r/2))dt>=~ for all x~M. 
l <-i<-n 0 

T 

But this means that ~ P(t, x, B(y, r))dt>q for all x, yeM, from which it follows 
0 

T + I  

that ~ P(t, x, B(y, r))dt>r I. Now choose 02eC~~ oe)) + with 
1 

02 (t) d t= 1 so that 02 (t)> 1/2 T for t e [1, T+  1]. Then Po2 (x, B (y, r))> t//2 r 
(0, co) 

for all x, y~.M. Finally, set 0 = 0 1  *02, and note that p,~(x, y)=~po,~(~, y)P~2(x, 
d~)>=e.~I/2Tfor all x, y~M. 

Turning to the existence and uniqueness of a P(t, x, ")-invariant /~, first 
observe that (because M is compact) existence is automatic. To prove the unique- 
ness, note that if # is P (t, x, .)-invariant, then # = ~ Pq, (x, -)# (d x) and so 

(d y) = (~ Pc (x, y) ~ (d x)) m (d y). 

From this the existence of the uniformly positive density for # is immediate; 
and therefore it is also clear that only one such # can exist. 

To prove the existence and asserted properties of uf for f~C~176 with 
0 2 

f fd  mL = 0, set ]U = S 1 x M and consider the operator L = 1/2 ~ + p (0) L, where 

d + l  

p(O)=2+sin(O), on C~~ It is then easy to check that L =  ~ )~2 +37 o where 
k = l  

the Xk'S are vector fields on )~ for which the hypotheses of the present theorem 
hold. Let P(t, (0, x), .) be the transition probability function for the diffusion 
on ~t  determined by L and define rilL(dO x dx)= 2(d0) x mL(dx) where 2 denotes 
the normalized rotationaUy invariant measure on S 1. A simple computation 
shows that ~ Lj~drhL=0 for all jreC~ and from this it is a relatively easy 

& 
matter to conclude that r~ L is the unique P(t, (0, x), .)-invariant probability 

M. In addition, since L i e ( ~ + J ~ o ,  X i , . . . , X d + l ) ( t  , 0, X) measure o n  

~T~,,0,~)(R 1 x ~ )  for each (t, 0, x )eN?  x)~ ,  H6rmander 's  theorem says that 
P(t, (0, x), drlxdy)=p(t ,  (0, x), (rl, y) )dt lxdy where /3eC~176 o o ) x M x ) ~ ) .  
Hence, by Doeblin's Theorem, [I P(t, (0, x), -)--rh L II vat < A e-~t for all (t, 0, x)e(0, 
oe) x M and some A <  o0 and c~e(0, oe). In particular, if 

then II~yll<Kllyll where K=A/~.  Also, it is easy to check that L G f = - - ( f  
--SjTdrfiL) in the sense of distributions; and therefore, because L is hypoelliptic, 
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GjTEC~ and is a strong solution to this equation. At the same time, it is 
clear that if ~ C  ~ (M) and Eft=0,  then fi = ~  drfi L. 

Now suppose that f eC~~ with ~fdmL=O is given, and set f (0 ,  
x) = p (O)f(x). Then ~ = G~ is the unique element of C ~~ (/~) which satisfies LO = 
- ) "  and ~ drfi L =0. Hence the function 

U =  

p(O) .) 2(dO)- p(O) x) mL(dO • dx) 
S~ K~I 

p (0) 2 (d 0) 
S 1 

is an element of C ~ (M) which satisfies Lu = - f  and ~ u dmL=O. Furthermore, 
~t 

by lifting to ]~, it is easy to see that u is uniquely determined by these properties; 
and clearly I[u]l<K[lf]l. []  

Let M and {P~: x 6 M }  be as in the preceding. The next result refers to 
the following quantities and hypotheses. 

(1) (B, ][. ]IB) is a separable (real) Banach space and cg__B is a convex set 
on which there is a complete metric p satisfying P(Y1, Y2)~ [I Y1-  Y2llB for all 
I71,112 ~cg and for which p-balls are convex. 

(2) (E, i f )  is a measurable space and { 4 :  t>0}  is a non-decreasing family 
of sub-a-algebras of f t .  

(3) X: [0, ~ )  x E ~ M and A :[0, o0) x E ~ B are {~}-progressively measur- 
able functions with the properties that for ~6E: A(0, 4)=0, A( ' ,  4) and X( . ,  
4) are continuous and A(t, ~ ) / t ~  for t6(0, ~) .  

(4) {Rx: x 6 M }  is a measurable family of probability measures on (E, i f )  
such that for every x ~ m :  P~=RxoX(.)  -1 and R x ( A ( t + s ) - A ( s ) 6 A [ ~ ) =  
Rx(~)(A(t)6A) for all s, t6(0, ~ )  and A6~B. 

(5) For  every 6 > 0 and T >  0" 

1 
lim -- log sup R~([lA(s)llB/t>fi)= - ~ .  
t ~ o o  t x E M ,  se[O,T] 

(6) For  every L > 0 there is a p-compact subset KL in cg such that 

lim 1 log sup R x (A (t)/t (E KL) < -- L. 
t ~ o ~  t x E M  

(1.7) Theorem. Under the hypotheses in Corollary 1.6, there is a unique function 
I: B ~ [0, ~ ) w  {~}  with the properties that 

(1) I is a p-lower semicontinuous function whose level sets {YeB: I(Y)<=L}, 
L~[0, ~ )  are p-compact subsets of cg ; 

(2) for every p-closed set F ~_ c~, 

lim _1 log sup R~ (A (t)/t ~ F) <= - inf I; 
t ~  t xEM F 
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(3) for every p-open set F ~cg 

lim _1 log inf Rx(A(t)/tsF)>__-infI. 
= = =  
t ~ c ~  t x e M  F 

In particular, if ~b: cg ~ 1  is continuous and 

sup sup (E Rx [exp [(1 + e) tq~(A(t)/t)]])l/t< o0 
t>= 1 x e M  

for some e > O, then 

(1.8) ,lira-, ~o ~MSUp it log E Rx [exp [t~(A(t)/t)]] - SUPc~e (cb(C)- I(C)) = O. 

Proof Following the scheme used in Sect. 6 of [20] (cf. in particular, the proof 
of Theorem 6.9 on p. 128), set 

l ( Y ' 5 ) = - l i m  l l~ t [xeMRx(A(t) ~kB~ t yecg and 6>0,  

and 

I(Y)=sup{l(Y, 5): 5>0}, YeCg, 
where Bp(Y, 5) is the p-ball in (g of radius 5 with center at Y. The derivation 
of (1), (2), and (3) with this choice of I differs negligibly from the proofs of 
Theorem 6.9 [20, p. 128] and [21] Theorem 1.7, p. 843] once it is shown that 
for every 6 > 0 there exist a K e [0, oo) and a fi6: (0, oo)--, (0, oo) such that 

lim _1 log(rio(t))= _ oo 
t --* OO t 

and, for every measurable F_~ cg, 

To prove (1.9), choose r as in Corollary (1.6) and define Po accordingly. 
Then there is a C<oo such that pq,(x, .)<=Cp~,(y, .) for all x, yeM. Set T 
=sup{ t>0"  0(t)+0} and, for given te[0. oo) and 6>0,  define 

~(t, 6)=sup sup Rx(]]A(s)I]B~5). 
x e M  so[O, T] \ t 
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Then, for (s, x)~[O, T] x M: 

R~(A(t)/tEF)<R~(p(A(t+s)-t--A(s),F)<6/2 ) 

Recalling that p(Y,, Y2)< II gl-YNIIB, we see that, for any (t, x, y)~(O, T] x M 
x M :  

R. (A (t)/t ~ F) < ~ ~ (s) E R* [R x(~)(p (A (t)/t, F) < 6/2)] d s + 2 a (t, ~/4) 
(0,~) 

= ~po (x, tl) R. (p (A (t)/t, F) < 5/2) m (dl/) + 2 ~ (t, 6/4) 

< C ~ P4. (Y, tl) R, (p (A (t)/t, F) < 6/2) m (d t/) + 2 a (t, 6/4) 

<C ~ t~(s)ER~[Rx(~)(p(A(t)/t,F)<5/2)] ds+2a(t, 5/4). 
(0, ac) 

At the same time 

(0, ~) 
(s) E R~ (Rx(.)(p (A (t)/t, F) < 6/2)] d s 

=(o.S) ~(s) Ry(p(-A(t + s~-- A(s),F)<6/2)ds 

Ry (p (A (t)/t, F) < 5) + 2 ~ (t, 6/4). 

From these, we easily pass to (1.9). 
As we said, the derivation of the desired conclusions once (1.9) has been 

established is essentially the same as the argument used in the cited references. 
However, the following comments may be helpful to the reader who wants 
to fill in the details. In the first place, the norm []'I[B plays no further role; 
it is only used in the derivation of (1.9). Secondly, it may be helpful to note 
that the positivity of p,  is the key to our ability to avoid the hypothesis made 
in (6.8) of [20] about the transition probability function. Thirdly, (1.9) plays 
here the role which the estimate Lemma 2.2 had in [213. For  instance, it is 
what allows us to replace the "lira" by "lira" in the definition of l(Y, 6) so 
long as I(Y)<oo (cf. [21, Lemma 2.2] and [20, Lemma 6.103). Finally, given 
(1), (2), and (3), (1.8) is completely standard when ~ is bounded; and the extension 
required to cover the assumption made here is not difficult. [] 

In the next corollary, we again refer to the situation described just before 
the statement of Theorem 1.7. In view of the results obtained in Theorem 1.7, 
this corollary is nothing more than an application of the inversion formula 
for the Legendre transform (ef. Theorem (7.15) on p. 135 of [20]). 
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(1.10) Corollary. Assume that there is a locally convex Hausdorf topology on 
B whose restriction to cg is the same as the topology determined by the metric 
p, and denote by B the dual of B relative to this topology. If, for all 2 > O, 

sup sup (E Rx [exp [2 II A (t) l] ~] ]) 1/t < OO, 
t >  1 x e M  

A A 

then, for each YeB 

A(Y)= lim 1 log ERx [exp((Y,, A(t)))] 
t --* o0 t 

exists uniformly with respect to x e M  and is independent of xeM.  Furthermore, 
the function I in Theorem 1.8 is given by 

I (Y)=  sup ((Y, Y)--A(Y)) .  

We now want to apply these considerations of two specific cases. 

1 t 
(1.11) Corollary. Referring to Corollary 1.6, set To=bx(o) and T t = t S  6x(s)ds 

for t>0 .  Define the function J: C(M)*--* [0, oo)u{oo} by J(#)=o�9 if # is not 
a probability measure and 

if # is a probability measure. Then for every weakly closed set F of C(M)*, 

lim log inf P~(Tt~F)=< - i n f J ;  
t ~ oo x ~ M  F 

and, for every weakly open set F in C(M)*, 

lim log inf P~(T, e F ) >  - i n f J .  
x e M  F 

t ~ oo 

In particular, if cb: M 1 (M) ---,11t 1 is weakly continuous, then 

1 i 
lim - sup [log E gx [e t*~176 -- sup (~ ( # ) -  J (#))l = 0. 

t - ~ o o  t x e M  # ~ C ( M ) *  

Proof We apply Theorem 1.7 and Corollary 1.10 with: B=C(M)* with the 
weak* topology, /~=C(M),  cd={#sC(M)*:  # is probability measure}, p the 
L6vy metric on cg, E=y2M, X(t)=x(t) ,  A(t)=tTt,  and Rx=Px. In checking the 
hypotheses of Theorem 1.7, take 11" H B to~ be the total variation norm, and note 
that [[ A(t)q[ B = t. Also, observe that, since MI(M)  is compact in the L6vy metric, 
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(6) is trivial in this context. For  more details, and, in particular, for the identifica- 
tion of 

sup (~ Vd#-A(V))  
VeC(M)  

as J(#,), see Sect. 7 of [20]. [] 

In our second application we will be working with the following situation. 

(1) 2~/= M x IR ~ for some v e Z + and ~ ~: M ~ M and rc 2 ~ IR ~ are the natural 
projection maps. 

(2) {J~o . . . . .  J~d}___F(T~r) have the property that J~k(fo~O=(Xkf)O~a for 

and 2~k(Iozc2)=(Ykf)o~ 2 for f~Coo(N~), where Yk= ~ ~J(x) L with f~Coo(M) 
Y~J~COO(M), O<k<_d and 1 <=j<=v. j=l 

~y- 

(3) For (x, q)em xlW, ak(X, q)=(Yk(X), q)~,  O<k <d and 

d 

Q(x, q)= ao(x, tl) + 1 /2~  (Xk(ak(', r/))(x). 
1 

d 

(4) For x~M, a ( x ) = ~  Yk(X) | Yk(X) and a(x, t/) =(t/, a(x)tl)R~ , rlMR ~. 
1 

d 

(5) For t/elR ~, L , = L + ~  ak(', tl) Xk on C~176 and J,(#) is defined on C(M)* 
1 

so that 

J , ( # ) = s u p { - ~  l~uud#:L"u u~Coo(M)+} 

if # is a probability measure and J ,(#)= oe otherwise. 
(6) ~ = ~2~t = f2M X ~2~v and for each c5 ~ ~, 2 (t, O5) = (x (z, oh), y (t, o5)) E m x IR v 

for t>0 .  
d 

(7) L = ~ ) ? ~  + J~o on C~~ and, for each x~M, Px on ~ denotes the solu- 
1 

tion to the martingale problem for L starting from (x, 0 ) eM x IR v. 

(1.12) Corollary. Referring to the preceding and working under the hypotheses 
in Corollary 1.6, 

A (q) = lira 1 log E px [exp ((t/, y (t))ev)] 
t ~ o o  t 

exists uniformly respect to x~M and is independent of x. In addition, 

(1.13) A(t /)=sup{ S [Q(x, r / )+la(x ,  t/)3 # ( d x ) - 4 ( # ) :  #6C(M)*}. 
M 
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Equivalently, 

(1.14) A (~/) = inf sup Q(x, tl)--L4)(x)+ 1/2• (X k 4(x) 
1 

where O e C~176 and p ~ ( M )  and ~(M)= {pEC(M)*: # is a probability mea- 
sure}. In particular, 

(1.15) A (t/) > (~(q) + e(r/) 

and 

(1.16) A (t/) < (~ (t/) + fl (~/), 

where 

{j(tl) = ~ Q(x, tl)mg(dx), 
M 

a(t/)=inf 1~ ~ (Xk r tl))2mL(dx): OeCoo(M , 
t 1 

fi(q)=sup{l~ ~'1 (Xkh("rl)(X)--qk(X'rl))2ll(dx): J.(#)<o@, 

and we have used h(', tl) to denote the unique ueCoo(M) which satisfies Lu=Q(' ,  
tl)-Q(rl) and ~ u dmL=O. Finally, set 

M 

I(y)=sup{(y, tl)av-A(tl): rle]RV}, ye]R ~. 

Then an equivalent expression for l (y) is 

((y, t/)~v- ~ [Q(x, q)-Lq~(x)]/~ (dx)) 2 
M 

(1.17) I(y) = sup inf sup d 
" 

1 M 

(C@ is or oo according or not) (a~Coo(M), #E~(M), 0 to whether C ~ - O  where 
! 

and tleSV-1; and for every F e ~  

- inf I =< lim 1 log inf P~ (y (t)/t ~ F) 
F 0 t ~ o o  t x ~ M  

__< lim -1 log sup P~(y(t)/t~r)< --infI, 
t ~ o o  t x c M  1- 
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and, for q~ECOR ~) which satisfies lira ~(Y)=0 lyl-~ ~ ly] 2 

lim sup 1 log E i'~ [exp(teP(y(t)/t))] 
t ~ c ~  x ~ M  

- sup (~b(y) -- I(y)) = O. 
y~R v 

Proof. The proof involves the use of Corollary 1.11 to evaluate A(q), followed 
by an application of Theorem 1.7 to the 1R*-valued additive functional {y(t): 
t_>_o}. 

Define 37(t, ~)=(y(t), tl)~- i Q(x(s), t/)ds and set 
t 

0 

R(t, t/)=exp@(t, q)- l/2 i a(x(s), q) ds). 

Then R(-, t/) is a non-negative fix martingale and the measure P~" on ~2 M defined 
by 

P2 (A) = E ~ [R (t, t/), x (t) e A] 

for Ae~t=-a(x(s): O<_s<t) and t ~ 0  is the solution to the martingale problem 
for L, starting from x. Hence, 

Et'~[exp((y(t, q)R~)] = EP~ [exp ( i [Q(x(s), ~l)+ �89 t/)] ds)]. 

( ) Noting that Lie Xo+�89 tl) Xk, X l  . . . . .  X d (x)=Lie(Xo, ...,Xa)(x) at 
1 

each xeM and applying Corollary 1.11 to {P~": xsM}, we conclude that (1.13) 
holds. The passage from (1.13) to (1.14), and thence to (1.15) and (1.16), is accom- 
plished by the same sort of reasoning as was used in [21, Theorem 1.7]. Similarly, 
the second expression for I(y) is an easy consequence of (1.14). Of course, here 
we are taking C#=B=IR v and we are justifying the use of Theorem 1.7 on the 
basis of the standard estimate 

[ ,?-U-erlt l 2 1-9 t \  Hall t 1/21]' 

where 9l denotes the normal distribution function and rlQ IJ and Ila Jr are the 
uniform norm of Q(' ,  t/) and a( ' ,  q), respectively. This same estimate provides 
the justification for the final assertion of this corollary. [] 

(1.18) Remark. Given qeS v-l ,  let h(., q) be as in the statement of Corollary 1.12 
above. Then, by (1.17): 

((y, t/)•,-- ~( t / ) )2  " pe~(M) and tteS ~- 1] 
I(y) =>infsup d 

2~ ~ (Xk h(x, tl)--ak(X, tl))Z#(dx) m 

# t l  

1 M 
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Hence, if Q~N~ is defined so that (Q, t/),.=~)(q), t / eN  ~, then there is a 7~(0, 
oo) such that 

(1.19) I(y)>=Tly-QI2~, y~IW. 

At the same time, by (1.17) 

i, f(y- (7, } tY)-~sup~( }-~(~ : qeS  ~-x . 

Thus, one always has 

(1.20) I((~) = 0; 

and, if 

(1.21) e--  inf c~(q)>0, 
~/~S v - 1 

then 

(1.22) I(y)<ly-Ql2/2c~, ysNy. 

Finally, suppose not only that a = 0  but also that there is an t/eS ~- 1 and 
an f (-, t/) e C ~ (M) such that 

(1.23) Xkf(',rl)=ak(',~l), t <--k<--d. 

Then, after substituting qS+f( . ,  t/) for q5 in (1.17), one sees that I (y )=oo  for 
ye lR ~ such that 

(y, r/)~vr Range (Q (., I / ) - L f ( ' ,  ~)). 

Although the existence of such q and f ( ' ,  t/) is, in general, not guaranteed 
by e = 0 ,  it is when one has Lie(Xa, ..., Xa)(x)=TxM at every xeM (cf. Lemma 
(2.26) in [-21]). On the other hand, notice that no such t/ and f ( ' ,  ~/) can exist 
if Lie (J(l, ..., )~d)(2)= T~ ~t  at even one 2 e ~r. Indeed, if they exist and we define 
O=r~*d(f(', rl)-~*rl~T*f/I, then O(J~k)=--O, l<_k<-d. Moreover, dO=O and 
therefore 0 ( J ( ) - 0  for all )?sLie(J~l  . . . . .  J?a)- Since 0 never vanishes, this shows 
that dim(Lie(J~l . . . .  ,Xa)(2))<=d+v-1 at every 2 ~ r  as soon as q and f ( ' ,  
r/) exist. In particular, we can see from these considerations that ~ > 0  if 
Lie(X1 . . . .  , )?d)(2) = T ~ Q  for every 2~/~.  

We now see what, when they apply, the results obtained in the appendix 
say about  the situation dealt with in Corollary 1.12. Thus, assume that 
{X1, ..., Xd} satisfies (A.1) and that 

d 

(1.24) Xo =Z (~k Xk 
1 
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for some ea, ..., ede C ~~ (M). Then we can rewrite the operators L, in the form 

d d 
1 * L~ = - ~ E X~ X~ + E (B~ + ~ ( ' ,  ~)) X~ 

1 i 

for suitably chosen ill, ..., fld ~C~176 (M). 

(1.25) Theorem. Under the conditions just described, an equivalent expression 
for the quantity A(tt) in (1.13) is 

(1,26) A01)=sup{ ~ (~/, Yo(x))~#(dx)+�89 q)--~(#): # ~ ( M ) } ,  
M 

where 
d 

~o- Yo-Z"k 
1 

D ( # , . ) - i n f { ~  [(Yk(X),q)~,v+flk(X)--Xk(a(x)]Z#(dx): ~beC~(M)}, 

Yo(U)= So(~l + �89 D(#, 0). 

Hence, 

(1.27) 1 1 . ~ ~ ) . 0  ~ , lira ~A(pq) -=-  z lnf ~(Xk(~--(q, ~eS ~-~, 
p ~ o o  p Z CeC~(M) 1 

and an equivalent expression for the quantity l (y) in (1.17) is 

(f  (q, y -  ~7o (x))~ ~(dx)) 2 

(1.28) I(y) = inf sup { -~ 2D(#, t/) 

- ,~(#):  /~E~(M) and tl~S ~- ~}" 

Proof The proof is simply a matter of reconciling the notation here with that 
used in the appendix. [] 

We conclude this section by summarizing another tack that can be taken 
in the analysis of the quantity A(~/) once one has the sort of regularity result 
provided by Theorem 1.5. 

(1.29) Theorem. We again make the hypotheses used in Corollary 1.6. For qEIR ~ 
define the operator Ln = Ln + Q (., q) + �89 a (., tl). 

i) I f  f e  C ~ (m) and g (x, y ) = f  (x). exp ((rl, y)~v) for (x, y)~ M x IR ~, then 

[Lg] (x, y) = (Lhf)(x)" exp ((t/, Y)~0. 

ii) A(q) is the largest eigenvalue of Ln, it is simple, and the corresponding 
eigenfunction can be chosen to be strictly positive. 
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iii) A is convex and analytic as a function of tlelRL 
iv) 0 =  (grad A)(0) and 

for all x~N. v. Moreover, for each xe  M, the distribution of 

y(t)-tO 
tl/2 

under Px converges to that of an N.V-valued normal random variable with mean 
0 and covariance (DaA)(0) (the Hessian of A at 0). 

Proof. The assertion in i) is a simple computation which, in fact, was already 
used in the derivation of (1.13). The methods used in Sect. 2 of [2] can be 
easily adapted to the present situation in order to prove ii), iii), and the strong 
law assertion in iv) (since, by Corollary 1.6, M is an "invariant control set"). 
Moreover, the identification of 0 as grad A(0) is an easy consequence of (1.15) 
and (1.16). Finally, the last part of iv) is an easy extension of Corollary (3.2) 
in [4]. 

(1.30) Remark. In [1] the derivation of the sort of large deviation principle 
stated at the end of Corollary 1.12 is based on the existence and regularity 
of A (.). In particular, iii) above provides more than enough regularity. 

2. Applications to Stochastic Flows 

Throughout M will denote a compact connected N-dimensional Riemannian 
manifold and 

{Xo, ..., Xa} c_ F(TM) 

will be a fixed set of vector fields on M. In addition, (O, No, ~K) will denote 
the standard d-dimensional Wiener space (cf. the second paragraph of the proof 
of Theorem 1.2 and replace d + l  there with d here). Finally, {it: tel0, oo)} 
will be used to denote the stochastic flow of diffeomorphisms of M determined, 
up to a ~/K-null set, by 

d 

(2 .1)  d~t(x)= ~ Xk(~t(x))odOk(t)+Xo(~r(x))dt with ~o(X)=X 
k = l  

for xeM.  In particular, if P~ denotes the distribution of ~.(x) under ~r then 
{P~: x e M }  is the Markov family of solutions to the martingale problem for 

d 

L=�89 E X~+Xo .  
k = l  
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For (t, x)~[0, oe )xM,  let D~dx): T~M~Tr be the derivative of 4, 
at x. The purpose of this section is to study the behavior of the quantities 
4(x) = det(D Cdx)) and ID Cdx)(v)], wT~M, as t ~ oc. 

It follows from (2.1) that 

(2.2) 
d r i 

log 4(x)= ~ y (div Xk)(~(X))odOk(S)+ (div Xo)(~s(X)) ds; 
k = l O  0 

and therefore that, when the hypotheses of Corollary 1.6 are satisfied by the 
Xk's, the results of Sect. 1 apply directly to the function 

(2.3) A (p) = lim i log E ~ [(Jdx))P], pelR 1. 

In order to see we can say about [Dr it is important to express it 
in a form to which our results are applicable. For this reason, first think of 

D~ as a stochastic map TG from T M ~ T M  (that is, if re: T M ~ M  denotes 

the natural projection of TM onto M and v~TM with ~v=x, then T~t(v ) 

= [  ~t(x) ]) In this way {Tit: t~-0, oe)} becomes a stochastic flow of diffeo- [ D it(x)(v)J" 
morphisms of TM; and this flow is determined, up to a #K-null set, by 

d 

(2.4) d(T~t(v))= ~ TXk(T~,(v))odOk(t)+ TXo(T~t(v))dt with T~o(V)=v. 
k = l  

In (2.4), TXk denotes the derivative of X k thought of as a map on TM. Thus, 
if we use the Levy-Civita connection V for the Riemannian structure on M 
to determine the horizontal subspace in Tv TM for w T M  and we identify the 
horizontal subspace with T ,  vM itself, then TX k is the vector field on TM for 
which Xk(X) and VXk(x)(v) are, respectively the horizontal and vertical compo- 
nents of TXk(V), veTxM. In particular, if, for veTxM, we set vt= Tidy) and 
xt=nvt, then x. is the path ~.(x) determined (up to a YC/-null set) by (2.1), 
and v. is path in TM over x. which is determined (up to a #K-null set) by 

d 

(2.5) [7v,= ~ VXk(X,)(v,)odOa(t)+gXo(x,)(v,)dt with Vo=V. 
k = l  

In other words, (2.4) is equivalent to the conjunction of (2.1) and (2.5). 
Because TXk is linear on each tangent space TxM, we can use (2.5) to write 

an autonomous equation for the stochastic process 

~.(v)= Tr ~keSM, 
I T~.(v)I' 
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on the sphere bundle S M -  {v e TM: Iv I= 1 }. Namely, if )~k (v) denotes the projec- 
tion of TXk(V) onto Tv SM, then 

d 

(2.6) d~t(O = ~ Xk(~t(V))odOk(t)+Xo(~,(v))dt with ~'o(v)=v, 
k = i  

for veSM. Note that the horizontal component  of 2gk(V) is the same as that 
of TXk(V) (namely, Xk(X) if ~v=x) and that its vertical component  is VXk(X)(V ) 
--(VXk(X) (v), v)v for v E S~ M. Next, using (2.5) again, we see that 

(2.7) 
k = l O  0 

where gk E C ~ (SM) is given by 

gk(V)= (VXk(rCv)(v), v), veSM. 

Henceforth, without mentioning it again, we will be assuming that 

(2.8) Lie(-~o, ..., -~d)(v)=Tv SM, veSM, 
{~(t,v;u): t>O and ueC([O, oe);IRd)}isdenseinSM, veSM, 

where, in the second part of (2.8), we have used ~( - ,  v; u) to denote the curve 
satisfying 

d 

~(t,  v; u)--- ~ uk(t)Xk(~(t,v;u))+~20(~(t,v;u)) with ~(O,v;u)=v. 
k = l  

Notice that these are precisely the hypotheses required to apply Corollary 1.6 

to the vector fields {Xo, ..., )~d} on SM. Also, because [J~k, )71] = [2k,"-~l] 
and ~ ( ' ,  v; u) is the lift to SM of the corresponding curve ~ ( . ,  ~v; u) on 
M determined by {Xo, ..., Xd}, the conditions in (2.8) guarantee that the hypoth- 
eses in Corollary 1.6 hold for the vector fields {Xo . . . .  , Xe} on M. 

Because of (2.8), we know from (2.6) and (2.7) that for each veSM the limit 

(2.9) . 4 (p ) - l im  1-1ogE~KIDr p e r  a, 
t --* oO t 

exists, is independent of vESM, and that the convergence is uniform with respect 
to v. In addition, just as they do to A, the results obtained in Sect. 1 apply 
to A, although one should notice that the relationship of A to {J~o, ..., J~d} 
is somewhat different from that of A to {Xo . . . . .  Xd}. 

As in Corollary 1.6, let m L and rh L be the unique stationary probability 
measures on M and SM for the one-point flows { ~ t ( X ) [  t e l - 0 ,  QO)} and {~t(v): 

d 

te[0,  oo)}. (The operator L - � 8 9  -z ~ X k + X  o is the generator of the process {~'t(v): 
1 

te  [0, oc)}.) Clearly mL= rfiLo re-a and, under our hypotheses, we know that each 
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of these measures admits a smooth positive density with respect to Riemannian 
measure. 

According to the multiplicative ergodic theorem for stochastic flows of diffeo- 
morphisms (see [7, Theorem 2.1]), there exist Lyapunov exponents 21 > ... >2N 
such that, for mL-almost every x e M: 

(2.10) lim (D {t(x)* D {t(X)) 1/2t= A~(a.s., ~/U), 
t -+ oO 

where A~ is a Hom(TxM; TxM)-valued random variable having non-random 
eigenvalues e < > ... > e z~. In fact, under our hypotheses, Theorem 1.5, allows 
us to strengthen this statement to the assertion that (2.10) is valid for every 
x~M. 

Applying Theorem 1.29, we see that for all x~M: 

(2.11) 2 ,~21  @... 2N= lim 1 log 4 (x )= A ' (0 )=  S Q(Y) mL(dy), 
t ~ o o  t M 

d 

where Q (y) = (div Xo) (y) + �89 ~ (X k div Xk) (y); and that for all v ~ SM: 
k = l  

(2.12) 21 : lira -1 logID~t(x)(v)l =A'(0) = ~ R(u)rhL(du ), 
t-'+ O~ t SM 

d 

where R(u)=go(U)+�89 ~, (Xkgk)(U). In both (2.11) and (2.12), the assertion is 
k = l  

a W-almost  sure statement. 
The function A was studied previously in [9] and [12]. Because of its connec- 

tion with the Lyapunov spectrum, .4 is called the Lyapunov moment function. 
It has been analyzed for linear systems in [1], [2], [4], and [21]. The formula 
(2.12) is due originally to A. Carverhill [8]. 

(2.13) Theorem. A(Np)<=A(p) /f p e [ -  1, 0], and A(Np)>=A(p) if pr 1, 0). 

Proof Let v~ denote the unique rotation invariant probability measure on S~M 
-={vETxM: ]vl= 1}. Then, for each (t, x)e(0, oo) the random measure vct(x)o~'t 
is equivalent to v~ r162 surely. In fact by a formula which is essentially 
due to Furstenberg [13, p. 425], 

dvx 
(O=4(x)lO~,(x)(OI -N, v~S~M. 

Therefore, )-p 
ID(t(X)(v)[NPVx(dV)=(Jt(x))P I \ dv x (v) vx(dv ). 

S x M  S x M  
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By Jensen's inequality, the right hand side of the preceding is greater or equal 
or is less than or equal to (Jr(x)) p according to whether p ~ ( - 1 ,  0) or p e [ - 1 ,  
0]. Hence, after applying the operation " l i t  log E ~ [ ' ] "  to both sides, the desired 
result follows from (2.3) and (2.9). []  

(2.14) Corollary. i) A ( - N ) = A ( - 1 ) =  -2~>=0 and NA' (0) >= A' (0). 
ii) There exists a smooth Riemannian structure on M with respect to which 

it is ~/f -almost surely measure preserving for every t s [0, oo) if and only if A (')=-0 
if and only if A ( -  N) = 0 if and only if 2 x = O. 

iii) There exists a smooth Riemannian structure on M with respect to which 
it is #f-almost surely conformal for every t~[0, oo) if and only if A(N. )=-A( . )  
if and only if N~I' (0) = A'(O). 

iv) There exists a smooth Riemannian structure on M with respect to which 
it is ~tK-almost surely isometric for every te l0 ,  oo) if and only if  .71(.)=0 if 
and only if NA'  (0) = A' (0) = O. 

Proof. It is shown in [3, Corollary 5.1] that 2~<0, and the rest of i) is a conse- 
quence of the Theorem 2.13 and the convexity of A. 

To prove ii)-iv), observe that, because M is compact (and therefore that 
all Riemannian structures on M are equivalent), the functions A and A are 
independent of the particular structure chosen. Now suppose that a Riemannian 
structure having the asserted property exists. Then, "/V-almost surely, one has: 
J~(x)-1, ID~t(x)(v)]N--Jt(x), o r  [D~t(x)(v)lN~ 1 for all x ~ M  and w S x M  accord- 
ing to whether one is dealing with case ii), iii), or iv). Thus, one gets A ( ' ) - 0 ,  
f I ( N . ) - A ( . ) ,  or A ( ' ) - 0  respectively; and, in view of i), it is easy to check 
that each of these imply 2~ = 0, Nz] (0) = A' (0), and NA (0) = A' (0) = 0 respectively. 
Finally, by [3, Corollary 5.1], 2 E = 0 implies that mL is ~/U-almost surely preserved 
by ~, for every te[0,  oo); and so the proof of ii) is completed by adjusting 
the Riemannian structure on M so that mL becomes the Riemannian measure. 
Also, the rest of cases iii) and iv) is covered by [5, Theorem 7.6 and 
Remark 3]. []  

The preceding result deals with the rather rigid situations when either A 
or A themselves or the relationship between them is degenerate. In the next 
result we see what can be deduced from information about  the asymptotic behav- 
ior of A and A. 

(2.15) Theorem. Assume that Lie(X1 . . . .  , Xd)(x)= TxM, x e M .  Then 

~z lim 1 A(p)=0  if and only if there is a uniformly 
4 

lim A(p) = 0 if and only if p-* 
p-~oo p - - ~  i)_ 
positive he C ~~ (M) such that div(hXk) =- 0 for all 1 <- k <- d, in which case 

t +div(hXo)(X) } (2.16) lim -1A(p)= + s u p  - �9 x e M  . 
p-~ +_ ~ p - h(x) 

Now assume that 

Lie (X 1 . . . . .  3~a) (v) = TSv M, v E SM. 
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! 1 
Then lim P-@A(p)=0 if and only if ~ U l i m - ~ . d ( p ) = 0  if and only if there is a 

p--* oo p 

smooth Riemannian structure with metric p on M such that X k is an infinitesimal 
p-isometry for each 1 <_ k <- d; in which case 

(2.17) lim 1 ~(p)= +_sup{+(go(V)_~of(V))" veSM}, 
p~+_ao p 

where f =- - � 89  log p(' ,  ") and go is the function appearing in (2.7). 

Proof Note that the Remark (1.18) allows us to conclude that there is an 
f~  C ~ (m) satisfying 

X k f  = div Xk, 1 < k <- d 

if either 

1 
lim . ~ A ( p ) = 0  or 

p ~ o o  p 
lim ~ A (p) = 0, 

p~--oO 

from which we get the required function by setting h = e -y. Conversely, if such 
an h exists, then, substituting ~b-log h for ~b in (1.14) and reverting to the equiva- 
lent formulation (1.13), yields 

A (p) = sup { ~  div(hX~ d # -  Jo(#): # e ~ ( M ) }  

where the Jo(#) is the element of [0, or] described in the paragraph preceding 
Corollary 1.12 (and should not be confused with the matrix J~(x) for t = 0  of 
this section). In particular, since Jo(#)< oo whenever # is smooth, this proves 

(2.16) holds and therefore that lim @ A (p)= 0 when h exists. p -  

The proof of the analogous statements for SM is precisely the same, only 
now one must notice that the existence of an fEC~(SM)  satisfying Xkf(v)  
= gk (V) = ( VXk (re (v)) (v), v) for all v e SM is equivalent to the existence of a Rie- 
mannian metric p on M for which the Xk'S, 1 < k < d, are infinitesimal isometries 
and that, up to an additive constant, f = - � 8 9  .) on SM. To see this 
equivalence, first suppose that such a metric p exists and set f =  1 l o g  p( ' ,  -) 
on SM. Then, using p to denote p( ' ,  .), we see that for each 1 <_k<_d, 

O=Dp(v)(TXk(v))=(2(VXk(TrV)(V),V)--2Xkf(v))p(v), vESM; 

and so this choice of f works. Conversely, suppose that f exists and define 
p: TM--+ ]-0, oo) by / p(v)= Iv12 exp [ ] 

0 if ]v]=O. 
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By the preceding calculations, we see that Dp(.)(TXk)(.)=_O. Hence, all that 
we have to do is check that for each xeM the function veT~M~-~p(v) is quadra- 
tic. To this end, set 

5f~={VX(x): XeLie(Xl . . . . .  Xd) and X(x)=O}. 

Clearly ~ is a Lie subalgebra of gl(TxM). Let G, denote the corresponding 
connected subgroup of GL(TxM). Because p on T~M is constant along all 
G~-orbits, G~ must be conjugate to a subgroup of SO(TxM). Hence there is 
a Q~EGL(T~M) such that (Q~ dr ,  Qxv)=0 for all d ~ .  We will show that 
p(-) is a constant multiple of (Qx', Qx" ). To this end, set 

h(v) = log p(v)-log(Q~v, Q~v), yeS, M, 

and note that it suffices to check that Dh(v)(u)=O for u~T~M satisfying (u, 
v) =0. But, because Lie(X1 . . . .  , )~d)(v) has full rank, for each such u there exists 
a de&ax such that u = d v - ( d v ,  v)v; and so 

Dh(v)(u)- Dp(v)(dv-  <dr, v>v) 2 <Qxv, Q~(dv-  <dr, v> v> 
p(v) <Q~v, Q~v> 

= - 2 ( d v ,  v>+2(dv, v>=O. [] 

(2.18) Remark. Note that the condition div(hXk)=0, l < k < d ,  is equivalent 
to the statement that the measure having density h with respect to the Riemann 
measure is invariant under the flows generated by {X1, ..., Xd}. In particular, 
if, in addition, div(hX0)=0, then the conclusion drawn in ii) of Corollary 2.14 
follows from the support theorem for diffusions. The result in iv) of Corol- 
lary 2.14 is related similarly to the second part of Theorem 2.15. Finally, in 
the case when Xo=0  and Xk=gradfk, l<k<d, where (fl ..... fa): M ~ d  is 

isometric embedding, Chappell in [9] evaluates 2z and lim ~ A (p) in terms 
4 

a n  

of the mean curvature of M as a submanifold of p a. p-~ ~o 
p-  

3. The Two Point Motion near the Diagonal 

Let {it: te[0, o0)} be the stochastic flow of diffeomorphisms given by (2.1); 
and, for (x, y)ef / l -M2\A (A denotes the diagonal in M2), consider the two-point 
motion {(it(x), Ct(Y)): tel-0, o0)}. Because, ~/U-almost surely, it(x):~ it(Y) for any 
te[0,  o0), we can think of two-point motion as a conservative Markov process 
on M, in which case the problem of determining when dist(~t(x), it(Y))-*0 as 
t ~ oo becomes a question of the transience or recurrence of the two-point 
motion on ]~. In order to study this question, we first write a stochastic differen- 
tial equation for the two-point motion. Namely, for a vector field X on M 
define the vector field X(Z)~F(TA4) so that 

(3.1) Xt2)(x, y)= (X(x), X(y))~T~M • TrM "~ T~x.y) M, (x, y)eM. 
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It is then clear that, for z=(x ,  y)e2~, the two-point motion th(Z)-(G(x ), it(Y)) 
is determined by 

d 

(3.2) dqt(z)= ~ X~Z)(th(Z))odOk(t)-bX(o2)(rh(z))dt with rlo(Z)=Z. 
k = l  

In particular, the law of the two-point is determined by the operator 

d 
(3.3) /32)= 1 ~ (X(k2))2+X(o 2~ 

k = l  

on C~(M). It should be noted that no matter how one chooses the Xk's, the 
operator/3 2) degenerates at A. Hence, there is no possibility that/3 2) is uniformly 
elliptic (or even uniformly subelliptic) on ~ .  On the other hand, it is possible 
f o r / ~ 2 )  to be elliptic on ~r. 

Define the map � 9  TM ---, M x M by 

(3.4) r (v) = (~ v, exp~ v (v)). 

That is, ~b(v) is the pair consisting of the initial and end points of the geodesic 
which starts from rcv with velocity v and runs for a unit length of time. Because 
M is compact, there is a positive 6o (the injectivity radius) such that �9 is diffeo- 
morphic from { w T M :  0<lvl<6o} onto Mao-{(x, y)~M2: 0<dist(x,  y)<6o}. 
In particular, we can use ~ to transfer the natural polar coordinate system 
on {veTM: Iv[+O} to Mao: 

(r, 0)~(0, 6o) x SM F--~ q~(rO)~ M ao. 

This polar coordinate system will play a role in our analysis of the two point 
motion when we compare the behavior of ~h(Z) near A to that of the linearized 
motion D ~t(zcv)(v) near the zero-section in TM. 

Given a vector field X on M, define the vector field ~ * X  (2) on r ) 
by 

�9 * X(2) = (Dq~(v))- 1X(Z)(~b(v)). 

(That is, ~b*X (2) is the vector field on ~ -  ~ (Mao) obtained as the pullback under 
of X(2).) In the following, recall the decomposition, described between (2.4) 

and (2.5), of the tangent space Tv TM into horizontal and vertical subspaces. 

(3.5) Lemma. For re(O, rio) and O~SM, let W(t), t~[0, r], be the Jacobi field 
along the geodesic x(t)=exP~o(tO) which satisfies W(O)=X(x(O)) and 
W(r) = X (x(r)). Then 

q)* X(Z)(rO)=(X (~O),r ~d~(O) ). 

Proof Let x=x(0)  and y=x(r) .  Using selRl~-*~s to denote the flow of diffeo- 
morphisms generated by X, set 

v~=~-l(G(x),G(y)). 
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Then rO=vo and 

(r 0) = ~ (v~)l s = o. X(2) 

The horizontal component of ~b* X (z) (r 0) is given by 

Js(rCov~)(o)=d o~(x)l~=o= X (x), 

and the vertical component is ~s  vs[,=o. Next, define 

e(s,t)=expo,(~)(;v~) for (s,t)e(-e,e)x[O,r]. 

Clearly, c~(0, . ) = x ( . )  while re[0, r]~--~e(s, t) is a geodesic for each se(-e ,  e). 
From this it is clear that 

te l0,  r] ~--~ W(t)-~s~ (0, t) 

is the Jacobi field along x(t), re[0, r], satisfying W(O)=X(x) and W(r)=X(y). 
de 

Moreover, ~ - ( s ,  0)=-1 Vs;r and so 

VW V gc~ O 0  V c?~ O 0  1 V v 
d/  ( O ) = ~ T s ( ' ) : U ~ - ~  ( ' ) = r ~  ~ls=0. [] 

For information about Jacobi fields, the reader might want to consult [10, 
pp. 14-16]. 

Give (0, 60)x SM the Riemannian structure it inherits as a product, and 
define 7c 2 : (0, 60) x SM ~ M so that ~2 (r, 0) = ~ 0. 

(3.6) Lemma. Define (r, 0) x SM~-*H(r, O)~T~oM by the equation 

(~* X (2) (r O) = (X (~ 0), r VX  (~ O) (0) + r 2 H (r, 0)). 

Then, H is a smooth section of the pullback bundle ~* TM; and, for each 0<61 
< C~o, any order covariant derivative of H is bounded on (0, 61] x SM. 

Proof Notice first that q~*X {z) has a (unique) smooth extension to BM(6o) 
= { v e T M :  [vl<60}. Define G(v) for veBM(6o) so that G(v)+VX(rcv)(v) is the 
vertical component of q~*X(Z)(v). It is then clear that G is smooth on BM(6o) 
and that r2H(r, 0)= G(r0) for (r, 0)e(0, 6o) x SM. Thus, it remains only to check 

that ~2 G(rO) and each of its derivatives remain bounded a s  r N 0. 

For  fixed OsSM let W(') denote the Jacobi field along the geodesic x(-) 
issuing from =0 in the direction 0. Also, use Pt: Tx(t) M --* Tx(o) to denote parallel 
translation along x( ' )  from x(t) to x(0). The Jacobi field equation together 
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with the smoothness of X imply the existence of a K < oo and an e > 0, which 
are independent of 0, such that 

and 

v vv 
W(t) -- W(O)-- t ~i-(O) <= K t 2 

IP~ X (x(t))-- X (t)-- t VX(Tz O)(O)l < K t 2 

so long as 0 < t < e .  Combined with Lemma3.5, these inequalities lead to 
I G(rO)l < 2 K r  2 for (r, 0)e(0, e/x 6o)x SM. In particular, if 0x denotes the zero 
vector in TxM, then not only G (0x)= 0 but also DG(Ox)(0, 0)= 0, where D G(.)(O, 
0) denotes the total derivative of G in the vertical direction (0, 0) ~ To TM. Hence, 
by Taylor's formula: 

1 
H(r, 0)= ~ (1 --s) D 2 G(srO)((O, 0), (0, 0)) ds; 

0 

and obviously the required result follows from this. [] 

Since ~b*X (2) is just X (2) written in terms of v rather than (x, y),  we will, 
from now on, use X ~2) in place of ~b* X (2). Further, we will consider both X (2) 
and TX in terms of the polar coordinate system (r, 0). Finally, identifying T(r.0)((0, 
6o) x SM) with Tr(0, 6o) +ToSM, we have 

(3.7) T X  (r, O) = ( V X  (~ 0)(0), 0) r ~r + 2 (0) 

and 

(3.8) X (2) (r, 0) = (< VX (7~ 0)(0), 0} r -~- <H (r, 0), 0> r 2) ~F -~- ( 2  (0) ~- r H  (r, 0)), 

where the horizontal and vertical components of /~(r ,  0) are 0~0 and H(r, O) 
- ( H ( r ,  0), 0} 0, respectively. 

(3.9) Proposition. For each 0 < 62 < 6o and X eF(TM)  there exists a K < oo with 
the properties that 

I(X ~2)- TX)(~ | O)(r, 0)1 <K(rlcb(r)l + r 21 r 0 Ir C,(SM} 

and 

]((X(2)) 2 -- (TX) 2) (~b | 0)(r, 0)] < K (r ]~b (r)] + r z ]q~' (r)] + r 3 J q~" (r)]) ]] q~ ]] c2 ~sM) 

for all q~eC2((0, 60), ~eC2(SM), and (r, O)e(O, 51)xSM (where (q~Q0)(r, 0) 
-- r (r) 0 (0)). 

Proof We will prove the first estimate; the second one follows in a similar 
fashion from the bounds on H and its first covariant derivatives. 
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Set g(0)= (VX (re 0)(0), 0). Clearly g ~ C ~176 (SM) and, from (3.7) and (3.8), 

T X  (c~ | O)(r, O)= roy(r) g(O) 0(0) + qS(r)(XO)(O) 

while 

Xt2)(r | ~)(r, O)= T X  (c~ | O)(r , O) + r2 qb' (r) ( H (r, 0), O} t~ (O) + r (9(r)(fiI (r, .)~9)(0). 

Clearly the desired estimate follows from these. [] 

(3.10) Corollary. Set 
d 

TL = �89 ~ (TXk) z + TXo. 
k = l  

(That is T L  is the operator on C~176 which determines the distribution of  
the derivative process {D~t(rcv)(v): t~[0, oe)}.) Then for each 0 < 6 1 < 6 0  there 
is a K < oo such that 

1(/_32) -- TL)(q5 | ~)(r, 0)1 < K (ri~b (r)l + r 2 [~b' (r)l + r 3 I qS" (r)l) II ~ II c2r 

for all q~eC2((0, 60)), OeC2(SM), and (r, 0)e(0, 61) x SM. 

(3.11) Remark. When q~ (r)= log r and ~ = 1, the estimates in (3.9), and therefore 
in (3.10), can be improved by replacing the term rlqS(r)l on the right hand side 
by r. 

Up to this point the discussion in this section has not used any non-degener- 
acy hypotheses about the vector fields Xk. However, in order to construct suit- 
able functions q5 and ~ to put into the preceding corollary, we will from now 
on impose the conditions stated in (2.8). Recalling the notation introduced fol- 
lowing (2.6) and (2.7), set 

d d 

Q(0)=go(0)+�89 ~ ()~kgk)(0) and 8(0)= ~ (gk(0)) 2 
k = l  k = l  

for OeSM. For pMR ~, set 

Then, for any ~9 r C 2 (SM) ,  

(3.12) 

d 

L p = L + p  ~, g~,Xk. 
k = l  

TL(r p ~9 (0)) = r v (Lp + p Q + lp2  ?t) t~ (0) 

and 

(3.13) T L ( r  p (log r) ~k (0)) = r p (log r)(Lp + p O + �89 p2 ~) ~9 (0) 

+ rP~=l gk 2k + O + p~) O(o). 
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d 

(The operator L = � 8 9  is the one associated with the process {~'t: te l0 ,  
1 

oo)} on SM.) Both of these expressions are direct calculations from the formula 
(3.7) with X = X k .  Also, notice that  (3.12) is precisely i) of Theorem 1.29 when 
M is replaced by SM. In fact, Eqs. (2.6) and (2.7) show that we are in the 
situation described just before Corollary 1.12 and that our TL here is the same 
as the L there when one uses coordinates (r, 0) instead of (0, log r). Hence, 
by Theorem 1.29, for each p ~ N  1 there is a strictly positive Cp eC~ such 
that 

(3.14) (Lp + p (~ + p2 ~) Cp = 71 (p) Cv" 

(The smoothness of Cp is guaranteed by the conditions in (2.8).) In addition, 
the eigenvalue 71(p) is simple for each p; and, therefore, by analytic perturbation 
theory (cf. [14, p. 365]), the map  peIRI~--~r176 can be chosen to be 

analytic. Writing @ to denote ~ Cp, we obtain from (3.14) the equation 

(3.15) (L ,+p(~+�89  ~ ggXk+Q+p80p=A(p)q~p+71' (p)r  
\ k =  1 

After combining Eqs. (3.12) through (3.15), we arrive at 

(3.1 6) (TL - 71 (p)) (r v Cp (0)) = 0 

and 

(3.17) (TL--71(p))(rP(log r) (/)p(O)+rPcyp(O))=rV71'(p) Cp(O). 

(3.18) Theorem. Assume that the conditions in (2.8) hold and that 71 does not 
vanish identically. Then for each choice of - o o  < a < b < oo there is a 6 > 0 and 
a K < oo for which the following assertions hold. 

i) For each p ~ [a, b] there exist (o + ~ C~ ((0, 6) x SM) such that 

(/Jz)--71(p))qSV>_-O>(/_J2)--71(p))r on (O, 6 ) x S M  
and 

1 
~rP<(S(r ,O)<=Kr  v, (r ,O)e(O,f)xSM. 

ii) There exist ~ -+ ~ C ~ ((0, 6) x SM) such that 

and 
L(2~O + >=71'(0)>=~2~4,- 

1~9 -+ (r, 0 ) -  log r[ =<K, 

on (0,6) x S M  

(r, 0)e(0, 6) x SM. 

iii) For each pc[a, b] there exists a ~v~C~~ 6) x SM) such that 

( /~) -3(p) ) ( ,+71 ' (p ) r  on (0,6) x S M  
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and 
1 

~-rV[log r[ <=(v(r, O) <= KrP[log r[, (r, 0)c(0, 3) x SM. 

Proof. Without loss in generality, we assume that a < 0 < b  and that q~o--1. 
The analytic dependence of 4~p on p together with Corollary 3.10 and 
Remark 3.11 then imply the existence of 6 > 0 and K < oe such that 

1 
~__<q~p<K and IIq~;ll~K, 

1(/32)_TL)(rp~ap(0))[ <=KrP+ 1, (r, O)c(O, 3) x SM,  

1(/~2)-- TL)(log r +  qS• (0))[ < Kr,  (r, O)c(O, 3) • SM,  

[(IJ,2)-- TL ) ( rV ( log l )  (~p(O)--rP ~'p(O))[ <=KrP[logr[, (r, O)c(O, 3) x SM,  

for all pc [a, b]. Since A is non-constant on every non-empty open interval 
of R 1, there exists an e > 0  such that for each pc[a,  b] there exists a q c [ p + k ,  

p+�88 for which [71(q)-Tl(p)[>e. Set 31=min  3, 2 ( K 2 + K  4 . Next, define k 

= k(p, q)clR a so that k(71(q)-  ~ (p)) > O and 

Finally, set 

k K2c~+ 1-q 

dp~ (r, O) = r p d?p (0) ++ k r q (~o (0). 

Clearly ~b~ c C ~~ ((0, 31) x SM) and 

(/3 2) -- A (p)) ~ + (r, O) = +_ k (.71 (q) - ~ (p)) r q (aq (0) + R I + R2, 

where ]R1 [ --< K r p + 1 and ]R21 <= ]k[ K r q + 1 for r c(0, 31). It follows from the upper 
and lower bounds on ~b; and ~bq together with the choice of 31 and k that 
the requirements of i) are satisfied by this choice of qS~ when the K there is 
twice the K here. 

Next, for e, 31, q corresponding to p=0 ,  and k as in the preceding, set 

t q ~b -+ (r, 0) = log r + qSo (0) __ k r q~q (0). 

Then the calculations like those made above show that ~• can be used to 
obtain a proof of ii). 

To prove iii), take 



Large Deviations and Stochastic Flows 201 

where 1 will be chosen below. Then 

(L (2) - 2 (p)) (p (r, 0) + 2 '  (p) r  (0) = (1(2 (q) - 2 (p)) + k2 '  (p)) r q Cq (0) + R ~ + R2, 

where IRxl<KrP+~llogr I and [R2I<IIlKrq+~ for 0 < r < ~ t .  For any 0<~2  
< rain (6 t, e -  4) we have 

rp+11logrl~ra+�88 re(0, fi2]. 

Thus 

(/J2)-A(p)) (p(r, 0) + A'(p) r  (r, 0 )>0  

so long as re(O, 62), l(A(q)-2(p))>O, and 

Ill ( ~ -  K 2 62) ~ K 2 6~/4 log ~2 - kA' (p). 

Since both [k(p, q)[ and IA'(p)[ stay bounded as p ranges over [-a, b], there 
exists a KI < oe such that for all 62<min(fa ,  e -4) and pe[a, b] the preceding 
will hold for an le[-K~,  K1]. Finally, if ~2 is chosen so that 

1 1 
/ ~ 5 2  ~ l l o g  + K~ 6~/2 < 2 K  ~ '  

then one can check that ~p satisfies the required upper and lower bounds on 
(0, t~2) X SM. [] 

We now want to use the results in Theorem 3.18 to analyze the behavior 
of the two-point motion {r/t(z): te[Oo ~)} near the diagonal A. On the basis 
of what the derivative process {D G(Tr v)(v): t e [0, oo)} predicts, we should expect 
that the two-point process on/~t is recurrent when the greatest Lyapunov expo- 
nent 22 is strictly positive. Indeed, when 2~ > 0 we know that, r surely, 
JD~t(zrv)(v)[ grows exponentially fast as t ~ o o ;  and so it seems reasonable to 
guess that the paths G(x) and G(Y) tend to stay away from one another. In 
order to test this intuition, recall that .d' (0)= 22. Thus, when 2 ~ > 0, the convexity 
of ~ combined with the facts that . d ( -N)_>0  and 2 ( 0 ) = 0  imply both that 
2 has a negative absolute minimum value - f l  which is achieved at some point 
- p o e ( - N ,  0) and that 2 ( - 7 ) = 0  for some (unique) ye(0, N]. For ~e[0,  fl], 
define p(~)= - m a x  {p e ~ :  A(p)= - ~ } ;  in other words, p(a) is the unique p ~ [0, 
Po] which satisfies 2 ( - p ) =  - , .  

(3.19) Theorem. Given z=(x,  y)~M and R >O, define 

ZR(Z)=inf{t~O: dist(~t(x), ~t(y))=R}. 
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Assuming that the conditions in (2.8) hold and that 21>0,  there exist 6 > 0  and 
K <  oo such that whenever 0<dis t (x ,  y ) < R  <6: 

i) ~K (ZR(Z) < o0) = 1, 

121 l~ (dist(x, Y)) =E~r[ZR(Z)]= ~1 ii) R - - K <  < 1  log ( ~  y)) + K, 

~p(~) 
1 R ]P (~) _< E~ r [exp (e z R (z))] =_< K ( ~  y)j , c~ ~ [0, fl]. iii) K~d i s t~ ,  y)] 

Moreover, there exists a k~(O, 1) such that whenever 0 < e < dist (x, y) < k R < k6: 

iv) E ~ ['c R (z) exp (fl z R (z)] = o% 

1 e e 

Proof. The authors take this opportuni ty  to thank R.J. Williams for assistance 
with a preliminary version of this theorem. 

Let {(rt, Or): t e l0 ,  oo)} be the polar coordinate expression for two-point 
mot ion {th^~o(z): te[0 ,  oo)} stopped at time Z~o(Z); and let ~b~, 0 • K < o o  
and 6 > 0 be the quantities in Theorem 3.18 corresponding to [a, b] = [ - 7 ,  0]. 

Setting f ( t ,  r, O)=exp(flt)(~2p(~)(r, 0), we have, from i) in Theorem 3.18, 
that 

on N I x  (0, (~)x SM; and so, by It6's formula, for any 0 < e < d i s t ( x ,  y ) < R < 6 ,  
we have that for all bounded stopping times z which are dominated by 
�9 ~(z) ^ ~(z)  

E ~r I f (z ,  r~, 0~)] =<f(0, r o, 0o) 

where ro=dis t (x ,  y) and OoeS~M satisfies y=exp~(ro 0o). Hence, by the upper  
and lower bounds on ~b ___p~), we see that 

(3.20) E ~ [exp (flt), z~ (z) ^ ZR (Z) > t] < K 2 [ R A p~p) 
- \dist  (x, y)] 

and 

(3.21) E ~ [exp (fl z~ (z)), z~(z) < ZR (Z)] < K 2 k ~ ]  

Together, (3.20) and (3.21) imply that ~lK(%(z)A ZR(Z)< O0)= 1 and that  ~14r(z~(z) 
<ZR(Z)) ~ 0 as e ~ 0. Hence i) has been proved. 

To prove ii), we use ii) in Theorem 3.18 and It6's formula to show that 

___ E ~r [~ + (re, 0~)-- 21 z] _>_ +_ ~k -+ (ro, 0o) 
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for any bounded stopping time -c which is dominated by L(z)A Va(Z). Hence, 
using (3.20) and (3.21), we get 

+ E ~r r,~, + [r - c~'-~ ~(~,O~,,(z))-2~(z)]>=+~(ro,Oo) 

upon letting t---, oe and e ~ 0. Thus, by the upper and lower bounds on ~+ 
and ~ - ,  we now arrive at the estimates in ii). A similar argument using 
+_e~ yields iii) when e</3; and the case when e = f i  results from this 
by the monotone converge theorem. 

To prove iv), let e < f i  be given. Then A ' ( - p ( @ > 0  and, arguing as we 
did above, we can use i) and iii) of Theorem 3.18 to conclude that 

3 '  ( -  p (e)) E ~ [rg (z) exp (~ ~R (Z)) ~b + v(-) (r~,(~), 0~(~))3 

+ E'~ [exp(~'c a(z)) (_pe,)(r~,(~), 0~,(~))] > (_p(oo(ro, 0o). 

Using the bounds on r and (_p(~) together with the estimate on 
E ~ [exp(aZR (Z))] already obtained, we see that 

A'( - p (~)) KR - v(~) E ~ [z t (z) exp (e ZR (Z))] 

> A'(-- p (~)) E ~/ [ZR (Z) exp (~ ~R (Z)) ~b _+ p(~)(r~R (=), 0~R (z))] 

> (-p~)(ro, 0 o ) - E  r [exp(e ZR(Z)) (_p(~)(r~R(:), 0~R(z))] 

1 { 1 \ . _ (~) / R \p(v) / l \  
=>/~\w|l~ ~ , (d l s t (X , l s t t x ,  YU y)) v _ K 2 [ ~ ( ~ , ,  y~) K R- p(~). 

Hence 

E f  [ZR (Z) exp (e ZR (Z))] = (K 2 3 ' ( - -  p (@)-~ \dist (x, y)] 

x [(l~ dist}x, y ) ) -  K4 (l~ l)]" 

Because p(e)~p(fl)  and 3 ' ( - p ( @  ~ 0  as e ~ f l ,  we now see that iv) holds with 
k = exp ( - K4). 

Finally, to prove v), we apply the same sort of reasoning to ~b_+~ to obtain 

(~  (z) < rR (z)) E ~ [r (r~o(~, O~oc~)) r r. (z) < ~,~ (z)] 

+ ~ (~ (z) _-__ ~ (z)) E ~ [q~ _+, (r~ R (~, 0~,,~)1 ~ (z) __> ~,, (~)3 _= q~ • (ro, 0o). 

Using the upper and lower bounds on ~b+__~ and then rearranging terms in the 
preceding, we arrive at 

(3.22) E ~ (z, (z) < ~R (z)) > K - 2 (dist (x, y))- 7 _ R - 7. 
e-y_R-:,  
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and a similar argument applied to -q~-~ yields 

(3.23) E f (% (z) < zR (z)) < K2 (dist (x, y)) - ~ -  R-~ 
~ - ~ _ R - ~  

Clearly (3.22) and (3.23) together imply the existence of a ke(0, I) for which 
v) holds. [] 

(3.24) Corollary. Under the conditions of Theorem 3.19, there exist 6 > 0, K < co, 
and ke(O, 1) for which 

1 (  s ~' ---N E~  [ ~R[ (~) Z(o,~l(dist(~t(x),~t(y))d t] K \ d i s t ( x , y ) ] -  [ o e_ _~', <-K{ 
- ~ - \dist(x,y)] 

whenever 0 < e < dist (x, y) < kR < k6. 

Proof. Let 6, K, and k be chosen as in Theorem 3.19 and choose K1 so that 
log K 1 =221K.  Then 

E ~ [  ~(~)X(o,~](rt)dt] 
k 0 

> ~ (z~lr~ (z) < tR (z)) E ~ [inf { t > 0: r~ + ~n,~ (z) = e} [ %IK~ (z) < ZR (Z)] 

dis t (x ,y)] \21( l~ ) ' 

where we have used ii) and v) of Theorem 3.19. Clearly this proves the left 
hand side of the inequality when K is replaced by K~ = exp(221 7K). 

To prove the right hand side, set 

E r ~R(z) ] 
f(8)=dist(x.y) =esup ~'[  ! Z(o,.l(rr)dt d 

and let K2=(2K)I/L If dist(x, y)<~22 R, then K28<kR and so 

f(e)< sup E~[zK2~(z)]+ sup ~f/U(%(z)<zR(z))f(e) 
dist (x, y) = ~ dlst (x, y) = K2 e 

1 
_< ~-  log K 2 + K (1 + K2 rf(e)), 

where we have again used ii) and v) of Theorem 3.19. Hence, f(e)<2(~--~ log K2 

+ K) and therefore 

E ~ [ !  [ ~n(~) Z(o.~](rt) dt]<=~tg'( 'c~(z)<zR(z))f(e)=2K(~x~)(~logK2+K ) e ~ 1  [] 



Large Deviations and Stochastic Flows 205 

(3.25) Corollary. Under the same assumptions, 

~/C ( lira dist (~t (x), ~ (y)) > 0) = 1 
t ---~ oo 

for all (x, y)~f/l. 

Proof This is an immediate consequence of i) of Theorem 3.19. [] 

(3.26) Remark. The local stable manifold theorem for stochastic flows of diffeo- 
morphisms (cf. [7, Theorem 2.1.1]) implies, under much weaker conditions than 
those in (2.8), that if 2~ <0  then for all e > 0  and mL-almost every x ~ M  there 
is a 6 > 0 such that 

~K(dist (~t(x), ~(y)) ~ 0 as t --. 0) > 1 - 

whenever dist(x, y)<6. However, the local stable manifold theorem does not 
apply to cases when 2~ >0,  and this fact has motivated the analysis contained 
in the present section. In this connection, it should be clear that the functions 
constructed in Theorem 3.19 can also be used to study the cases when 2a=0  
or 2~ < 0. 

(3.27) Remark. It should be clear that the results obtained in Theorem 3.19 
and its corollaries are equally valid for the hitting times of the process 
{[D{t(nv)(v)[ te[O, oo)}. In this case, Theorem 3.18 is irrelevant and we replace 
I52) by T L a n d  qS~ by ~bp in the proof of Theorem 3.19; similar changes must 
be made to ~ and (v" 

4. More on the Two Point Motion 

We continue our discussion of the two point mention, only here we will not 
restrict our attention to what happens in a neighborhood of the diagonal. 

(4.1) Proposition. Either there is a non-empty compact C c f l  which is invariant 
under the two-point motion or for every 3 > 0 there is an ~ > 0 such that 

(4.2) sup E ~ [exp (~  % (z))] < 0% 
z = (x, y )e  )~'/: d i s t  (x,  y) ~ 6 

where rs(z) is defined as in Theorem 3.19. 

Proof Given 6 > 0 and z-- (x, y) ~/~r, define ao (z) = inf{ t > 0: dist (it (x), ~t (Y)) < 3}. 
It is then clear that z~--,a~(z) is an upper semi-continuous function and therefore 
that C ( 6 ) - { z ~ f 4 :  "g#(a~(z)<oo)=0} is closed. Moreover, since C(6)~_{zef4: 
dist(x, y)>6/2}, we see that C(6) is compact in 2~. To see that C(6) is invariant 
under the two-point motion, let ~(z) denote the first exit time of q.(z)=(~. (x), 
~. (y)) from C (6). If ~U (~ (z)< oo)> 0 for some z ~ C(6), then we would have that 

~#~(aa(z)< ~)=~/r and (~(z)< oo)>0, 
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which clearly cannot be. Hence, for each 5 > 0 the set C(5) is a compact subset 
of ~ and is invariant under the two-point motion. 

To complete the proof, we need only show that if C(5)=0 for some 5 > 0  
then there is an e~ > 0 for which (4.2) holds. But, again by upper semi-continuity, 
if C(5) is empty, then there exist T~(0, oo) and e~(0, 1) such that ~(a~(z)< T)>e 
for every z=(x, y)~M with dist(x, y )>& Hence, by induction "tK(ao(z)<nT) 
< ( 1 -  ~)" for all n e Z +; and so the existence of e0 is assured. [] 

Obviously, if the C4=0 of Proposition 4.1 exists, then the two-point motion 
admits an invariant measure which is concentrated on C and there is no hope 
that the two-point motion started in C will ever approach the diagonal. Thus, 
from now on, we will be assuming that no such C exists. Note that, by the 
support theorem for diffusions, the non-existence of C is equivalent to the state- 
ment that for each z e ~  and 5 > 0  there is control ueC([0, oo); ~a) such that 
the path ~ ( . ,  z; u) determined by 

d 

q'(t, z; u)= y~ ~ v' t Uk(t) Xk ((,z;u))+XtoZ)(~(t,z;u)) with ~(O,z;u)=z 
k = l  

gets to within a distance 5 of A. Thus, by Proposition 4.1, the existence of 
such controls means that for each 5 > 0 (4.2) holds for some c~ > 0. 

We now want to apply Khas'minskii's construction (cf. [15]) of invariant 
measures to the two-point motion. For 0 < 6 1 < 6 2 ,  set Ui={(x, y ) sM:  dist(x, 
y) < 6i} and let Fi = 0 Ui. Using induction, define 

ao(z)=inf{t >O: ~/t(z)eFt}, 

a',(z) = inf{t > a,(z): ~h(z)eF2}, 

a,+ 1 (z)=inf{t> a',(z): th(x)~Ft}. 

Under the assumptions made in (2.8), 21 > 0  and (4.2) imply that the times 
~r,(z) and a',(z) are almost surely finite so long as 52 is less than the 6 appearing 
in Theorem 3.19. In fact, one then has that 

sup E ~ [al  (z)-- o- o (z)] < or. 
ze~I 

For n > 0  and z~s set Z,(z)=q,,(z). It is then easy to see that {Z,: n>0} 
is a Markov chain with transition function H(z, .)=~Ko(Zl(z)) -1. In order 
to make sure that this Markov chain is ergodic, we will assume that 

(4.3) Lie(TXt,  ..., TXd)(v)=TvTM, vETM with IvL@0. 

It should be noted that (4.3) is a considerably stronger assumption than that 
made in (2.8). In the first place, it places conditions on the entire derivative 

D ~, (~ v) (v) 
process D ~t(nv)(v), not just the angular part ]D ~t(nv)(v)l" Secondly, and perhaps 

more seriously, the vector field TXo is excluded from the generators of the 
Lie algebra. 
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(4.4) Lemma. Assume that (4.3) holds. Then there exists a 3> 0 such that 

Lie (X(12), ..., X~ 2)) (z) = T~ 

for all z=(x ,  y )6M with dist(x, y)<6.  I f  in addition, 21>0, then 3->0 can be 
chosen so that whenever 0 < 62 ~ ~ the transition function 11 (z, ") for the Markov 
chain {Z,  (z): n => 0} admits a unique invariant measure ft. In fact, H (z, .) is equiva- 
lent to ft for each z~F 1. 

Proof To check the assertion about the Lie algebra generated by the Xtk2)'S, 
note that (4.3) is equivalent to the statement that for any O~SM, ueToSM, 
and s e ~  1 with s2+ [u] 2~= 0, there is a V~ Lie(X1 . . . .  , Xa) for which 

<u, rz(o)>+s<vv(~o)(o), o>.o. 
Since 

{(0, u, s): OeSM, ueTo SM, selR l, and s 2 + [ul z = 1} 

is compact, it follows that there is an m e Z  + and vector fields 
V~ . . . .  , V,,eLie(X1, ..., Xe) such that 

m 

F~ Ku, ~(o)>+s<VV~(~o)(o), o>1>__~ 
I = 1  

for some e > 0  and all OeSM, ueToSM, and selR i with s2 +]ul2= 1. The required 
result about Lie(X] 2), ..., X~ 2)) now follows by applying Lemma 3.6 to each 
of the vector fields V(2), ..., V~ 2). 

To prove the assertion when 21 > 0, first note that, for every Borel set A c F1, 
the function 

z ~ ( ~ o ( z )  EA) 

is L(/)-harmonic in M \ F 1  and therefore is smooth on that part of M \ F I  where 
Lie(X] 2) . . . .  , X~ z)) has full rank. Combining this with Bony's strong maximum 
principle (cf. [-6, Theorem 3.1]) and noting that SM is connected since M itself 
is, one sees that for any given A either iv/(., A)-=0 or it is uniformly positive 
on El .  From these observations and the standard ergodic theory for Markov 
chains, the existence of a ~ with the required properties is immediate. [] 

(4.6) Theorem. Assume that (4.2) and (4.3) hold and that 21 > O. Then there exists 
a unique probability measure # on M such that 

.[ f ( th(z))dt  ~ I f d #  t ~ o o  = l  
o 

for every bounded measurable f: )VI ~ 11t I and z~ M. In particular, # is the unique 
probability measure on f/I for which two-point motion is invariant. Moreover, 
/f 7~(0, N] is the number defined just before Theorem 3.19, then 

1 
~-e~< #((x, y)~2~: dis t (x , y )<e)<Ke ~ 
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and 
�9 1 

~gF ~V<=llm ~ ~ Z(o,,l(dlst(~t(x),~z(y))dt<=Ks~ =1 
1 o o l  0 

for some K < oo and all sufficiently small e > O. 

Proof. The passage from the fi of Lemma 4.5 to the existence of # is carried 
out in [15J : one simply takes # to be the normalization of the measure 

ffl(Z) ] 

A ~ - - - ~  ~ E ~ ~ ZA(q~(z))dt]fi(dz). 
F 1 0 

In addition, the asserted ergodic properties follow immediately from the equiva- 
lence of the transition funct ions/ / (z , . )  with the measure ft. Thus, all that remains 
is to use the results obtained in Corollary 3.24 to obtain the asserted estimates 
on #. []  

(4.7) Remark. There are several comments which should be made about  the 
preceding. In the first place, the condition (4.3) is certainly more than one needs 
to get the conclusions in Theorem 4.6. Secondly, the ergodicity asserted in Theo- 
rem 4.6 is not a consequence of Doeblin's theorem since, by Theorem 3.19, 

E ~ [ ~ ( z ) ]  -~  00 

as z ~ A ; and therefore it must be true that 

sup ~gr (dist (~t(x), ~,(y)) < 6) = 1 
zc~ /  

for every t>0 .  Finally, it is interesting to compare the invariant measure # 
just constructed for the two-point motion to the measure m L which is invariant 
for the one-point motion. Indeed, only when 7--N,  in which case Corollary 2.14 
says that mL is ~K-almost surely preserved by the flow it, is #=m21~.  When 
0 < 7 < N, the measure # will have more mass near A than will m~. 

Appendix 

The purpose of this appendix is to derive a somewhat more closed expression 
for the Donsker-Varadhan rate function J(#) when the diffusion generator is 
a tame perturbation of a hypoelliptic symmetric operator (see Theorem A.8 
below)�9 Similar results, in a slightly different context, were investigated previously 
by R. Pinsky in [19]. We begin by recalling some basic facts about  the symmetric 
case. 

Let M be a compact manifold and m a positive smooth probability measure 
on M. Supose that {X1, ..., Xa} ~_ F(TM) are given and assume that 

(A.1) Lie(Xt . . . .  , Xa)(x)=TxM,  x e M .  
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d 

Define L ~~ = - �89 ~', Xk * Xk on C~~ where X* is used to denote the formal 
k = l  

adjoint of XeF(TM) relative to m; and denote by P~ x, ") the transition 
probability function for the diffusion on M determined by 5e ~ Then, by 
H6rmander's Theorem, P~ x, dy)=p~ x, y)rn(dy), where p~176 oo) 
x M x M ) .  In addition, because 5P ~ is symmetric in LZ(m), p~ x, y)=p~ 

y, x) for all (t, x, y)~(0, o e ) x M x M ;  and therefore the semigroup {po. t>0} 
on C(M) given by 

~o q~(~) = ~ ~(y) po (t, ~, ~y) 
M 

has the property that liP t2 q~ II L2(,,)< II ~ II L2Cm), t > 0. In particular, there is a unique 
strongly continuous contraction semigroup { ~ :  t>0} on L2(m) such that 

0 Pt [c(~)=Pt , t>0.  Use ~ to denote the generator of { ~ :  t>0}. Clearly, 7 ~ 
is non-positive and self-adjoint. Set 

E(~, @= I1(- ~~  1/2 ~ II b<.~> 

for qbeDom(g)_=Dom((--~~ 1/2) and g(qS, (~)= oo for ~beL2(m)\Dom(g). Final- 
ly, given XeF(TM) let X denote the minimal closure of X as an operator 
on L2(m)(i.e. X =(X*)*). 

d 

(A.2) Lemma. Dom(g)=  0 D~ In particular, for every ~beDom(d~ �9 
1 

d 

d~ ~b)=�89 Z ~ (XkO) 2dm 
1 M 

and there is a sequence {~b,}~ ~ ~_ C ~ (M) such that 

lie + ~ ( X  k q~,-Xkq~) 2 dm=O. 
1 

Finally, if g ~ Dom (~), then X k (g2 )  = 2 gX k g, 1 < k < d, in the sense that 

g2X*~dm= ~ ~(2gXkg)dm 
M M 

for all ~,eC~(M). 

Proof First note that, for each t>0,  ~ maps L2(m) into C~(M) and there- 
fore that ~ is the minimal closure in L2(m) of ~oo on C~(M). Thus, since 
Graph((--~-V)l/2lOom(~)) is dense in Graph((- -~) l /2) ,  we see that forevery 
q~ e Dom(g) there is a sequence {~b,} ~o c C ~ (m) such that 
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At the same time, 

d 

E(r  ~ ~b_S-~176162 d m = l ~  ~ (Xkr c~eC~(M). 
M 1 M 

Combining these, we arrive at the stated properties of & 
To prove the final assertion, simply approximate g~Dom(g) in the 

Graph((-~~ by g,'s from C~176 [] 

We now recall a result due originally to Donsker and Varadhan [11] (cf. 
Theorem (7.44) of [-20]). Namely, define jo(#)  for #~C(M)* so that 

if # e ~ ( M ) ( =  {#eC(M)*: # is a probability measure}) and jo(#)  = oo otherwise. 

(A.3) Lemma. For any ps i (M) ,  J~  if and only if #~m and 
d# 

fl/2eDom(g), where f - ~ m '  in which case jo(#)=g(f l /2 ,  fl/2). 

Next, suppose that 

and define 

E= i e(C~176 d 

LO-dJ 

d 

~ z  = ~o + ~ cr k Xk 
1 

on Coo (M). At the same time, define jz(#)  for #eC(M)* so that 

~q'Zu d ueC~176 +} J~(#)=sup  { - - ~  f ~ u  #: 

if # r  and jz(#)  = oo otherwise. 

(A.4) Lemma. For every #e C(M)*, 

d d 

�89 j o  (p)_ ~, ]l tTk 1[ 2 < j r ( # ) <  2 jO (#)+ ~ }1 r k II 2. 

1 1 

In particular, if # ~ ( M ) ,  then j z ( # ) <  oo if and only if #~rn and fl/2~Dom(d~), 

where f -  ~m" 
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Proof  Note that, by writing 1 + u  as ce -~, the expressions for J~  and Jz(/0 
become 

and 

1 

e c o~ (M)} 

so long as # ~ ( M ) .  Hence, f o r / ~ ( M ) ,  

J s (# )=s~  p 2~q~176 ~- - �88  (X'qS)2i d # - ~ ' S 1  M [(ak--�89 

<sup 5f~188 2 d + /IO-kll 2 
(b LM i 

d 

=2J~ II~ll ~. 
1 

The lower bound on jz(#)  in terms of j o  (#) is obtained in a similar fashion. [] 

Given #eN(M), let II" [1~ denote the L2(#; lRe)-norm and set Yf(#) equal 
to the closure in L2(#; N~ d) of {X~b: qSeC~ (M)}, where 

I x, 
X~b = LX:a~]" 

Also, denote by X(#) the orthogonal projection in L2(#; IR d) of S onto Jf(/~). 
We may and will assume that 

where the u, ak s are MM-measurable from M to ]R 1. 

(A.5) Lemma. The map i~E~(M)w-~PS(l~) == - r] X(kt)Jl 2 is weak* lower semi-continu- 
ous and convex. 

Proof  Simply observe that 

and that 
pz(#) = irX]12_ rl ~ _  z (~) l l  2 

H Z-Z(#)rl2 =inf{llZ--Xq5 Ip2:q5 e C~~ (M)}. [] 
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(A.6) Lemma. Let #e~(M) and assume that d#=f dm where fl/ZeDom(g). 
Then 

~r ~J  ~- ~ J -  ~J ~J, J i,.- 

< 2  Proof. Choose {~9,} ~ ~ C ~ (M) so that II Z ( ~ ) -  X 0n [I. = for n > 1. 
n 

From each n > 1, 

J x ( # ) = s u p {  I S x ( 4 + O , ) d g - � 8 9  2: q~eCoo(M)}; 
M 

and for each ~b e C OO (M), 

M 

= S ~ ~ 1 8 9  z 1 
M 

+ (~ (~), x q~), + (z (~), x ~.),~ + S ~e~ ~.  d # 
M 

-= S J~189189 ~ ~~162 
M M \ r t l  

At the same time, by Lemma A.2, 

d 

~~ d#-= ~ f~o O. dm= - Z  (ft/2Xk O.) (JCkf a/:) dm 
M M 1 

d d 

= --~ ~ fl/2a~ Xkfl/2dm+~'~ ~ fl/2(a~--Xk ~n)Xkf 1/zdm 
1 M  1 M  

- = - 2  I fl/2a~ Xkf  ~/2dm+(9 . 
1 M 

Combined with the preceding, this now shows that 

S ~ ( 4  + ~J~ d # -  �89 II X(q~ + 0.)ll ~ 
M 

= ~ 5r176 d # - � 8 9  [[Xq~ II 2 +�89 Xf~/2),.+ (9 (1]  (1 + HXq~ ~l.); 
M ' , I t /  

and therefore 

(1--1)~~189 

<=(l+l) J~189 

from which the asserted result is immediate. []  

The authors thank S.R.S. Varadhan for the elegant proof of the following 
lemma. 
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(A.7) Lemma. Assume that p e ~ ( M )  and that dl~=fdm where f l / 2eDom(d  ~ 
and f >  ~ for some e > O. Then there exists a sequence {g,}~ ~_ C ~~ (M) such that 

Xg, y[fl/2 [ ~ 0  
f l / 2  . 

a s  t l - - . + o o .  

Proof. Choose {u.} _~ C~ + so that 

- ~  yOu" d --* t~ •(fl/2, f,/2), 

and set g ,=  log(1 + u,). Then 

•fl/2 2 

u =2~(f*/2 ' f l /2)  

~o Un . 
= l i m  - 2 ~  l + ~ d # = l i r n  (X(l+f~u.),Xu.),. 

= lim [('Xf, Xg,),,-IIxg.l123 
n --+ oo 

[2 [Xf'/2 X ~ ] : l i m [  [ ~ F - ,  g , ) - H X g ,  ll 2 ,  

where each of these steps is trivial when f is smooth and can be justified in 
general by an easy approximation procedure. [] 

(A.8) Theorem. For every # ~ ( M ) ,  

i s (p )  = jo(#)  + 1 p r ( p ) _ l  ~ X*. Zd#, 
M 

d 

where X*. s =- ~ X* ak. 
1 

Proof By LemmaA.3, it suffices to treat the case when dl~=fdm with 
fl/2~Dorn(d~ In addition, because both sides of (A.9) are weak* lower semi- 
continuous and convex, we need only prove (A.9) when, in addition, f > e  for 
some e>0, since otherwise we can replace # by ( 1 - e ) p + e m  and let e~0. Thus, 
we proceed under these assumptions. 

In view of Lemma A.6, all that has to be shown is that 

d 

Z S f l /2a~Xkf l /Zdm=�89  ~ X*.Sd# .  
1 M M 
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To this end, choose {g.} ~ as in Lemma A.7. Then 

Z I Jrl/2"UXkfl/2dm=~ a ~ - ~ d #  
1 M  1 f l  

= lim (S (/~), X g.)u = lim (Z, X g.). 
n --+ oo n --+ oo 

xs , ,2 ]  d = Z,~7~]~=~ ~ akfl/2XfX/2dm 
1 M 

d 

=�89 I fX~akdm=�89 I X*.Zd/z. []  
1 M M 
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