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ABSTRACT. A formal theory of quantity T o is presented which is realist, Platonist, and 
syntactically second-order (while logically-elementary), in contrast with the existing 
formal theories of quantity developed within the theory of measurement, which are 
empiricist, nominalist, and syntactically first-order (while logically non-elementary). TQ 
is shown to be formally and empirically adequate as a theory of quantity, and is argued to 
be scientifically superior to the existing first-order theories of quantity in that it does not 
depend upon empirically unsupported assumptions concerning existence of physical 
objects (e.g. that any two actual objects have an actual sum). The theory TQ supports and 
illustrates a form of naturalistic Platonism, for which claims concerning the existence 
and properties of universals form part of natural science, and the distinction between 
accidental generalizations and laws of nature has a basis in the second-order structure of 
the world. 

1. INTRODUCTION 

Quantitative theories generally assume the concept of a quantity as a 
primitive notion, and begin simply by postulating certain quantities to 
exist and to be capable of representation by real-number variables. 
(E.g. classical equilibrium thermodynamics assumes given certain 
"state variables" such as volume and energy.) The laws of the theory 
are then formulated as mathematical propositions relating the values 
of these quantities under certain circumstances. However, the very 
existence of quantities is itself an empirical matter, and quantitative 
theories thus presuppose a theory of quantity, i.e. an empirical theory 
which itself does not presuppose any quantitative concepts, but which 
yields as consequences the existence of the quantities taken as primi- 
tive in the theory as ordinarily presented, and justifies their representa- 
tion by real numbers in the standard way. Only such a theory can 
provide the link between the numerical apparatus of the quantitative 
theory and the qualitative facts of observation. 

Since ordinary quantitative theories do not make explicit their asso- 
ciated theory of quantity it becomes a task for foundational research to 
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fill this gap. These theories of quantity are in fact primitive empirical 
theories in their own right, having their own laws and empirical foun- 
dation independently of the more sophisticated quantitative theories 
based upon them. For example, it was necessary to discover that 
length, mass or temperature existed as quantities which could be meas- 
ured, before one could go on to formulate the specific quantitative 
theories of geometry, dynamics or thermodynamics involving these 
quantities. The present paper presents a general formalism for a theory 
of quantity in this sense which embodies a Platonist metaphysics, in 
contrast to the existing theories of quantity which have an empiricist 
and nominalist orientation. This difference is manifested in the use of a 
formal language with a second-order syntax, allowing quantifaers and 
second-order predicates applying to first-order quantitative properties. 
The semantics of this language is logically elementary (being based on 
general or Henkin models), so that the logic upon which the theory is 
based is complete and recursively axiomatizable. 

The empirical interpretation of the theory is discussed, and its 
general adequacy as a theory of quantity is displayed. I argue that this 
theory has significant scientific advantages over the existing first-order 
theories of quantity developed within the theory of measurement, both 
in respect of internal or theoretical considerations and in respect of 
empirical support. The empirical difference stems from the fact that 
the first-order theories of quantity require certain existence assump- 
tions which appear to be empirically false, while the second-order 
theory does not. We thus seem to derive direct empirical support for 
some form of naturalistic Platonism. These metaphysical implications 
are discussed in the final section. 

2. F IRST-ORDER AND SECOND-ORDER THEORIES OF Q U A N T I T Y  

In the present paper I shall be concerned only with extensive quanti- 
ties, which possess a linear order and some form of addition or con- 
catenation of magnitudes. Nothing essential turns upon this restric- 
tion. A formal theory of extensive quality must formalize the qualita- 
tive facts concerning the relations of order and addition which form the 
basis for the standard practice of representation of such quantities 
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using real variables. (For the extensive quantity of mass, for example, 
these facts involve the order relation established by an equal-arm 
balance and the addition relation established by simultaneous place- 
ment of two masses on one pan of the balance.) Within the usual 
framework of formal logic, such a theory T will be determined by a set 
of axioms expressed as sentences of a definite formal language L, 
having specified rules of inference and an empirical interpretation 
which corresponds in some way to the qualitative facts in question. 
The formal adequacy of the theory is to be demonstrated by proving 
that every model M of the theory possesses a representation (unique up 
to scale transformations) in the additive ordered group of real numbers. 

Within this framework an important question is still left open: are 
the entities connected by the relations of order and addition, and 
assigned numerical values on the resulting scales, to be taken as partic- 
ular physical objects, or as quantitative properties (henceforth called 
magnitudes) belonging to particular material objects? In brief, does 
quantification consist in an assignment of numbers to objects, or to 
properties of objects? In the first case L will be an atomicallyfirst-order 
language having object variables x ranging over concrete objects, two 
first-order predicate constants ~< and *, and atomic formulas of the 
forms x=y, x <~ y, and x ' y =  z. The predicates ~< and * will be inter- 
preted as observable relations of the objects. In the second case L will 
be an atomically second-order language having object variables x 
ranging over concrete objects, first-order variables X ranging over 
properties of concrete objects, two second-order predicate constants ~< 
and *, and atomic formulas of the forms x=y, X= Y, X(y), X <~ Y, and 
X* Y= Z. (Here X(y) of course means that the object y possesses the 
property X.) The first-order predicate variables X and second-order 
predicate constants ~< and * will be interpreted as theoretical entities, 
and additional first-order relations among concrete objects (corre- 
sponding to the actual measurement operations) will be introduced to 
provide the empirical basis for the theory. 

Theories of quantity may accordingly be classified asfirst-order or 
as second-order according to whether the underlying language is 
atomically first-order or atomically second-order. The formal theories 
of quantity which have been developed within the context of  modern 
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logic (most notably within the theory of  measurement, as in Krantz et 
al., 1971 or Roberts, 1979) are first-order theories. Here I will present a 
comparable second-order theory.l 

There are several motives for doing so. The most important one is 
that a second-order theory of quantity has definite scientific advantages 
over the existing first-order theories, considered simply as empirical 
theories. Specifically, the first-order theories all depend essentially 
upon at least one strong existence axiom asserting the existence of  
sums, e.g. the existence, for any two objects x and y, of an object 
z = x*y  whose magnitude is the sum of those o fx  and y. It is recognized 
in first-order measurement theory that this particular assumption is 
unrealistic because of practical limitations on the process of con- 
catenation, but the only weakened first-order axiom system addressing 
this point known to me is that of Krantz et al., 1971, pp. 81-85 (based 
on Luce and Marley, 1969), which replaces the assumption of univer- 
sal existence of sums with the assumption that sums exist whenever 
they are not larger than a certain size, and which then yields existence 
of a scale only for objects not greater than that size. 

This aspect of first-order theories of quantity does not seem to be 
satisfactory. First, there may perfectly well exist magnitudes which are 
larger than the practical limit of concatenation but to which we none- 
theless wish our scale to assign a value (astronomical distances, etc.). 
Second and more important, regardless of what bound is chosen the 
hypothesis that for any two actual objects whose sum does not exceed 
that bound there actually exists an object equal to that sum is an 
extremely implausible one, and certainly not well supported by 
empirical evidence if 'object' is understood normally (i.e. so as to 
include only actual separate objects, not mereological "subobjects" of 
actual objects and similar problematic entities). Furthermore it seems 
absurd to treat this claim as a law of  nature even if by some chance it 
should happen to be true. Surely the whole system of physical quanti- 
ties and quantitative laws would not collapse if through some cosmic 
accident all of the actual examples of objects precisely two meters long 
were to be destroyed while the standard meter itself remained intact. 
Clearly the only reasonable interpretation of these existence claims is 
not that all of these sums actually exist but rather than one could con- 
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struct such sums for any two objects (or of any two which are not too 
long). 

However, this reading raises serious questions. In the first place, 
without the introduction of an explicit modal apparatus into the lan- 
guage L the theory T now becomes ambiguous, since we have no way 
of knowing which existential quantifiers are to be interpreted normally 
and which as asserting mere possible existence in this sense. Second 
and more important, the introduction of such a modal quantifier seems 
to completely undercut the empirical character of the theory, since we 
have no means whatever of determining the truth of falsehood of such 
claims of "possible existence". The only clear-cut empirical interpre- 
tation which we possess for the first-order language of a first-order 
theory is the standard one which takes the existential quantifer  to 
assert actual existence of an actual object, and under that interpreta- 
tion the existence assumptions of standard first-order extensive meas- 
urement theories seem likely to be straightforwardly false, and in any 
case not to be deserving of acceptance as universally true on the basis 
of evidence available to us. 2 

Second-order theories of quantity, by contrast, ae not liable to this 
empirical objection, since the assumption of existence of actual sums 
of actual objects will be replaced by an assumption of existence of sums 

-X* Y of magnitudes X and Y, which is not subject to direct empirical 
test because the order and addition relations of magnitudes are theoret- 
ical facts. It will be shown below that a second-order theory of quanti- 
ty may be constructed which satisfies the formal conditions on a theory 
of  quantity as well as do the first-order theories, and which seems to 
includes among its empirical consequences all of the true universal 
conditionals derivable from the corresponding first-order theory 
without having any obvious false consequences. On ordinary empirical 
grounds such a second-order theory of quantity seems to be a better 
theory. 

In addition to its empirical superiority, there are a number of 
intuitive and philosophical motives for the construction of  a second- 
order theory of  quantity. From an intuitive viewpoint it seems hard to 
deny that we think of the size or magnitude of  a physical object as a 
quantitative property of the object, one which could be shared by other 
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objects. At the same time, we think of the relations of greater or less, or 
of numerical relations such as double or half, as being relations of 
particular magnitudes to one another, as expressed in statements such 
as, 'the size of x is twice the size of y'. Here the natural reading is 
obviously that the 'the size ofx '  and 'the size ofy '  refer to certain first- 
order quantitative properties of the objects x and y, and that the state- 
ment ascribes a certain second-order relation to these two first-order 
properties. One may also construe the statement as expressing directly 
a first-order relation between x and y, with no reference to sizes as 
properties, but this does not seem to be the natural reading. 

Most authors dealing with the concept of quantity prior to the 
advent of logical positivism seem to have taken a second-order interpre- 
tation to be at least as plausible as a first-order one. The mathematical 
analysis of the seventeeth century is concerned with the variation in 
time of certain entities called "quantities", which clearly are taken to 
include properties of objects, such as velocity (Boyer, 1949). Helmholtz, 
1887, Section 9, describes magnitudes (the bearers of quantitative rela- 
tions) as either objects or attributes of objects. Russell, 1903, Ch. XIX, 
clearly distinguishes the two views, calling the first-order approach the 
relative theory of magnitude since it bases quantitative facts in rela- 
tions among objects, and the second-order approach the absolute 
theory, in analogy to absolute and relative theories of space. He 
advocates the absolute or second-order theory, appealing to his Prin- 
ciple of Abstraction to infer from the existence of a first-order equi- 
valence relation of equality in magnitude the existence of magnitudes 
as first-order quantitative properties. Campbell, 1920, Ch. X, explicitly 
asserts that the objects of measurement are quantitative properties. 

Thus there seems to be a long and well-established tradition of 
second-order interpretations of quantity, which in itself seems to pro- 
vide a sufficient justification for developing a corresponding formal 
theory of quantity. For even if the actual views of scientists concerning 
quantity have changed radically in the twentieth century (which I 
think unlikely, at least for classical physics), it is important to have a 
precise formulation of the older second-order view for comparison 
with the newer first-order one. 

Concerning philosophical motives, the most obvious remark is that 
the replacement of the second-order approach by the first-order one in 
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the recent literature on quantity and measurement seems clearly to 
have been motivated by empiricist (and perhaps nominalist) philo- 
sophical considerations. The earliest explicit rejection of the second- 
order approach known to me is Nagel's 1932 article on measurement 
in Erkenntnis, which relies in part upon the empiricist criterion of 
meaning. 3 The 1951 article of Suppes commences with criticisms of 
the earlier axiomatic formulation of Hrlder 1901; these criticisms 
essentially show that H61der's theory is not naturally interpretable in 
the first-order manner. 4 The 1958 article of Scott and Suppes (which 
marks the beginning of the modern model-theoretic approach to meas- 
urement) adopts a first-order viewpoint on general empiricist 
principles. 5 Indeed, even the name 'theory of measurement' replacing 
the older 'theory of quantity' suggests an empiricist, reductionist or 
nominalist approach, focusing on the medium rather than the object of 
quantitative knowledge. 6 The first-order framework of measurement 
theory is obviously well suited to such an empiricist viewpoint, since 
the two types of term may be taken to correspond to observable objects 
and their observable features. 

Of course I do not mean to suggest that empiricism or nominalism 
are worthless or untenable viewpoints, but simply to call attention to 
the obvious fact that they are not the only viewpoints. It must be 
regarded as something of an anomaly that the theory of quantity has 
been studied almost exclusively from those viewpoints] The only 
exception known to me is an article of Byerly and Lazara, 1973 (cf. also 
Byerly, 1974), who observe that quantitative reasoning may equally 
well be interpreted from the contrary viewpoints of scientific realism as 
opposed to positivism and Platonism as opposed to nominalism, and 
who advocate such interpretations on philosophical grounds. How- 
ever, they do not develop a corresponding formal theory of quantity as 
an alternative to those proposed in standard measurement theory. 

3. THE QUANTITATIVE THEORY TQ 

The language LQ has the two non-logical second-order constants * and 
~<, countably many first-order predicate variables Xi of degree 1, and 
countably many zero-order object variables xi. (Some additional non- 
logical first-order predicate constants belonging to the observational 
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part of the theory will be added later.) The identity relations for zero- 
order and for first-order terms are also included as logical constants. To 
increase readability I will use alphabetic variants such as x, y, z instead 
of xl, x2, x3. The atomic formulas of LQ thus have the forms x = y, 
X= Y, X(y), X <<, Y and *(X, Y, Z). The logical connectives are the 
standard propositional connectives, first-order quantifiers binding the 
variables xi, and second-order quantifiers binding the variables Xi. A 
model M for LQ consists of a domain M(0) of objects; a set M(1) of 
properties; a function E carrying each element P of M(1) to a subset of 
M(0), where E(P) is called the extension of P; a two-place relation 
M( ~< ) over M(1), and a three-place relation M(*) over M(1). Identity 
of properties in M is not extensional; we may have E(P) = E(Q) as sub- 
sets of M(0) while P ~ Q as elements of M(1). 

The free or bound object-variables x of La range over the elements 
of M(0), and the free or bound property-variables X range over the 
elements of M(1). (For a standard model M(1) would be the full power 
set of M(0) and E would be identity; the present general or Henkin 
models are not subject to this restriction, and M(1) may even be 
empty.) A valuation o of LQ in a model M satisfies x = y, X= Y, X(y), 
X ~< Y or *(X, Y, Z) according as o(x) = o(y), o(X) = o(Y), v(y) is in 
E(v(X)), (v(X), v(Y)} is in M(~<), or (v(X), o(Y), v(Z)} is in M(*), 
respectively. Satisfaction for quantified formulas is defined in the 
standard way, with the condition that a universal (existential) quantifi- 
cation of a property variable X in a formula F is satisfied just in case 
F(X) is satisfied by every (some) element P of  M(1). The proof rules for 
LQ are exactly like those of standard predicate logic, except that the 
quantifier rules apply to both types of variable. The completeness and 
compactness theorems may be proved exactly as for standard predicate 
logic (Henkin 1950); provability in LQ thus corresponds exactly to 
truth in all models M, for the present concept of a model. I shall some- 
times use the primitive or defined terms of the language LQ in contexts 
such as 'the relation *' to refer to the corresponding primitive or 
defined relations such as M(*) in an unspecified model M for LQ. 

One further departure from standard measurement theory should be 
noted. First-order extensive measurement theory presents separate 
axioms for each quantity to be considered, based on different first- 
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order relations of addition and order. This is obviously necessary on 
the empiricist viewpoint, since different quantities correspond to dif- 
ferent observational first-order relations of objects. In the second-order 
context the basic quantitative relations ~ and * are theoretical rather 
than observational, and thus nothing prevents us from taking these to 
be the same second-order relations for all extensive quantities. The 
relation M(~<) will then be a partial ordering rather than a full linear 
ordering, and particular quantities such as mass and length will be dis- 
joint subsets of the field of M(~< ) which are linearly ordered by it. (I 
will call these rays following Whitney 1968.) The relation M(*) will 
hold only between elements of the same ray. 

This yields a formal unification and simplification of the theory of 
quantity, since a single set of axioms stated for the second-order rela- 
tions M( ~ ) and M(*) will apply to all of the rays at once. Whether this 
unification is of  any genuine scientific significance I shall not try to say. 
In support of such a claim one might argue that this theory of quantity 
explains why so many known physical quantities possess the same type 
of extensive structure, while on the first-order approach this remains 
an unexplained coincidence. 

We begin with elementary second-order extensive measurement 
axioms on the relations ~< and *, as restricted to rays in the ~< ordering. 
These axioms are in a sense formally first-order, since they involve 
only the upper two type levels. The present extensive axioms are based 
on those ofMundy (b). 

Define 'X sim Y' as 'X ~< Y or Y ~< X'. (Free variables are under- 
stood as universally quantified; propositional connectives are Angli- 
cized.) In Axom 2c and thenceforth, 'X* Y' refers to the unique 
element Z such that *(X, Y, Z), whose existence and uniqueness is 
guaranteed by Axioms (2a) and (2b). 

(1) reflexive linear order on rays: 
(a) IfX~< Yand Y~< Z thenX~< Z. 
(b) X ~ X. 
(c) I fX ~< Yand Y ~< X t h e n X =  Y. 
(d) I fXsim YandXs im Z then  Ysim Z. 
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(2) existence of X* Y: 
(a) If*(X, Y, Z) and*(X, Y, Z ' )  then Z = Z ' .  
(b) Xsim Yiff(3Z)*(X, Y, Z). 
(c) Xsim Jr* Y. 

(3) associativity of*: 
(X* Y ) * Z = X * ( Y *  Z) 

(4) monotonicity: 
Let X sim Z; then X ~  Y iff X * Z ~  Y * Z  iff 
Z'X<<. Z*  Y. 

Axiom 1 ensures that sire is an equivalence relation and that ~< is a full 
linear ordering on each equivalence class (ray). Axiom (2) ensures that 
* is a function, is defined always and only on similar pairs, and yields a 
result similar to the arguments. Finally, Axioms (3) and (4) make each 
ray an ordered semigroup under *. Thus in each model M for TO each 
element P of the field of M( ~ ) will belong to a unique ray Ra(P), and 
M(*) will act as an ordered semigroup on Ra(P). I will simply write 
'P ~< Q' to mean that (P, Q) is in M(~<), and write 'P * Q'  for the 
unique element R of M(1) for which (P, Q, R) is in M(*). Similarly, all 
other concepts defined for elements of an ordered semigroup will, 
when applied to elements P of the field of M ( ~ ) ,  refer to the semi- 
group defined by M(*) on Ra(P). 

An ordered semigroup is a special case of the type of structure called 
an extensive semigroup in Mundy (b). Following the terminology of 
that paper, the sign of an element P is positive if P * P > P, zero if 
P * P = P, negative if P * P < P; P is proper if it is either positive or 
negative. The extended real number system R" is (_8, ~<, +) together 
with the elements - oo and + ~ ,  these being given the natural relations 
of order and addition to the finite elements ofR.  8 A function f from an 
ordered semigroup (S, ~<, *) to R '  is called weakly faithful if it satisfies: 

(WF) (a) For all x and y in S, iff(x) < fly) then x < y. 
(b) For all x, y and z in S for whichflx) +fly) is defined, if 

fix) +fly) < flz) then x*y is defined and x*y < z; if 
flz) < f(x) +fly) then x* y is defined and z < x* y. 

From Theorem 5 ofMundy (b) we may now immediately conclude: 
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Representation Theorem: Let Mbe  a model of TQ. 

(a) Let P be a proper element of the field of M(~<), and let j be a 
non-zero real number whose sign is the same as that of P. Then there is 
a unique weakly faithful function f from Ra(P) into R '  such that 

f(P) =j. 
(b) Let Ra(P) be a ray in the field of M( ~< ), le t fbe  a weakly faithful 

function from Ra(P) into R',  and let g be a function from Ra(P) into 
R '  such that there is at least one element Q in Ra(P) for which both 
f(Q) and g(Q) are finite and non-zero. Then g is weakly faithful if and 
only if there is a positive real number k such thatf(R) = k.g(R) for all 
R in Ra(P). 

According to Mundy (a) the essential property of our actual 
numerical scales for physical quantities is to be weakly faithful func- 
tions from the ordered semigroup of magnitudes into R'. The above 
theorem then shows Axioms 1-4 to give a formally adequate theory of 
quantity, i.e. one sufficient to yield the existence of such a family of 
numerical scales, and thus to justify the assumptions about physical 
quantities made in ordinary quantitative theories. (Of course we must 
adjoin axioms specifying the existence of as many distinct rays in the 
field of M( ~< ) as there are distinct fundamental quantities employed in 
the theory.) 

As in standard measurement theory, part (a) of the theorem 
expresses our freedom, in constructing an extensive scale for a given 
quantity, to choose any non-zero magnitude P of the quantity as our 
unit of measurement and to assign to it any finite non-zero numerical 
valuej  consistent with its sign. Part (b) expresses the fact that this is the 
only degree of freedom present fo ra  weakly faithful scale, in that any 
other such scale will be related to the given one by a constant positive 
factor k. The present version of this uniqueness theorem is weaker 
than the standard one because of the absence from our theory of quan- 
tity of a logically non-elementary Archimedean axiom, thus allowing 
the possibility of different weakly faithful scales f and g for Ra(P) 
which fail to be related by any finite factor k because the unit of one 
scale is infinite or infinitesimal relative to the unit of the other. This is 
why the uniqueness result (b) must include the condition that the two 
scalesfand g both assign a finite value to some common magnitude Q. 
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It remains to make explicit the connection of the first-order struc- 
ture of objects and their magnitudes with the theoretical second-order 
structure on magnitudes. It is here that the second-order character of 
LQ plays an essential role, since this axiom contains terms of all three 
type levels simultaneously. 

(5) uniqueness of magnitudes: 
IfX(x) and Y(y)andX < Ythenx  ~ y. 

Axiom 5 and the linear order on rays imply that a given object x can 
possess at most one magnitude X in any one ray of M( ~< ). Note that we 
have not yet stated any axioms requiring the field ofM(~< ) to be non- 
empty, and thus no rays may exist. Even if a ray does exist, we still do 
not want to assume that every object possesses a magnitude in that ray, 
since some quantities are only defined for certain types of object. 

Axioms (1)-(5) suffice to define numerical scale values for all objects 
x in M(0) which possess a magnitude in Ra, for any ray Ra of M( ~< ). 
The Representation Theorem allows us to choose a weakly faithful 
scaleffor each ray Ra(P) in M( ~< ), and Axiom (5) allows us to define a 
corresponding partial function g from M(0) into R' ,  by setting 
g(x) =f(Q) for any x in M(0) which possesses a magnitude Q in Ra(P), 
i.e. satisfies Q sim P and Q(x). The function g serves as a numerical 
scale for objects in M(0) with respect to the quantity corresponding to 
the ray Ra(P); we will ordinarily construct one such scale for each ray 
inM(~<). 

4. E M P I R I C A L  BASIS OF TQ 

Axioms (1)-(5) give the theoretical portion of our second-order theory 
of quantity TQ. This is true in two senses: first Axioms (1)-(5) suffice 
for the derivation of the formal results required of a theory of quantity 
(namely the existence and uniqueness of numerical scales for each 
quantity), and second that the theory based on Axioms (1)-(5) alone 
seems incapable of an appropriate empirical interpretation in the sense 
intended for a theory of quantity. This is because the atomic facts of 
the form P(a), P = Q, P <~ Q and P * Q = R which determine the truth 
or falsehood of propositions of LQ do not appear to be empirically 
accessible under the intended interpretation. (One may argue that 



THE METAPHYSICS OF QUANTITY 41 

some magnitudes P of certain quantities such as length should count as 
observable properties of objects, so that some atomic facts of the form 
P(a) or P ~< Q should count as observable, but I do not wish to rely 
upon this; one may equally well argue that what is observed is a rela- 
tion between the magnitude of the object and a magnitude characteris- 
tic of the observer.) We therefore must add to LQ some new non-logical 
terms corresponding to observational predicates of observable objects 
and add to TQ some bridge axioms connecting these with the theoreti- 
cal terms in such a way as to yield empirical propositions which may 
provide an empirical basis for the theory. In particular, to complete the 
basic task of a theory of quantity, we must establish the connection 
between actual measurement procedures and the abstract scale- 
functions g(x) constructed using Axioms (1)-(5). 

There are as many different ways of doing this as there are ways of 
measuring the quantities to which the theory refers. Indeed, one of the 
formal virtues of second-order theories of quantity is precisely the fact 
that they treat quantities and magnitudes as theoretical, and hence 
allow one to maintain consistently that the same quantity is capable of 
being measured in different ways, in contrast to the counter-intuitive 
consequence of simple empiricism or operationism that each measure- 
ment procedure defines a different quantity. (This theoretical concep- 
tion of quantities is advocated for example in Carnap 1966, 102-104.) 
Here I shall simply introduce the formal apparatus corresponding to 
the simplest and most natural empirical procedure for measurement of 
extensive quantities, which is also the one forming the basis of the 
standard first-order theories of extensive quantity. This allows a simple 
comparison with the corresponding first-order theory. 

Since each fundamental quantity is measured by different proce- 
dures, we must add a distinct observational component to TQ for each 
such quantity q. Therefore we add to the language LQ two non-logical 
first-order predicate constants for each fundamental quantity q: a two- 
place relation <~q(X, y) and a three-place relation *q(X, y, z), which will 
be interpreted as the observable order and addition relations between 
the observable objects x, y, z in respect of the quantity q. (These are the 
first-order relations taken as primitive in the standard first-order theory 
of the single extensive quantity q.) The second-order models M for LQ 
are thus expanded to include distinguished first-order predicates 
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M(<~q)~ M(0) 2 and M(*q)~ M(O) 3 for each q. The empirical inter- 
pretation of these first-order primitives and the role which they play in 
practical measurement procedures has been thoroughly discussed in 
standard works on measurement such as Helmholtz, 1887 and Camp- 
bell, 1920, 1928. 

In the extended language LQ w e  now add the following axioms to TQ 
(these are of course distinct axioms for each quantity q): 

(6q) bridge law for q: 
(3 V) { V ~< V and (Vx, y, z) 
[~<q(x, y) iff (3X, Y)(X sim V and X(x) and Y(y) and 
X ~< Y)] and 
[*q(X, y, z) iff (3X, Y, Z)(X sire V and X(x) and Y(y) and 
Z(z) and *(X, Y, Z))]} 

The clause V ~< V of this axiom asserts for the first time the existence 
of an element Vin the field of M( ~< ). The ray Ra(V) is then asserted to 
correspond to the observable first-order relation ~<q, in the sense that 
two objects x and y bear that relation if and only if they possess mag- 
nitudes in the ray Ra(V) which bear the second-order relation ~<; 
similarly the first-order relation *q corresponds to the second-order 
relation * on the elements of the ray Ra(V). The second-order 
predicate Qq(X) will be defined as (3Y)(3y)[<<.q(y, y) and Y(y) and X 
sim Y]; it means that Xis a magnitude of the quantity q. The theory TQ 
consists of all logical consequences of Axioms 1-6q under the elemen- 
tary second-order logic Of LQ. 

The bridge law 6q may be used to derive from Axioms (1)-(5) vari- 
ous empirical laws governing the first-order relations ~<q and *q, 
including some which would be included among the axioms on ~< q and 
�9 q in a standard first-order theory of the extensive quantity q. Define 
the relation '-q(X,y)' as '<<.q(X,y) and ~<q(y,x)', and 'Qq(x)' as 
' <. q(X, x)'; 'Qq(x)' means that x is an object with a value of the quantity 
q. We easily derive the following theorems of TQ: 

(1) <,%q(X, y) and <~q(y, z) imply <~q(X, z). 
(2) IfQq(x) and Qq(y) then <~q(x, y) or ~<0(Y, x). 
(3) If*q(X, y, z) then Qo(z). 
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(4) If *q(X, y, Z) and -q(X, x') and -q(y, y') and *q(X', y', z') 
then ~q(Z, z'). 

(5) If *q(X, y, u) and *q(U, z, v) and *q(y, z, t) and *q(x, t, w) then 
~q(V, w). 

(6) If*q(X, z, u) and *q(y, Z, V) then ~q(X, y) iff <~q(u, v). 
(7) If*q(Z,X, u)and*q(Z,y, v) then <~q(X,y)iff <~q(U, o). 

Here Ths. (1) and (2) show that ~<q is a reflexive weak ordering on the 
objects with values of q, (3) and (4) show that *q carries -.q-equivalent 
objects to ~q-equivalent objects, and (5)-(7) show that this action of*a 
is that of an ordered semigroup insofar as the sums are defined. Thus if 
we adjoined the further first-order axiom (3Z)*q(X, y, z) asserting 
existence of sums we would have a full extensive semigroup in the 
sense of Mundy (b) at the first-order level. This is essentially the 
axiomatization which is used in standard first-order theories of quanti- 
ty, with the addition of a non-elementary Archimedean axiom. 

The theory TQ however does not contain any such axioms asserting 
the existence of actual objects or their sums; the theorems of TQ listed 
above are all hypothetical in form, and say that ~fthe necessary sums 
exist then the relations of an ordered semigroup will hold among them. 
These theorems express empirical laws concerning the relations ~<q 
and *q. Since these laws are empirically very well confirmed, they 
provide an empirical basis for TQ. 

Axiom (6q) also enables us to formulate the theory of the empirical 
procedures of measurement for the weakly faithful scales f w h i c h  are 
abstractly defined in the preceding section. Let some object e with 
Qq(e) be selected as the unit of measurement for the quantity q, and 
assigned the numerical scale value j. Then the unique magnitude E 
with Qq(E) and E(e) is the magnitude of our unit, and in consequence 
of Axioms (1)-(5) there will exist a unique weakly faithful function f 
from the ray Qq into R' with f(E)=j, and a unique scale g 
defined thereby on all x with Qq(x), by the condition that 
g(x) =f(X)  where Qq(X) and X(x). However, it remains to be seen what 
connection there may be between this abstract construction in the 
metalanguage, based on the theoretical part of TQ alone, and actual 
concrete measurement procedures carried out with material objects, 
describable in the empirical part ofLo. 



44  BRENT MUNDY 

The connection is easily made. The actual procedure for extensive 
measurement of an object x involves the construction of a standard 
sequence in the sense of Krantz et al., i.e. a sequence of multiples of the 
unit, or of known fractions of the unit (so many meters, so many 
centimeters, etc). Then the scale value o fx  is determined up to the unit 
or the chosen fraction 1/m of the unit, by the information as to which 
successive pair of multiples it lies between (unless x is infinite or 
infinitesimal relative to the unit e). Any such standard sequence is a 
sequence of actual objects, but the bridge axioms 6q will enable us to 
draw corresponding conclusions about the magnitudes of those objects, 
and hence to infer a relation between the magnitude X of the measured 
object x and the magnitude E of the unit e. In this way our physical 
construction of a standard sequence will yield information about the 
numerical value g(x) =f iX)  of the abstractly-defined scale g. 

Specifically, suppose that we have divided our unit into m parts, i.e. 
we have a set of actual objects si (of which there are at least m) with the 
properties that: 

(1) ~q(Si, sj) for all i,j. 
(2) The sum of any m of the si exists and is ~q-equivalent to e. 

(1) and (2) represent certain formulas Of LQ which may easily be con- 
structed for each value of m. An empirical application of the method 
of standard sequences yields the information: 

(3) The sum of n of the si exists and is ~< q than x. 
(4) The sum of n+ 1 of the si exists and is >~ q than x. 

These also represent definite formulas Of LQ for each value of n. These 
formulas Of LQ may be accepted as direct reports of what is observed in 
a standard-sequence construction with respect to an object x. 

The basis for the theory of the empirical measurement of values of 
the abstract scale g(x) is then the fact that in TQ we can derive from (1), 
(2) and (3) the conclusion "nE <<, mX', where 'hE' means as usual the 
n-fold sum E*E*...*E. From the mode of definition of the abstract 
scale f o n  the ray Qq as described in Mundy (b) (following the method 
of H61der 1901) it follows that nE <<. mX if and only i f jn/m <~ f iX)  
(where j=f(E)). Similarly from (1), (2) and (4) we can derive 
'mX <~ (n+l)E '  in TQ, which is equivalent to j(n+ l)/m >~ fiX). Thus 
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every concrete application of the empirical method of standard 
sequences to measure an object x determines the value of the abstract 
function g(x) to within j /m,  and conversely for every question of the 
form 'Does g(x) lie within the interval [a, b]?' we can determine values 
of m and n which characterize a concrete application of the method of 
standard sequences which may be carried out in order to answer this 
question. Thus the abstract scales g(x) of the preceding section acquire 
a definite empirical basis through the bridge law (6q), and the theory 
T O allows us to draw the appropriate conclusion concerning the scale 
value q(x )=f (X)  from any empirical application of the method of 
standard sequences, as expressed in the language LQ. 

5. CONCLUSION: NATURALISTIC PLATONISM 

The second-order theory T O has been shown to be formally adequate 
as a theory of quantity, and to possess an empirical interpretation in 
terms of which the well-known empirical laws governing the basic pro- 
cesses of measurement appear as theorems of T O . Thus T O possesses 
considerable empirical support, and, unlike the corresponding first- 
order theories of quantity, does not appear to have obvious false conse- 
quences. Thus it seems that T O or some formal equivalent is worthy of 
provisional acceptance as the correct theory of actual physical exten- 
sive quantities, at its level of detail. It remains to be considered what 
wider significance this may have. 

In the first place, T O is an interesting example of definite empirical 
superiority of a realist theory over a corresponding empiricist or 
phenomenal one. Usually we think of such comparisons as being 
between empirically equivalent theories, the central issue being the 
choice between the parsimony of empiricism and the formal advan- 
tages (generality, unification) of realism. Here, by contrast, the result of 
a serious attempt to explicitly formulate a workable empiricist theory 
of quantity (rather than a mere artifice such as "the set of empirical 
consequences of the realist theory") yields a theory which seems to be 
empirically inferior to the corresponding realist theory. 

In the second place, the particular character of  the theoretical enti- 
ties and propositions introduced in the realist theory TQ is of consider- 
able metaphysical interest. There is an obvious formal sense in which 
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the first-order variables X of LQ should be thought of as ranging over 
certain properties of objects, namely magnitudes, so that by Quine's 
criterion of ontological committment TQ appears to be reasonably 
characterized as a Platonist theory. However, unlike the traditional 
forms of Platonism which assert that universals and facts about them 
are to be discovered a priori, we have here a form of a posteriori or 
naturalistic Platonism, according to which propositions about uni- 
versals and their second-order properties and relations are supported 
by reference to their observable consequences, using the hypothetico- 
deductive method of natural science. Such a view has been maintained 
for example by Armstrong (1978) concerning properties and relations, 
and by Quine concerning sets. In the remainder of the paper I will dis- 
cuss such naturalistic Platonist programs from the present viewpoint. 

The first point is that the empirical superiority of TQ provides 
prima facie support for a (naturalistic) Platonist ontology. Of course it 
is possible that TQ may ultimately be reduced to some deeper non- 
Platonist theory, but we have no idea what such a theory would look 
like. Current fundamental physical theories are all quantitative, and 
hence should be assumed (on the present grounds) to include TQ as a 
part. Thus on the basis of current theory TQ should be taken not only 
as true but as fundamentally true, and its ontolology taken as part of 
basic physical ontology. 

The inclusion of the second-order or Platonist apparatus within the 
deductive structure of science of course resolves the special epistemo- 
logical problems which beset a priori Platonism. The status of uni- 
versals is no different from that of any other theoretical entities within 
natural science: they are postulated as part of a theory (e.g. TO), and 
the empirical confirmation of the predictions of the theory (e.g. Ths. 
(1)-(7)) provides grounds for belief in their existence. The empirical 
superiority of TQ over the corresponding first-order theories shows 
that the postulation of universals is by no means devoid of significance, 
as is often asserted. This example of empirical support for an assertion 
of existence of universals fills a gap in Armstrong, 1978, noted e.g. by 
Sanford 1980. 

Finally, from a logical viewpoint TQ shows how a naturalistic 
Platonist theory should be formalized: namely, by means of elemen- 
tary second-order logic. The use of general or Henkin models corre- 
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sponds to the naturalistic Platonist thesis that existence of universals is 
a contingent matter, in that propositions asserting existence of uni- 
versals (which often express important scientific discoveries, e.g. of 
new physical properties such as radioactivity) are not treated as logical 
truths.9, 10 

There is one important respect in which the naturalistic Platonism 
suggested by TQ differs from that of Armstrong, 1978, and related views 
such as those of Swoyer, 1982, 1983. These authors maintain that uni- 
versals should be postulated to exist only if they are exemplified by 
actual objects. The basis for this view seems to be the belief that 
science can only be concerned with what in some sense exists in space 
and time. I think that this is mistaken: it is indeed a contingent fact that 
the bulk of science has been concerned with spatio-temporal objects, 
but there is no a priori limitation of scientific knowledge to such 
objects. The scope of science is limited only by our ingenuity in the 
construction of theories and the derivation from them of observational 
consequences, and it is entirely possible that certain facts within space 
and time might turn out to be best explained by a theory which 
postulates the existence of certain entities which are not in space and 
time. 

Indeed, I think that this is not only possible but is actually the case. 
This is illustrated by Axiom (2b) of TQ, which asserts the existence of a 
sum of any two similar magnitudes. This axiom is empirically con- 
firmed by our observation of a large number of instances in which, for 
two objects x and y bearing the first-order similarity relation for some 
quantity q, it is found that there exists a third similar object z satisfying 
the first-order addition relation *q(X, y, z). Applying the theoretical 
laws of TQ (as followed for example by Glymour's bootstrap principles 
of confirmation), we may prove in LQ that each such observation pro- 
vides an instance of Axiom (2b). Axiom (2b) is therefore well sup- 
ported, and may be applied to infer the existence of magnitudes which 
are not known to be possessed by any particular objects. 

The present type of naturalistic Platonism may also be contrasted 
with the set-theoretic Platonism of Quine (1960, Ch. 7; or 1976). 
Quine also takes a Platonist ontology to be based on the empirical 
success of science, but sees the ontology as one of sets rather than of 
properties and relations, where sets are understood in the sense of 
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axiomatic set theory. The present Platonist viewpoint seems to have 
several advantages over that of Quine. In the first place, the role of set 
theory in natural science has never been explicitly demonstrated; 
Quine's argument is roughly that science depends upon mathematics 
and mathematics upon set theory. A plausible reply (which I endorse) 
is that science may not depend upon all of mathematics, and that many 
of the most implausible, unempirical and logically objectionable 
features of set theory (e.g. the strong set-existence axioms such as the 
comprehension and power-set axioms) may be needed only for the 
derivation of parts of mathematics which do not play any essential role 
in physical science. The empirical basis of set theory thus remains 
somewhat tenuous, while the empirical basis for Platonism with regard 
to properties and relations may be presented in a straightforward hypo- 
thetico-deductive manner, as here for TQ. 

A further advantage of the present view over set-theoretic Platonism 
is that it is possible to identify particular empirical facts and laws as 
constituting the empirical basis for particular Platonist existence 
propositions, in keeping with the anti-holist confirmation theory of 
Glymour, 1980, and in contrast with the reliance of set-theoretic 
Platonism upon an amorphous holism. This is evident, for example, in 
the fact that the evidence for the existence of each separate ray Qq in 
the field of M(~<) consists of distinct empirical laws such as those 
expressed in Ths. (1)-(7) of T 0, involving the distinct empirical 
primitives ~q and *q. Moreover, distinct empirical laws provide 
evidence for distinct axioms of T O . 

Finally, from a purely formal viewpoint, elementary second-order 
Platonist theories such as TO are mathematically much weaker than 
any standard axiomatic set theory, hence more parsimonious and more 
likely to be consistent. 

One of the most interesting features of naturalistic Platonism is that 
it may provide the basis for an objective distinction between accidental 
generalizations and laws of  nature. The idea that laws of nature are 
second-order relations among first-order universals has formed the 
basis for several recent analyses of laws of nature (Armstrong 1983, 
Dretske 1977, Tooley 1977, Swoyer 1982). I believe that while this 
basic approach is sound, the existing proposals suffer from two general 
defects. 



THE METAPHYSICS OF QUANTITY 49 

First, it seems that these analyses do not go far enough, in that they 
appear to retain certain modal concepts as primitive in addition to the 
second-order structure which they introduce. The fundamental prob- 
lem (cf. Salmon, 1976) is to provide the concepts of natural law of 
physical necessity with an empirical basis, not merely to give some 
philosophically satisfying analysis of them in terms of possible worlds, 
second-order necessitation relations, or any other concepts as devoid of 
empirical basis as that of physical necessity itself. The crucial problem 
is to find a way of breaking out of this circle of interdefinable but 
empirically empty concepts to establish a link to what is actual and 
observable. The presence of second-order structure in the language of 
science may provide the necessary link. To solve the problem of physi- 
cal modality using this link, it is necessary to define the physical 
modalities completely in terms of second-order aspects of scientific 
theory. 

Second, I think that the existing proposals do not sufficiently 
address the issue of the empirical foundation for the second-order struc- 
ture which they attribute to the world. They seem to simply attribute 
to scientific theory or to the world such second-order features as will 
suffice to yield a philosophically satisfactory analysis of physical 
modality, without offering any justification for this attribution beyond 
the fact that it does yield such an analysis. This seems to bypass the 
essential point: to solve the problem of physical modality in second- 
order terms we must not only define 'natural law' in second-order 
terms, but must also show how the resulting second-order propositions 
expressing the desired theory of natural laws have an empirical foun- 
dation in the actual facts of the actual world, independent of any 
philosophical theory. To ground physical modality in second-order 
structure is of no value unless the second-order structure can itself be 
grounded in actual observable facts, as the theory TQ is grounded. 

The successful implementation of this program therefore depends 
essentially upon what type of second-order structure the world can be 
shown to possess. For this reason I think that it is premature to try to 
formulate specific second-order definitions of 'natural law', in terms 
for example of a second-order necessitation relation (as proposed by 
most of the cited authors). Only through careful analysis of existing 
scientific theory can we arrive at any well-founded views as to the 
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actual second-order structure of the world, in terms of which the analy- 
sis of physical modality may be carried out. Here I will merely mention 
one general line of analysis suggested by T 0. 

Recall the discussion in Section 2 of the existence assumptions of a 
first-order theory of quantity. We noted a natural sense in which the 
assumption of the existence of sums which a first-order theory 
expresses using existential quantification over objects ("for any two 
objects there exists an object equal to their sum") is better understood 
as having a modal content, as asserting the physical possibility of the 
existence of such an object, not the actual fact. At the same time, we 
saw that the deductive role played by these tacitly modal propositions 
in the first-order theory of quantity (and perhaps their intuitive content 
as well) can be fully taken over by the non-modal second-order Axiom 
(2b) of T O asserting the actual existence of the first-order magnitudes 
corresponding to such sums. 

Briefly then, we could say that the possible existence of an object 
may be analyzed as the actual existence of the first-order property 
characteristic of that object. The present analysis of the theory T O 
shows that such second-order existence propositions play a perfectly 
definite and legitimate deductive role in second-order scientific 
theories, and may be regarded as quite solidly based upon empirical 
evidence provided by empirical confirmation, in actual instances, of 
their first-order deductive consequences. In other words, a full and 
complete second-order theory of what first-order properties exist may 
be founded upon observations of the actual world, together with 
ordinary scientific principles governing the construction of simple and 
general theories to unify and deductively explain what is observed. 
'Existence' here means simply what is expressed by the ordinary non- 
modal existential quantifier of elementary second-order logic, for 
which we can formulate a complete set of inference rules and whose 
scientific significance is arguable fully expressed by those inference 
rules; no modal concepts are involved. And yet these second-order 
existence propositions seem in some way to correspond to what in first- 
order terms appears as an assertion of physical possibility. This obser- 
vation seems to provide substantial support for the view that the 
presence of second-order structure in scientific theories provides the 
empirical basis for propositions involving physical modality. 
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NOTES 

* Work on this paper was supported in part by a Junior Faculty Summer Research Grant 
awarded by the Research Council of the University of Oklahoma for the summer of 1985. 
The editor of Philosophical Studies made some useful suggestions regarding organization 
of the paper. 
l The present distinction between first- and second-order languages is a purely syntacti- 
cal one, referring only to the primitive predicates and atomic formulas of the language L, 
and should not be confused with the distinction between elementary and non-elementary 
logics which is often also expressed using the terms 'first-order' and 'second-order'. An 
elementary logic is one whose logical connectives are just those of standard predica/~e 
logic, i.e. truth-functional propositional connectives and the standard universal and exis- 
tential quantifiers. (If the language is atomically second-order or higher-order the models 
and semantics of the quantifiers are assumed to be those of general or Henkin models, as 
outlined below for the particular second-order language L used here.) The G6del 
completeness theorem and the compactness theorem hold for all elementary logics, 
including atomically higher-order ones. (See Van Benthem and Doets, 1983). 

The existing first-order formal theories ot quantity are also non-elementary: they 
employ non-elementary logical connectives in order to state a single axiom (usually a 
form of Archimedean axiom) which cannot be expressed in logically elementary terms. 
This axiom is necessary in order to derive the existence of a numerical scale which is both 
an additive homomorphism and an order isomorphism from the model to the real num- 
ber system. I have argued in Mundy (a) and (b) that a theory of quantity does not require 
this axiom, because it is not necessary or appropriate to assume our actual numerical 
scales to be order isomorphisms. The argument involves an analysis of the concept of 
representation, leading to a weaker set of conditions on a numerical scale. (These condi- 
tions are equivalent to the concept of weak extensive measurement introduced in 
Holman, 1969 and discussed in Colonius, 1978, in which a scale is required only to be an 
order homomorphism, not an order isomorphism.) The existence of a real-number repre- 
sentation in this weaker sense may be derived from logically elementary axioms. This 
method of arriving at a logically elementary theory of quantity will be used here; it may 
be employed equally well in either the atomically first-order framework of standard 
measurement theory or the present atomically second-order framework. 
2 The assumption of closure under addition may be replaced in the standard representa- 
tion theorems by assumptions of closure under other operations such as subtraction. 
However, these assumptions do not appear to be any more likely to be empirically cor- 
rect when the variables are taken as ranging only over actual objects than does the 
assumption of additive closure. (In the case of mass, for example, there are elementary 
particles of differing masses for which the mass differenee is much smaller than the 
smallest known non-zero mass, that of the electron.) The situation may change if one 
allows a non-standard ontology. For example the theory of quantity in Field, 1980, is 
based on an ontology which rejects ordinary objects altogether and uses only quantitative 
properties of space-time points or regions, interpreted as values of fields at those points or 
in those regions. In this context the assumption of closure under subtraction is a plausible 
consequence of the continuity of the field, which will result in pairs of nearby points for 
which the dilterence in field values is as small as desired. However, this method of 
resolving the problem depends crucially upon the acceptance of this special ontology of 
classical field theory and its associated strong existence assumptions. This ontology is at 
least as complicated formally as the second-order one proposed here, and in certain cases 
(such as that of the mass spectrum in elementary particle physics) appears to be unsuit- 
able for current physical theory. 
3 "So when magnitudes, which are always found to be relations exhibited in the physical 
operations of things, are invoked as the locus of those operations, it seems legitimate to 



52 BRENT MUNDY 

ask what empirical difference their existence or nonexistence as 'common essences' 
would make." (Danto and Morgenbesser, reprint, p. 132). 
4 Hrlder's system is criticized (reprint, pp. 36-37) for treating equality of magnitudes as 
strict identity and for presenting a categorical axiomatization, both of which are 
appropriate on a second-order view which takes the axioms to describe the second-order 
structure of a system of first-order quantitative properties. 
5 ,,... the point of a theory of measurement is to lay bare the structure of a collection of 
empirical relations which may be used to measure the characteristic of empirical 
phenomena corresponding to the concept. Why a collection of relations? From an 
abstract standpoint, a set of empirical data consists of a collection of relations between 
specified objects." (Reprint, p. 46). 
6 It may also be significant that this body of literature has been developed mainly by 
psychologists concerned to arrive at a firm basis for the use of quantitative methods in 
psychology, not by authors primarily concerned with the foundations of physical science. 
The status of psychology as a last stronghold of positivism has often been noted. 
7 Ellis, 1966, while not lying within the mainstream tradition of representational 
measurement theory, explicitly aims to give "a consistent positivist account of the nature 
of measurement" (p. 3). Field, 1980, p. 55 mentions briefly the possibility of a second- 
order theory of quantity but does not pursue it. 
s For x in R we have - ~  < x < +oo. Addition R '  is defined so that x + _ ~ = ___ oo, 
where x is any finite element or is the element _ oo; only the sum of+oo and - oo fails to 
be defined. 
9 Some logicians seem to regard non-elementary "standard" second-order logic as the 
most natural and important form of second-order logic, with Henkin's elementary ver- 
sion being of little intrinsic interest except for the convenient metatheoretic properties 
which it possesses. From a naturalistic Platonist viewpoint the reverse is true. 
10 The formalization of naturalistic Platonist theories within elementary second-order 
logic seems to me to be a useful means of clarifying their content. For example, 
Armstrong 1978 contains extensive discussion of various infinite regresses supposedly 
involved in the postulation of universals, brought about by asking what relation the uni- 
versals bear to the particulars to which they apply. I think that these regresses disappear 
when the theory is formalized in a second-order language, since we see that this "relation 
of instantiation" plays a quite different formal role in the theory than do the universals 
(properties and relations) which are designated by the variables and constants of the 
second-order language. It is only the latter which are assumed to exist by the theory; the 
former corresponds syntactically to a formation-rule rather than a term, and cannot 
coherently be construed as one of the universals to which the theory itself applies. 
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