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Abstract. The channel assignment problem has become increasingly important in mobile telephone communica- 
tion. Since the usable range of the frequency spectrum is limited, the optimal assignment problem of channels 
has become increasingly important. Recently Genetic Algorithms (GAS) have been proposed as new computa- 
tional tools for solving optimization problems. GAS are more attractive than other optimization techniques, such 
as neural networks or simulated annealing, since GAS are generally good at finding an acceptably good global 
optimal solution to a problem very quickly. In this paper, a new channel assignment algorithm using GAS is 
proposed. The channel assignment problem is formulated as an energy minimization problem that is implemented 
by GAS. Appropriate GAS operators such as reproduction, crossover and mutation are developed and tested. In this 
algorithm, the cell frequency is not fixed before the assignment procedures as in the previously reported channel 
assignment algorithm using neural networks. The average generation numbers and the convergence rates of GAS 
are shown as a simulation result. When the number of cells in one cluster are increased, the generation numbers 
are increased and the convergence rates are decreased. On the other hand, with the increased minimal frequency 
interval, the generation numbers are decreased and the convergence rates are increased. The comparison of the 
various crossover and mutation techniques in a simulation shows that the combination of two points crossover 
and selective mutation technique provides better results. All three constraints are also considered for the channel 
assignments: the co-channel constraint, the adjacent channel constraint and the co-site channel constraint. The goal 
of this paper is the assignment of the channel frequencies which satisfied these constraints with the lower bound 
number of channels. 
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1. Introduction 

There is an increasing demand for mobile telephone communication. At the same time, the 
usable range of the frequency spectrum is limited. Optimal frequency channel assignment 
is an increasingly important problem in order to use the available frequency spectrum most 
efficiently. In this paper, we describe the channel assignment algorithm which uses the Genetic 
Algorithms (GAS) [ 11. 

GAS are adaptive search techniques that can find the global optimal solution by manip- 
ulating and generating recursively a new population of solutions from an initial population 
of sample solutions. The appropriate GAS operators such as reproduction, crossover and 
mutation, are developed by using a natural selection. 

The following three conditions are considered as the electromagnetic compatibility con- 
straints which were adapted in [2-51: 1) co-channel constraint (CCC): for a certain pair of 
radio cells, the same frequency can not be used simultaneously; 2) adjacent channel constraint 
(ACC): the adjacent frequencies in the frequency domain cannot be assigned to adjacent radio 
cells simultaneously; 3) co-site constraint (CSC): any pair of frequencies assigned to a cell 
should have a minimal distance between frequencies. 

The channel assignment problem is the assignment of the required number of frequency 
channels to each radio cell such that the above constraints are satisfied. When the co-channel 
constraint is considered only, this channel assignment problem is known to be equivalent to a 
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graph coloring problem [6]. The graph coloring problem is a NP-complete problem [7], so an 
exact search for the best solution is impossible and the complexity of searching computation 
for the optimum solution grows exponentially as the problem size increases. Recently, neural 
networks [2, 5, 8, 91 and simulated annealing [lo] have been considered for the channel 
assignment problems. Neural network algorithms [ 11, 121 are based on the behavior of the 
neurons in the brain. Simulated annealing [ 131 is a searching optimization technique which 
is based on a physical, rather than a biological process. One major disadvantage of a neural 
network is that it gives the local optimal value rather than the global optimal value, and the 
solution varies depending on the initial values. Simulated annealing is a stochastic algorithm 
which gives an optimal solution but may take a long time to find an optimal solution. On the 
other hand, GAS are generally good at finding an acceptably good solution to a problem very 
quickly, although GAS are not guaranteed to find the global optimum solution to a problem 
D41. 

Gamst [4] defined the compatibility matrix C = (qj), which is an N x N symmetric matrix 
where N is the number of cells in the mobile network, and qj is the minimum frequency 
separation between a frequency in cell i and cell j. For example, cij = 0 indicates that the 
same channel can be used in cell i and cell j. Hence, CCC and ACC can be represented in 
matrix C by qj = 1 and cij = 2, respectively. CSC also can be represented by the certain 
value of c+ The number of required channels for each cell i is presented by the demand vector 
M = (mi) where 1 5 i 5 N. Let fik indicate the assigned frequency for the lath call in cell 
i where 1 5 i 5 N and 1 5 Ic 2 mi. The condition for the compatibility constraints is the 
following: 

(1) 

where 1 5 i, j 5 N and 1 5 Ic, I 5 mi. The channel assignment problem is to find the value 
of fire which satisfies the constraint conditions when the number of cells in the mobile network 
N, the demand vector M and the compatibility matrix C are given. 

The contribution of this paper is in the application of GAS to assign frequency channels 
with appropriate genetic operators and an energy function. The proposed assignment technique 
uses the implicit parallelism of GAS to find the frequencies which satisfy all constraints. An 
energy function is derived which represents the constraints that should be satisfied in order 
to find the best assignment. The various genetic operators and representation structure for a 
population are developed and compared. 

Also in this paper, the cell frequencies are not fixed before the assignment procedure 
as in the previously reported channel assignment algorithm [5]. In [5], wide variations of 
performance could occur with its algorithm depending on which cells are fixed and how the 
frequencies of the fixed cells are assigned. 

Section 2 presents a short introduction to GAS. In section 3, GAS are applied to charmel 
assignment problems and the various GAS operators are explained. Section 4 presents the 
simulation results. 

2. Genetic Algorithm 

Genetic Algorithms (GAS) [14-l 61 are adaptive methods which may be used to solve search 
and optimization problems. GAS are algorithms based on an analogy with nature as are neural 
networks. GA techniques are robust and they can deal successfully with a wide range of 
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problem areas such as image processing [ 171, routing problems [ 18, 191, and load balancing 
for distributed systems [20]. 

The idea of a GA is that the combination of good characteristics from different ancestors 
can produce super-t offspring whose fitness to the new environment is greater than that of 
either parent. In this way, the species can evolve to become more and more suited to their 
environments. The highly suitable individuals are given opportunities to reproduce, by cross 
breeding with other individuals in the population, This makes new individuals as u$pring, 
and this offspring shares some features taken from each parent. By favoring the mating of the 
more suitable individuals, the most promising areas of the search space are explored. If a GA 
has been designed well, the population will converge to an optimal solution to the problem 
[ 141. Crossover is the randomly chosen point which cuts two individual chromosome strings in 
two pieces, head segments and tail segments. Rvo tail segments are swapped over to produce 
two new full length chromosomes. The mutation is applied to each child individually with very 
small probability, after the crossover. The mutation provides a small amount of random search 
and helps ensure that no point in the search space has a zero probability of being examined. 
However, the crossover is more important for rapidly exploring a search space [14]. When a 
GA has been correctly implemented, the fitness of the best and the average individual in each 
generation increases towards the global optimum. Convergence is the progression towards 
increasing uniformity. 

3. Genetic Algorithm Approach 

Generally, GAS have two steps in the algorithm. First, the initial population is needed. Second, 
for each generation, GAS are operated for the solution by evaluating the energy function. If 
one has a smaller value of this energy function, it is more desirable for the optimization of the 
problem. It will be described later in greater detail. 

GAS are randomized parallel search strategies which can find the optimal solution for a 
particular problem by seeking the maximum/minimum of an appropriate energy function. The 
strength of GAS lies in finding very quickly good optimal solutions in a complex search space. 
This is the reason for using GAS over other optimization techniques, such as neural networks 
[ll, 121 and? simulated annealing [13]. 

3.1. POPULATION AND STRINGS 

A GA is an iterative procedure that maintains a set of candidate solutions called the population 
P(t) for each iteration t. At each iteration a new population P(t + 1) is created from the 
previous population P(t) using a set of genetic operators. 

A population consists of a number of possible candidate solutions called strings S,. where 
1 < r 5 P and P is the population size. Each string consists of an array of genes which 
may take some values called alleles. A GA starts with P(O), a randomly generated initial 
population of possible solutions. During each iteration t, called a generation, strings in the 
current population P(t) are evaluated on the basis of a fitness function. After evaluation, strings 
that have high performance (goodness factor) relative to the performance of the other strings in 
the population are selected to be used in the next generation (t + 1) to create a new population, 
P(t+ 1). This iterative process of creating new strings is called reproduction. To generate a new 
population for next generation, usually two selected strings are recombined by specific genetic 
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Figure 1. Structure of the population strings. 

operators such as crossover and mutation. This process is called recombination. In GAS, the 
choice of the fitness function and the genetic operators will dominate the performance. 

A population can be represented by an array of strings (individuals) as depicted in Figure 1. 
The rows of the array represent strings in a population, and the columns represent the channel 
numbers which will be assigned. There are P strings for a population and each string has Q 
calls which is the total number of calls in the system. The total number of calls in the system, 
Q in the model-database, is a sum of the number of calls in all cells which is given by 

Q=Emi (2) 
i=l 

where each cell i has mi calls. 
A string S, is composed of N substrings which is the number of cells in the network. Each 

substring Sri (for cell i) is composed of rni calls. 
For example, the rth string S, in a population P(t) may be S, = (1,2,3, . . . , j, . . . , Q) 

and a substring Sri for the cell i in string S, may be S,.i = (1,2, . . . , mi), therefore, S, = ST1 
S . . . S-N. A PxQ two-dimensional array is constructed to implement a number of strings 
(ariopulation) as shown in Figure 1. In classical GAS, each gene is represented as a binary 
bit, however, in our algorithm we assign an integer value to each gene which represents the 
frequency numbers. 

3.2. ENERGYFUNCTION 

We define the energy function for each constraint. CCC and ACC are considered together 
since both constraints can be represented by the value of Gj when i # j. 

1) Energy function for CSC: 
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For CSC, the energy function ECSC, for each cell i is given by 

Ecsc, = E & 
k=l 

(3) 

where 

Vik = 1 if lfik - fi(k+l)\ < % or ifik - fi(k-l)l < cii 

0 otherwise (4) 

&k represents the satisfaction state for CSC. If CSC is not satisfied, then Kk = 1. On the 
other hand, if CSC is satisfied, then v& = 0. 

The energy function for each string S,. which includes all cells is given by 

N mi 

i=l k=l 

2) Energy function for ACC and CCC: 
Energy function for ACC and CCC for each string, EAC is given by 

N mi N mj 

EAC=CCCCKkjl 
i=l kc1 j=l 1~1 

where 

vikjz = l if lfik - fjll < Cij 
0 otherwise (7) 

i and j indicate the cell numbers and k and I are call numbers in each cell. 
Finally, we consider the total energy function for each string ST 

Es, = &scs, + EACH, (8) 
N mi N mi N mj 

= ~~I/lik+~~~~~kjl 
i=l k=l i=l k=l j=ll=l 

(5) 

(6) 

To reproduce offspring, each string of parents should have a probability to be selected. Our 
fitness for reproduction consists of probabilities of selection in order to choose more strings 
which have good candidate solutions. The fitness function for this selection is given by 

1 
Fs, = (9) 

where S, is the string number and P is the population size. 

Initial population: The procedure of the initial population for each string is as follows: 
1. For the cell i* with the largest number of calls, the channel frequency for the kth call is 

given by fi*k = (k - 1) x y + 1. y is the minimal frequency interval in the maximum 
demand cell i*, and is given by y = [El w h ere LB is the lower bound of the total 
number of required frequencies in the system and y > Eli*. 
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2. For the cell i with the next largest number of calls, 
a) compute the number of available frequencies in the subgroup whose size is y. 
b) In the available frequency block from step a), randomly choose the frequency. 
c) Randomly choose the frequency subgroup to assign the frequency. 

Assign the frequency in the chosen subgroup and assign the next frequency for the 
next call by the interval of y with the previously assigned frequency. The assignment 
also should satisfy the condition of pi* according to CCC or ACC. 

d) Repeat step c) until all calls have the assigned frequencies. 
3. Repeat step 2 until all cells have the assigned frequencies. 

In the simulation of this paper, the population size is set to be 200. Hence, the initial population 
procedures are repeated 200 times. 

Reproduction: After calculation of the fitness function, a certain pair of strings should 
be selected for the parents. A simple biased roulette wheel is used to select strings for our 
experiments. Each string in the population has a roulette wheel slot size in proportion to the 
ratio of its fitness over the total sum of fitness in the population. A random number between 
0 and 1 is generated for each selection. A string is selected for reproduction if the random 
number is within the range of its roulette wheel slot. The copy of the selected string is gathered 
into a mating pool, in which they are mated for further genetic operation. Strings which have 
higher fitness have higher probabilities of selection so that those with higher fitness produce 
more offsprings than those with lower fitness in the next generation. 

Crossover: The reproduced strings in the mating pool are mated under crossover operation 
at random. Crossover operation is performed with a pair of substrings in the mated strings 
for each model. Three crossover techniques are considered: uniform crossover [21], one point 
crossover and two point crossover. 

- Uniform crossover (X0): If the random generated probability P,f for each assigned 
frequency in a substring Sri, is greater than the crossover probability PX (P,f > Px), 
the assigned frequencies are swapped in the mated strings. It is repeated for all frequencies 
in all substring Sri where 1 5 i 5 N. 

- One point crossover (Xl): If the random generated probability P,. is greater than the 
crossover probability PX (Pr > Px), the crossover point is generated randomly and the 
frequency strings after the crossover point are swapped in the mated strings. 

- Two point crossover (X2): If PT > Px, two crossover points are generated randomly and 
the assigned frequencies between two crossover points are swapped in the mated strings. 

Mutation: Mutation is a process to find a new search space by changing the value of 
a randomly chosen position in a substring chosen at random. Although reproduction and 
crossover operators will search the solution space effectively, occasionally they may lose 
some useful solution patterns. The mutation operator will prevent such an irrecoverable loss 
and will protect the algorithm from becoming trapped in a local minimum. This will enable it 
to jump to the global minimum. In this paper, we consider the five mutation techniques: 

- Mutation 1 (Ml): If the random generated probability P, is greater than the mutation 
probability PM (PT > PM), assign the randomly selected frequency fir to the 1st call of 
the cell i and assign (fi(j-l) + 7) to the next call j where 2 2 j 2 mi, according to CSC. 

- Mutation 2 (M2): If P,. > PM, move the every assigned frequency fij for the call j in 
the cell i to the call ((j + Z) mod mi) where I is the randomly chosen integer and I < y. 

- Mutation 3 (M3): If P, > PM, change the every assigned frequency fij of the call j in 
the cell i to (fij f A) where A is the randomly chosen small integer. 

- Mutation 4 (M4) and Mutation 5 (M5): 
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Figure 2. The 21 cell system used in this paper. 

Table I. Specification of the problems and simulation results with two point crossover 
(X2) and mutation technique M5. 

Problem No. Cell # IV, ACC Cii LB Ave. Gen. NO. Conv. Rate 

1 21 12 1 5 381 26.95 49150 
2 21 7 1 5 381 0.28 50150 
3 21 12 1 7 533 5.07 50150 
4 21 7 1 7 533 0.0 50150 
5 21 7 2 7 533 7.43 50150 

1. For the already assigned frequency of each cell, compare its frequency with the 
frequency of other cells. 

2. Calculate the frequency difference from step 1 and compare it with the compatibility 
matrix. 

3. If the frequency difference from step 2 is the less than the value of the compatibility 
matrix and P, > PM, 
a) M4: it is mutated by Mr. 
b) MS: it is mutated by Ml and Ms. 

In mutation techniques M4 and M5, only when the already assigned frequencies do not fit the 
compatibility matrix, it executes the mutation. Therefore, if the already assigned frequencies 
prior to the mutation procedure satisfy the compatibility matrix, the mutation process does 
not occur since they are already fitted offsprings for the environment. 

The energy function, the fitness function and the creating procedures of new strings generate 
new populations until the termination condition is reached. Once termination condition is 
reached, the best string in the final population will be chosen as the solution. Iteration of GAS 
may terminate by determining the maximum number of iterations or after finding the string 
S, which has Es, = 0. 
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4. Simulation Results 

The cellular network system for this paper is the 21 cell system [22] which is shown in 
Figure 2. The total number of calls is 48 1, which is the sum of the calls in the total number of 
cells. The population size is 200 and the maximum number of generations is fixed at 100. The 
algorithm can be terminated prior to the 100th generation if and only if the algorithm could 
find the string S,. which has Es, = 0. The crossover and mutation probabilities are set to be 
Px = 0.9 and PM = 0.03, respectively. When multiple mutation techniques are used, the sum 
of all mutation probabilities is set to 0.03. Table 1 shows the specification of the problems. 
The 5 cases, Problems #1-#5 in Table 1 which were used in [5, 231, are experimented as a 
benchmark. iVc is the number of cells in one cell cluster and ACC implies the presence of 
adjacent channel constraint (ACC) on adjacent cells. A “2” or “1” in ACC column implies 
the presence and absence of ACC respectively. The co-site constraint (CSC) is indicated by 
the value in column Q. LB is the theoretical lower bound of the number of required channels 
which is obtained using the bounds in [22]. In [23], 8 problems are considered since the 
constants N,, ACC and cii have two values each. In [23], various algorithms are proposed 
and their performance compared in terms of total number of required channels which is 
sometimes greater than theoretical LB. However, our paper has a different objective. Our 
paper shows the feasibility of GAS in channel assignment problems and the various crossover 
and mutation techniques in GAS are proposed and investigated with the given LB as an input. 
If the number of available channels are increased as in [23], which is larger than theoretical 
LB, the channels for all calls in each cell for remaining three cases, can be assigned without 
violation of constraints. The performance of these techniques in GAS are compared in terms of 
convergence rate and average generation number to the solution. GA is a heuristic optimization 
technique which is not always guaranteed to find the global minimum (e.g., successful channel 
assignment without violation of constraints). Therefore, the convergence rate is an important 
parameter to compare the performance. A similar objective was pursued in [5, 2, 241 using 
neural networks. In [5], the results are also compared in terms of convergence rate and average 
iteration numbers, for the cases whose channel assignments are possible with the theoretical 
LB. Hence, the remaining three cases are not considered in [5]. 

Figure 3 (a) and (b) show the compatibility matrices for Problems #l and #5 as examples, 
which have ACC = 1 and ACC = 2 respectively. Figure 3 (c) shows the demand vector 
which is used for the simulations. Table 1 also shows the results of simulations with two point 
crossover (X2) and mutation technique M5. The average generation number is the average 
number of generations until Es, = 0. Convergence rate is the probability that the experiment 
has Es, = 0 before the maximum generation number. To investigate the number of generations 
and the convergence rate, 50 simulation runs were performed from the different initial seed 
values for random generators for each of the five problems. 

In our GAS, the frequencies for the cells are assigned in order of the number of calls in the 
cell. In Table 1, Problem #l with the large NC has a larger average generation number and a 
smaller convergence rate than Problem #2 with the small N,, when they have the same value 
of cii and same application of ACC. When the value of NC is large, there is more cells in 
one cluster and the reusable distance of the same frequency is increased. With the increased 
reusable frequency distance, the number of assignable frequencies for other cells within the 
minimal frequency interval whose size is y, is decreased. It causes more generation numbers 
and less convergence rates. On the other hand, in the case of Problems #l and #3, Problem # 1 
with the small pi has a larger average generation number and a smaller convergence rate than 
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Figure 3. Compatibility matrix and Demand vector (a) Compatibility matrix for Problem #l. (b) Compatibility 
matrix for Problem #5. (c) Demand vector for all problems. 

Problem #3 with the large cii, when they have the same value of NC and same application of 
ACC. When the value of qi is larger, LB is increased and the minimal frequency interval y 
is increased. Within the increased interval y, there will be more assignable frequencies and it 
is easier to assign the frequencies without the violation of the constraints for the calls in other 
cells 

In Problem #4, the generation number is 0. This means that during the initial population 
procedure, the frequencies of all calls in every cell, which satisfy the constraints condition, 
are found. Problem #5 is the same as Problem #4 except the application of ACC. It shows 
that the ACC application causes more generation numbers for the solution with no decrease 
in the convergence rate. Table 1 also shows that all problem cases have 100 % convergence 
rate except Problem #l which has 98 %. The convergence rates of our results are equal to or 
higher than the ones given in [5]. For example, the convergence rates of Problems #l and #3 
in [5] are 93 % and 100 %, respectively. Also in [5], they fixed a couple of frequencies in 
certain cells for the acceleration of the convergence time. The convergence time and rates will 
be totally different depending on which cells are fixed and how the frequencies of the fixed 
cells are assigned. In our GAS, the frequencies are not fixed. The average iteration number 
to the solution for Problems #l and #3 in [5] is 147.8 and 117.5, respectively. Although the 
average generation numbers in GAS and the average iteration numbers in neural networks 
cannot be compared directly since they are different in computational complexity, it shows 
that the average generation numbers of GAS are relatively smaller. 

Another advantage of using GAS in this problem, is the simple hardware implementation 
since GAS needs the function of only swapping and shifting, rather than the adder, the 
comparator and the inverter as in the neural networks. The second advantageous characteristic 
of GAS is its implicit parallelism. In GAS, the all crossover (or mutation) operators of the 
strings can be processed at the same time since the outputs of these operators are not used 
as the inputs of other operators like in the neural networks. Refer to [3] for the detailed 
comparison of genetic algorithms and neural networks. 

In [23], the algorithm results are shown from 8 different cases. The 8 difference cases are 
from the combination of 3 different techniques in which each of them has two kinds of methods 
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Table 2. Comparison of the various crossover and mutation techniques for Problems #l 
and #3. 

Crossover Mutation Problem #l Problem #3 
Ave.Gen.No. Conv.Rate Ave.Gen.No. Conv.Rate 

x0 Ml 23.81 33150 4.89 39150 
x0 M2 20.91 38150 5.28 49150 
x0 M3 27.60 28150 5.54 50150 
x0 M4 17.84 44/50 4.44 50150 
x0 M5 23.54 42l50 4.88 50150 

Xl Ml 27.31 35150 4.98 50150 
Xl M2 22.99 33150 4.89 48150 
Xl M3 25.86 23150 5.51 50150 
Xl M4 20.17 45150 4.58 50150 
Xl M5 25.37 45150 4.74 50150 

x2 Ml 28.78 33150 7.08 48150 
x2 M2 21.61 29150 8.80 47150 
x2 M3 28.64 28150 6.95 49150 
x2 M4 22.26 46150 5.15 50150 
x2 M5 26.95 49150 5.07 50150 

(2 x 2 x 2 = 8). The used constraints in [23] are 3 constraints: the co-channel constraint, 
the adjacent channel constraint and the co-site channel constraint. The same constraints are 
applied in our paper. The basic idea of their algorithm is to list the calls in the cells in some 
order. The 3 different techniques used in [23] are follows: 

1. According to the frequency assignment methods [25,4]. 
Infrequency exhaustive strategy, assign the least possible frequency to each call starting 
at the top of the list. In requirement exhaustive strategy, assign the frequency #l to the first 
call in the list and reassign the same frequency #l to all calls in the list if the assignment 
does not violates the constraints. Assign the frequency #2 to the next call and other possible 
calls, and so on. 

2. According to ordering method of the cells. 
In node-degree ordering, the cells are arranged in the decreasing order of the degrees 
where degree is the heuristic measure of the difficulty of a frequency to a call in that 
cell. In node-color ordering, the cells are arranged by the ‘highest degree first’ and ‘least 
degree last’ heuristics in graph coloring. 

3. According to ordering methods of all calls after ordering the cells by using one of two 
cell ordering methods. 
The matrix of the calls can be listed by row-wise ordering or column-wise ordering. 

In [23] the required number of frequencies is larger than the lower bound in many cases. In 
our algorithm, the total number of frequencies required was equal to the lower bound number 
(LB) since the available frequency spectrum was fixed as a maximum usable frequency 
number. 

Table 2 shows the average generation number and convergence rate of Problems #l and #3 
for each crossover and mutation techniques. It is shown that the performance of the algorithm 
is more greatly affected by the mutation technique rather than the crossover technique for the 



Channel Assignment in Cellular Radio Using Genetic Algorithm-s 283 

given examples. When the selective mutation techniques (M4 or M5) are used, the convergence 
rates are higher since the mutation only occurs when the already assigned frequencies do not 
fit the compatibility matrix. With non-selective mutation techniques (Ml, M2 and M3), the 
assigned frequencies can be changed by the mutation even when the frequencies already fit 
the compatibility matrix, and it causes a lower convergence rate. 

5. Conclusion 

The results observed in this paper show that Genetic Algorithms (GAS) can be applied to obtain 
the optimal solution for the channel assignment in mobile cellular environment. GAS have an 
advantage over neural networks or simulated annealings in that GAS are generally good at 
finding an acceptably good global optimal solution to a problem very quickly. The average 
generation numbers and the convergence rates of GAS are shown as a simulation result. The 
optimal solution can be found with the small generation numbers and high convergence rates. 
An expected outcome of the simulation was that the performance of the algorithm varied 
depending on the GAS operators. The comparison of the various crossover and mutation 
techniques illustrates that the combination of two point crossover and selective mutation 
technique provides the relatively better results. When the number of cells in one cluster are 
increased, the generation numbers are increased and the convergence rates are decreased due 
to the increased reusable frequency distances. On the other hand, when the minimal frequency 
interval is increased with the increased LB, the generation numbers are decreased and the 
convergence rates are increased since there will be more assignable frequencies within the 
minimal frequency interval for the cells. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
12. 

J.-S. Kim, S. H. Park, P. W. Dowd, and N. M. Nasrabadi, “Genetic algorithm approach to the channel 
assignment problem,” in Proc. 1995 Asia-Pacific Conference on Communications, pp. 564-567, Jun. 14-16 
1995. 
J.-S. Kim, S. H. Park, P. W. Dowd, and N. M. Nasrabadi, “A modified hopfield network approach for cellular 
radio channel assignment,” in Proc. 45th IEEE Vehicular Technology Conference, pp. 589-593, Jul. 26-28 
1995. 
J.-S. Kim, S. H. Park, P. W. Dowd, and N. M. Nasrabadi, “Comparison of two optimization techniques for 
channel assignment in cellular radio network,” in Proc. IEEE International Conference on Communications, 
pp. 185&1854, Jun. 18-22 1995. 
A. Gamst and W. Rave, “On frequency assignment in mobile automatic telephone systems,” in Proc. IEEE 
GLOBECOM’82, pp. 309-315,1982. 
N. Funabiki and Y. Takefuji, “A neural network parallel algorithm for channel assignment problems in cellular 
radio networks,” IEEE Transactions on Vehicular Technology, vol. VT-41, pp. 430-436, Nov. 1992. 
W. K. Hale, “Frequency assignment: Theory and applications,” Proceedings ofZEEE, vol. 68, pp. 1497-1514, 
Dec. 1980. 
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guid to the Theory of NP-Completeness. 
New York W.H.Freeman and Co., 1979. 
D. Kunz, “Channel assignment for cellular radio using neural networks,” IEEE Transactions on Vehicular 
Technology, vol. VT-40, pp. 188-193, Feb. 1991. 
P. T. H. Chan, M. Palaniswami, and D. Everitt, “Neural network-based dynamic channel assignment for 
cellular mobile communication systems,” IEEE Transactions on Vehicular Technology, vol. VT-43, pp. 279- 
288, May 1994. 
M. Duque-Anton, D. Kunz, and B. Ruber, “Channel assignment for cellular radio using simulated annealing,” 
IEEE Transactions on Vehicular Technology, vol. VT-42, pp. 14-21, Feb. 1993. 
J. E. Dayhoff, Neural Network Architectures: an Introduction. New York, NY: Van Nostrand Reinhold, 1990. 
J. J. Hopfield and D. W. Tank, “Neural computation of decisions in optimization problems,” Biological 
Cybernetics, vol. 52, pp. 141-152, 1985. 



284 J.-S. Kim et al. 

13. 

14. 

15. 
16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, 
pp. 671-680, May 1983. 
D. Beasley, D. R. Bull, and R. R. Martin, “An Overview of Genetic Algorithms:Part I, Fundamentals,” 
University Computing, vol. 15, no. 2, pp. 58-69, 1993. 
J. H. Holland, Adaptation in Natural and Artijciul Systems. Cambridge, MA: MIT Press, 1975. 
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. New York Addison 
Wesley, 1989. 
A. K. Bhattacharjya, D. E. Becker, and B. Roysam, “A genetic algorithm for intelligent imaging from 
quantum-limited data,” Signal Processing, vol. 28, pp. 335-348, 1992. 
Z. Michalewicz, “A step towards optimal topology of communication networks,” Proc. of SPIE, vol. 1470, 
pp. 112-122, Apr. 1991. 
R. Chandrsekharam, S. Subhramanian, and S. Chaudhury, “Genetic algorithm for node partitioning problem 
and applications in VLSI design,” IEE Proceedings E, vol. 140, pp. 255-260, Sept. 1993. 
A, V. Sannier and E. D. Goodman, “Midgard:a genetic approach to adaptive load balancing for distributed 
sytems,” in Proc. of 5th International Conference on Machine Learning, pp. 174-180, June 1988. 
G. Syswerda, “Uniform crossover in genetic algorithm,” in Proc. of International Conference on Genetic 
Algorithms, pp. 2-9, 1989. 
A. Gamst, “Some lower bounds for a class of frequency assignment problems,” IEEE Transactions on 
Vehicular Technology, vol. VT-35, pp. 8-14, Feb. 1986. 
K. N. Sivarajan, R. J. McEliece, and J. W. Ketchum, “Channel assignment in cellular radio,” in Proc. 39th 
IEEE Vehicular Technology Conference, pp. 846-850, May 1989. 
J.-S. Kim, S. H. Park, P. W. Dowd, and N. M. Nasrabadi, “Cellular radio channel assignment using a modified 
Hopfield network,” IEEE Transactions on Vehicular Technology, (Submitted and Revised), 1994. 
J. Zoellner and C. Beall, “A breakthrough in spectrum conserving frequency assignment technology,” IEEE 
Transactions on Electromagnetic Compatibility, vol. EMC-19, pp. 313-319, Aug. 1977. 

Jae-Soo Kim received the B.S. degree in electronics engineering from Hanyang University, 
Seoul, Korea, the M.S. degree from Iowa State University, Ames, Iowa, and the Ph.D. degree 
from State University of New York at Buffalo, all in electrical engineering. Now he is working 
as a Member of Technical Staff at AT&T Bell Laboratories. 

His current research interests are mobile and personal communication networks, wireless 
ATM and high speed optical communications. 

He is a member of IEEE and ACM. 



Channel Assignment in Cellular Radio Using Genetic Algorithm 205 

Sahng H. Park received B.S. degree in electronics from Kyungpook National University, 
Taegu, Korea, M.S. degree in electronics from Yeung-nam University, Taegu, Korea, M.S. 
degree in computer engineering from Syracuse University, and Ph.D. degree in electrical 
engineering at State University of New York at Buffalo. 

His research interests are in image and video compression, and wireless communications. 

Patrick W. Dowd received the Bachelor of Science in Electrical Engineering and Computer 
Science (Summa Cum Laude) from the State University of New York at Buffalo, and the M.S. 
and Ph.D. degrees in Electrical Engineering from Syracuse University. 

Dowd was with the IBM Corporation between 1983-1989 as a Staff Engineer with System 
Design in Processor Development at the IBM Endicott Laboratory. His principal design effort 
was in the area of communication subsystems for future computer systems, involving Token 
Ring, FDDI, Fiber Channel, and ISDN. Early assignments were in the areas of processor 
design: microcode, fault detection, isolation and diagnosability. Patrick joined the Department 
of Electrical and Computer Engineering at the State University of New York at Buffalo as an 
Assistant Professor in 1989. 

Dowd has served as Conference Co-Chair of the SPIE OlWiber’92 Conference on High 
Speed Fiber Networks and Channels, Program Chair of the 27th Annual IEEE Simulation 



286 J.-S. Kim et al. 

Symposium, Program Chair of IEEE International Workshop on Modeling, Analysis and 
Simulation of Computer and Telecommunications Systems (MASCOTS’95), the Technical 
Committee on Computer Communications Representative to GLOBECOM’95, and currently 
serves on the Program Committee of IEEE INFOCOM, IEEE GLOBECOM, ACM SIG- 
COMM, IEEE HPDC, IEEE MPP-01, and IEEE MASCOTS. 

He is a Member of the IEEE, ACM and SPIE, with research interests in reconfigurble net- 
works, high-speed switching, optical communication, computer communication, multimedia 
based networks, and distributed databases. 

Nasser M. Nasrabadi received the B.Sc. (Eng.) and Ph.D. degrees in Electrical Engineering 
from Imperial College of Science and Technology (University of London), London, England, 
in 1980 and 1984, respectively. 

From 1986 to 1991 he was assistant professor in the Department of Electrical Engineering 
at Worcester Polytechnic Institute, Worcester, MA. Since 1991, he has been an associate 
professor in the Electrical and Computer Engineering Department at State University of New 
York at Buffalo, Buffalo, NY. He is an associate editor for the IEEE Transactions on Image 
Processing. His primary research interests are in image processing/video, and neural networks 
applications to image processing. 


