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Abstract. We view the incidence relation of a graph G = ( I :  E) as an order relation on ~ts vertices and 
edges, i.e. a <6 b if and only i fa  is a vertex and b is an edge incident on a. This leads to the definition 
of the order-dimension of G as the minimum number of total orders on I ' ~  E whose intersection 
is <G. Our main result ~s the characterization of planar graphs as the graphs whose order-dimension 
does not exceed three. Strong versions of several known properties of planar graphs are ~mphed 
by this characterizahon These properhes include: each planar graph has arboricn) at most three and 
each planar graph has a plane embedding ~hose edges are straight line segments. A nice feature 
of this embedding ~s that the coordinates of the vertices have a purely combmatoriaI meaning. 
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1. Introduction 

For a poser (X, <)  consisting of  a set X and a (transitive. irreflexive) order- 
relation < on X, a realizer is a nonempty set of  total orders on X whose inter- 
section is the relation <. 

E. Szpilrajn [17] has proved that each poset has a realizer, B. Dushnik and 
E.W. Miller [3] have defined the dimension of a poser P (dim P) as the mini- 
mum c~irdinality of its realizers. 

d e f 

a b c 
Fig. 1. 

For example, the diagram shown in Figure 1 defines an order < (of height 1) 
on the set X =  {a, b, c, d, e,J) by x <  y if and only if 'x is in the lower part, 
y is in the upper part and x, y are adjacent'. The dimension of (X, <) cannot be 
1 (< is not total) and must therefore be 2 as < is the intersection of  the two 
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total orders 

< l : a b d c e f  and <2:cb f a e d .  

(Here as everywhere else in this paper, the order is from left to right.) 
The importance of orders in mathematics has motivated numerous investiga- 

tions of the dimension concept. For example, Komm [11] established very early 
that the dimension of the power-set of a set is the cardinality of this set and 
Hiraguchi [8] proved that, for n >/4, the dimension of a n-element poset is at 
most n/2. Later, Gysin [7] and Trotter, Moore, and Sumner [20] applied results 
of Gallai [5] to show that the dimension of a poset (X. <) depends only of the 
underlying comparability graph (the graph where vertices x, y~  X are adjacent 
if and only if x < y or 3' < x), i.e. two posets with the same comparability graph 
have the same dimension. These are but a few of many results in this area. For 
more information we refer to the overviews in [18, 12, 22]. 

Although two-dimensional posets are well understood [3, 10, 19] and can 
be recognized in polynomial time [6], no simple characterization of d-dimen- 
sional posets is known for d ) 3 .  Indeed, Yannakakis [23] has shown that 
deciding whether a poset has dimension d is a NP-complete problem, for all 
d )  3. Even the recognition of four-dimensional posets of height 1 is NP- 
complete. The complexity of the recognition of three-dimensional posets of 
height 1 remains an open problem. 

One of the simplest examples of posets of height 1 is the poset P(n, k) 
induced by the inclusion relation on the class of all 1- and k-element sub- 
sets of a n-element set. The study of this poset dates back to [3] proving 
dim P(n, n -  1)= n and the lower bound dim P(n, 2)/> log2 log2(n). These 
investigations were continued in [2] with a formula for dim P(n, k) when 
2L~,~J ~< k~< n. Eventually, Spencer [14] investigating the asymptotic behavior 
of dim P(n, k) has shown that dim P(n, 2) is asymptotically equal to log2 log2(n). 

In this paper, posets of height 1 are viewed as hypergraphs whose incidence 
relation is interpreted as order relation. For example, P(n, k) is the complete 
k-uniform hypergraph on n vertices and P(n, 2) is the complete graph K,,. 
We propose to extend the investigation of P(n, 2) to general graphs, defining the 
(order-)dimension of a graph as the dimension of its incidence relation, and 
to try to relate the dimension of a graph to other graph-properties. 

Our main result is that a graph has dimension at most three if and only if 
this graph is planar. 

From this characterization we deduce that, given a maximal planar graph G 
on at least four vertices the poser consisting of the vertices, the edges and the 
faces of G ordered by the inclusion relation has dimension four. Removal of any 
face from this poset results in a three-dimensional poser. The hypergraph whose 
vertices are the vertices of G and whose hyperedges are the edges and faces of G 
has the same property. 
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Our result also implies strong versions of several known properties of planar 
graphs. For example, the property of having embeddings in the plane where 
edges are segments of straight lines [4, 16, 21]; here we can give a purely 
combinatorial meaning to the vertex coordinates of the embedding. Another 
property is the decomposition of maximal planar graphs in three edge disjoint 
trees [13, 9] that correspond to three-dimensional realizers. 

Notice that the planarity of three-dimensional graphs ('only if' part of our 
characterization) has also been shown by Babai and Duffus [1] in a different 
context. 

2. The Order-Dimension of a Graph 

Throughout this paper, V is a finite nonempty set and I VI denotes the cardinal- 
ity of V. Graphs are finite simple graphs, their edges are identified with 2- 
element sets. A triangle of a graph G is a set of three pairwise adjacent vertices 
of G. 

The symbols G and H are reserved for graphs, V(G) is the vertex set of 
G and E(G) is the edge set of G; a formula G = ( ~  E) means that V= V(G) and 
E = E(G). G is a subgraph of H if V(G) c V(H) and E(G) c E(H). 

l fR  is a binary relation on V(G), an R-path in G is a path vo, vl . . . . .  v,, of G 
such that R(u~, v,+j ) holds for all i. 0 ~< i < n. Tl~e outdeeree in R of a vertex 
x of G is the number of neighbors y o f x  that satisfy R(x. y). 

DEFINITION. For a graph G = (V E) the partial order <<; on l.'~ E is defined 
by a <c;b e:, a~ V a n d b ~  E a n d a ~ b .  

The (order-)dimension dim(G) of G is the dimension of the poset (I"uJ E, <<,). 

Remark. If H is a subgraph of G, the relation <tf is the restriction of <o to 
V(H) w E(H). Therefore dim(H)~< dim(G), i.e., the dimension is a monotone 
function of graphs. 

The definition of dim(G) relates <o to its realizers, thus to total orders on 
V(G) ~ E(G). It will be useful to consider the restrictions of the latter orders to 
V(G). Their essential properties are stated in the following lemma whose 
straightforward proof is left to the reader. An analogous statement for P(n, k) 
can be found in [2]. 

LEMMA 2.1. A graph G with vertex set V has dim(G) <.% d if  and onh' i f  there 
exists a sequence <l ,  <2 . . . . .  < j  of total orders on V satis~'ing the Jbllowin¢ 
conditions: 

(1) the intersection o f< l ,  <2 . . . . .  <j  is empty, 
(2) for each edge {x, y} and each vertex z ~ {x, y} o1" G. there is at least one 

order <, in the sequence such that x <, z and v <, z. 

Condition (1) is a consequence of condition (2) when the minimum degree of 
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G is at least 2. In this case, already the existence of d partial orders satisfying 
condition (2) implies dim(G) ~< d. 

In the remainder of this paper, the names vertex property and edge property 
will refer to (1) and (2), respectively, 

DEFINITION. A d-dimensional representation on a set V is a sequence <1, 
<2 . . . . .  < j  of total orders on V that has the vertex property. This sequence 
represents all graphs with vertex set V for which the edge property holds. 
Among these graphs, the graph G with maximal edge set is the graph induced 

by <~, <2 . . . .  , < j .  

The following examples and Proposition 2.4 illustrate the use of Lemma 2.1 
and show some elementary properties of the dimension of graphs. 

EXAMPLE 2.2. A graph has dimension less than 3 if  and only i f  it is a sub- 
graph of  a path (notice that the only 1-dimensional graph is the isolated vertex): 
a two-dimensional representation on an n-element set V has the form 

~1:0102 . . .On_lOn, <~2" OnOn 1 . . .  0 2 0 1  

and represents a graph G = ( V, E) iffE_q {{v~, v~+ l } [ 1 ~< i < n}. 

EXAMPLE2.3.  A three-dimensional representation of the triangle with 
vertices a, b, c is any sequence <l ,  <2, <3 of total orders on {a, b, c} such that 
each of a, b and c is the maximum of one of these orders. 

PROPOSITION 2.4. Each 4-colorable graph has dimension at most 4. 
Proof get G--(V, E) be a four-colorable graph and consider a partition 

.C Y, Z, W of V in four color classes. Let X +, Y+, Z +, W + denote any total order- 
ings of X, Y, Z, W and J(-, Y-, Z- ,  W-  denote the inverse orderings. It is easy 
to see that the following four orderings of V form a four-dimensional representa- 
tion of G. 

< 1 : X + Y+ Z + W +, 
<~_: Y- X-  W - Z - ,  
<3: W+ Z + J(- Y-, 
< 4 : Z -  W- Y + X + 

(the superscripts chosen in column 1 are irrelevant). 

The converse of Proposition 2.4 is false. For example, it can be shown that 
dim(Klz) = 4. (K13 is the first complete five-dimensional graph). 

It will be proved in Section 4 that every three-dimensional graph is planar. 
Together with Proposition 2.4, this implies the existence of graphs of  arbitrarily 

high genus in dimension 4. 

The following observations (Lemma 2.5 and Corollary 2.6) show that each 
d-dimensional graph has standard representations. This fact has also been used 
in [2]. 
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LEMMA 2.5. Let <l, <2 . . . . .  <j be a d-dimensional representation of G = 
(V, E) and x be the maximum of  <k. For i ~  k, let <[ be the total order on V 
where x precedes all elements of  V - { x }  and the elements of  V - { x }  are 
ordered by <,. Then <~ . . . . .  <~- l ,  <k, <i,+J . . . . .  <~ is also a d-dimensional 
representation of  G. 

DEFINITION. A d-dimensional representation <~, <2 . . . . .  < j  on a set V 
is standard if I V I >/d and, for all i ~ j, the maximum element of <, is one of the 
d -  1 smallest elements of <j. The maxima of the orders of a standard d- 
dimensional representation are the exterior elements of this representation. The 
other elements of V are the interior elements. 

Notice that, for d>_-3, any two exterior elements of a standard d-dimen- 
sional representation are adjacent in the graph induced by this representation. 

COROLLARY 2.6. Each Graph G with at least d vertices and dim(G) <~ d has a 
standard d-dimensional representation. 

Proof By d-fold application of Lemma 2.5 to an initial d-dimensional 
representation of G. 

3. Three Dimensional Representations 

For a sequence Rt ,  R2, R3 of binary relations on a set V, we define the dual 
sequence R~', R*, R~by 

R~(x, y) e==~ R~ (x, y) & [R,( y, x) for i S  k]. 

In particular, if <~, <2, <3 is a three-dimensional representation on t .  the 
relations <~', <*, <~' are partial orders on V and any two distinct elements x and 
y of V are comparable in exactly one of these orders. Each edge of the graph 
G induced by <1, <2, <3 receives therefore a unique label and direction. This 
decomposes G in three arc disjoint digraphs whose arc-sets are denoted At, =1_~. 
A3: 

A~ = {(x, y)l {x, y} • E(G)& x <~3'} 

and E(G) is the disjoint union of the three underlying edge sets El, E2, E3 
defined by E~ := {{x, y} t(x, y) • A~}. An immediate consequence of the edge 
and vertex properties is then Lemma 3.1. 

LEMMA 3.1. For a 3-dimensional representation <l .  <2. <3 on the set Ii there 
holds." A~ = {(x, v) l v is the minimum in <~ of{v c I ' [x  <~ v}}. 

EXAMPLE3.2.  The three-dimensional representation < ~ : b c x y z a ,  <2: 
c a z x y b ,  < 3 : a b y z x c  on V = { a , b , c , x , y , z }  induces the graph shown as 
Figure 2, where the thick lines correspond to A t • 
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Fig. 2. 
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THEOREM 3.3. For k =  1, 2, 3, the digraph (V, Ak) determined by a three- 
dimensional representation <l ,  <2, <3 on V is a rooted forest (whose arcs are 
directed toward the roots). I f  the representation is standard and al , a2, a3 denote 
the respective maxima o f < l ,  <2, <3, then the component Tk of  ak in (V, Ak) 
has a~ as root and includes at least all interior elements of  the representation 
as further vertices. The other components, i f  any, are trivial. 

Proof By Lemma 3.1, the outdegree in (V, Ak) of a vertex x e  V is at most 1 
(it is 1 iff there exists a vertex y • V such that x <~y). Hence, to each undirected 
cycle of the underlying graph (V, Ek) would correspond a directed cycle of 
(V, A~). Since <* is an (acyclic) order relation, (V, E~) is a forest. The same k 
outdegree property of (V, Ak) implies that each connected component of (V, E~) 
contains exactly one vertex whose outdegree in (V, Ak) is 0. This vertex is the 
root of the given component. 

If <~, <2, <3 is standard, the only vertices that may have outdegree 0 in 
(V, AA) are the respective maxima a~,a2,  a3 of <~, <2, <3. Of these, only ak 
can have indegree greater than 0 in (V,A~). Hence, (V, A~) has at most one 
nontrivial component (rooted in ak). This tree includes all interior elements of 
the representation. 

Remark. For i ~ k the element a, is a vertex of Tk (the notation is the same as in 
Theorem 3.3) if and only if the edge {a~, ak} is directed from a, to ak. Therefore, 
if ]V]= n, either the trees Tj, ~ ,  T3 have each exactly n -  1 vertices, or the 
cardinalities of  their vertex sets form a permutation of  the numbers n, n -  1 and 
n--2.  

We observe that Theorems 1 and 3 of [9] are a consequence of the last remark 
(combined with the characterization of planar graphs as graphs of dimension at 
most three). 

COROLLARY 3.4. A three-dimensional representation <1, <2, <3 on a set V 
of  cardinality n >1 3 is standard i f  and only i f  the induced graph G has exactly 
3 n - 6 edges. 
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Proof (1) The 'only if' statement is a direct consequence of the last remark. 
(2) Conversely, let a~,a2,a~ denote the respective maxima of <1, <2, <3. 
Suppose that <~, <2, <3 is not standard. For example, there exist vertices 
x, y~ V such that x<2 Y<2 al.  The vertex condition implies then that al ~ a3. 
One of the vertices x, y must be different from a3. This vertex is in no order 
greater than both a~ and a3. Consequently {al, a3} is not an edge of G. How- 
ever, applications of Lemma 2.5 to <1 and <3 result in a supergraph H =  
(V, E') of G such that {al, a3) E E'. Part (1) of this proof and Corollary 2.6 imply 
then that [E(G)I < [E't ~< 3 n - 6. 

4. Three Dimensional Graphs 

The following notation and terminology concerning planar embeddings will 
be used in this and the next sections. 

A triangular graph G is a maximal planar graph on at least three vertices 
that is embedded in the plane (i.e. whose exterior face has been chosen). The 
triangle of G whose edges form the boundary of the exterior face of G is the 
exterior triangle of G; its vertices and edges are the exterior vertices and edges 
of G, the other vertices and edges are the interior vertices and edges of G. An 
elementary triangle of G is a triangle whose edges form the boundary of an 
interior face of G. Given a cycle Z of G, the region with boundary Z is the 
subgraph of G induced by the vertices of Z and the vertices lying in the interior 
of Z. Therefore "face' and 'region' have different meanings. 

The notation xy (for x, y ~ 3 )  represents the straight line segment with 
endpoints x and y. A straight line embedding of a graph G in a plane is an 
injection f of V(G) in this plane such that for any two distinct edges {x, y} and 
{u, v} of G: f(x)  y(y)c~ f(u) f (o)= y({x, y} n {u, v}). 

THEOREM 4.1. Each graph G= (V, E) of dimension at most three is planar. 
Moreover. to each three-dimensional representation <~, <2, <3 of G corresponds 
a straight-line embedding f:  v ~ V---> (ol, v2) ~ ~2 of  G in the plane, such that 
for a//u, v c V: u, < v~ ¢:~ u <, v (i = 1,2). 

Proof For v~ V and i~ {1,2}, let v, be the power of 2 whose exponent 
is the ordinal of o with respect to <,. 

It suffices to verify that the so defined mapping f :  V---> ~2 is a straight line 
embedding of G in the plane. To simplify the notation, the same symbol will 
be used to denote a vertex of V and its image under f .  

Note that, by the definition off ,  if x, y~ V satisfy Y<l x and x<2 y, no vertex 
z ~ x, y will be mapped by f in the (closed) triangle delimited by the points 
x, y and (xj, Y2) shown in Figure 3, since each point z of this triangle satisfies 

Xl V2 
y < z l ~ < X l  or 2<z2<~y2.  
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( x x l  ' Y 2  ) 

Fig. 3. 

Assume, for contradiction, that there exist two disjoint edges {x, y} and 
{a, b} such that xy ~ ab ~ O. (The case of nondisjoint edges has a similar proof.) 

Let, for example, x be the maximum of {x, y, a, b) with respect to <~. By 
the edge property, y> ,  a, b, a >j x. y. b >k x, y must hold for some choice of 
i , j , k ¢ { 1 , 2 , 3 ) .  

xy ~ ab ~ 0 and the maximality of x in < 1 imply i, j, k ~> 2. Thus j = k and 
therefore j = k = 3 and i = 2. Then y >2 a, b and xy c~ ab ~ 0 imply y >2 x. 

Consequently x > l  y, Y>2 x and Y2 > a2, b2, Xl > a l ,  bl .  Therefore, a and b 
are both on the same side (below) of the straight line through x and y. Hence, 
xy ~ ab = 0 in contradiction to the original assumption. 

By Corollary 3.4 and Theorem 4.1, a three-dimensional representation 
<~, <2, <3 on a set V of cardinality I VI >/3 induces a maximal planar graph if 
and only if this representation is standard. In this case, we refer to the graph 
G induced by < l ,  <2, <3 together with its planar embedding defined in the 
proof of Theorem 4.1 as the triangular graph induced by <~, <2, <3- Elemen- 
tary geometric considerations show that the exterior vertices of G are precisely 
the exterior elements of the representation. This justifies the terminology 
introduced in the definition of standard representations. 

As Lemma 4.2, we now prove the converse of Theorem 3.3. For later use, it is 
convenient to formulate this lemma in terms of acyclic relations. 

LEMMA 4.2. Let G be a triangular graph whose vertex set V has cardinality 
I VI>~4 and <1, <2, <3 be three acyclic relations on V such that every interior 

* Thenforeach edge vertex of  G has outdegree exactly one in each of  <~, <*, <3. 
{x, y} of  G and each vertex z ¢ (x, y) there exist, for some k • { 1,2, 3), a <k-path 
from x to z and a <k-path from y to z. Therefore, any three total orders extend- 
ing < 1, <2, <3 on V form a three-dimensional representation of  G. 

Proof Notice that for i ~ j ,  a <*-path and a <*-path starting in the same 
vertex v have no common vertex except v as the existence of such a common 
vertex u would imply a <~-cycle from v to o via u. 

Let o be any interior vertex of G. By the above, the (unique longest) <]~, <* 
and <~'-paths starting at v end in distinct exterior vertices that will be denoted 
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respectively by a~, a2,a3. In particular, this implies the existence of some 
<,-path from aj to a, for any choice o f j  ~ i. 

If u ~  v is any further interior vertex of G, the (unique longest) <*-path 
starting at u must also end at a,, as an ending in aj for j ~a i would imply the 
existence of some <~-path (k ~ i) from u to a, and therefore the existence of a 
<,-cycle from a, to a, via u, aj and v (Figure 4). 

a i aj 

J 

Fig. 4. 

Therefore there exists a <e-path from each vertex u ~ a, of G to a,. This 
proves the lemma for the case where z e {al, a2, a3}. 

* and <~'-paths from z to al, a2 and a3 divide I f z f~{a l ,a2 ,a3} ,  the <~', <2 
G in three regions R~, R2 and R3 (where Rk denotes the region opposite ak, 
including its boundary) (Figure 5). 

a 3 

al a 2 
Fig. 5. 

As the end-vertices x and y of each edge {x. y} of G are both in the same 
region, it suffices to show that there exists for each vertex v of G, v ~Rk, a 
<k-path from v to z. 

Let, for example, v ~R3 and consider some <3-path from v to a3. This 
path must intersect the <~'-path from z to al or the <~-path from z to a2 in a 
vertex u. Suppose, for example, that u belongs to the <~'-path from z to al .  
Combining the two paths, there results a <3-path from v to z via u. 
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5. Barycentric Representations 

It has been shown in Section 4 that the graph G induced by a three-dimensional 
representation <1, <2, <3 is always planar. It is therefore tempting to look for 
an embedding of G in a plane (or sphere) in ~3 such that < l ,  <2 and <3 are 
precisely the orders defined on the vertices by their three coordinates. Such an 
embedding however, does not exist in general, as illustrated (for planes) by 
Example 5.1. 

EXAMPLE 5.1. Let V= {a, b, c, x, y, z} and <l ,  <2, <3 be the three-dimen- 
sional representation defined on V by 

< l : a X b z c y ,  
< 2 : b y c x a z ,  
< 3 : c z a y b x .  

There exists no mapping f :  v • V---~ (ol, 02, 03) • ~3 such that 
(1) f ( V )  is contained in a plane, 
(2) for allu, v • V : u , < v ~ c = ~ u < , v  ( i = 1 , 2 , 3 ) .  

Since for i-- 1, 2, 3 there exist elements u, o • V with u <*v, the coefficients 
0~1, ~Z2, ~3 of the equation ~IOIWRr202-t-O.r303=6 of such a plane would 
have to be of the same sign. Replacing in each row <~ of the above matrix 
every element o by the product act 0~ and comparing the sums of columns 1, 3, 5 
and columns 2, 4, 6 would then lead to the contradiction 36 ¢ 36. 

Nevertheless, Lemma 4.2 implies that the edge and vertex properties of a 
standard three-dimensional representation are essentially determined by the 
restrictions of its orders to the edges of the induced graph. This suggests a 
relaxation of condition (2) of the last example and will result (Theorem 5.3 and 
Corollary 5.4) in the correct interpretation of three-dimensional representations 
by coordinates. 

DEFINITION. A barycentric embedding of a graph G is an injective function 
v • V(G) ~ (vl,  v2, v3) • ~3 that satisfies the conditions: 

( 1 )  01 -1- 0 2 -~- 0 3 = 1 for all vertices v, 
(2) For each edge {x, y} and each vertex z ¢ {x, 3'}, there is some k • {1, 2, 3} 

such that xk < Zk and Yk < Zk. 

LEMMA 5.2. Each barycentric embedding of  a graph is a straight line embed- 
ding of  this graph in the plane 01 + 02 + v3 = 1. 

Proof By applying the proof of Theorem 4.1 to the 'projection' f :  o • V(G) 
(O1, 02 ) • ~2 of an initial barycentric embedding of the graph G. Observe that 
if {x. y} is an edge of G and Yl <~ x l ,  x2 <<. Y2, no vertex z of G will be mapped by 
f i n  the convex hull of the points (xl, Xz), (Yl, Y2), (Xl, Y2). 

THEOREM 5.3. Let G be the triangular graph induced by a standard three- 
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dimensional representation <~, <2, <3 on a set V and let a ~, a 2, a 3 be the 
respective maxima of  < l ,  <2, <3- Then there exists a straight line embedding 
of  G such that v l, v2, v3 denoting the barycentric coordinates o f  vertices v ~ V 
relative to a I, a:, a 3, there holds for each interior edge {u, v} o f  G: u <, v 
u~ < v~ (i = 1, 2, 3). 

Proof Let n denote the cardinality of V. It suffices to define a mapping f :  v 
V--~ (vl,  v2, v3)e •3 with the properties: 

(0) f ( a  I ) = (2n - 5, 0, O),f(a 2) = (0, 2n - 5, 0), f ( a  3) = (0, 0, 2n - 5), 
(1) v,,  v2, v3 >10 and vl + v2 + v3 = 2 n -  5 for all vertices v, 
(2) u <, v ~ u, < v~ for all interior edges {u, v} of G and i = 1,2, 3. 

By Lemmas 4.2 and 5.2, the mapping resulting from f u p o n  division by 2 n -  5 
satisfies the statement of  the proposition. 

Using the notation of the proof of Lemma 4.2, recall that each interior vertex 
v divides G in three regions Rl (v), R2(v), R3(v) and that each vertex u ¢ v of 
region R~(o) satisfies u<~ o ( k =  1,2, 3). 

f ( a  I ), f (a2) ,  f ( a  3) are defined by (0) above. For an interior vertex v of G, we 
let v, ( i=  1, 2, 3) be the number  of elementary triangles in region R,(v). This 
clearly satisfies condition (1). 

To verify condition (2), consider an interior edge {u, v} of G and assume, 
for example, that u < ]  v. To show: u 3 < 03, O 1 < /'/1 , 02 < U2- This is trivial if 
v = a 3. Suppose, therefore, that v ~a a 3. Then v is an interior vertex of G and u 
must lie in the interior of  region R3 (v) (Figure 6). 

Fig. 6. 

For i =  1 and j = 2  (or i = 2  and j =  1), the <*-path from u to a ~ and the 
<~*-path from v to a j have no common vertex, as the existence of such a vertex 
x would imply u % x %  v, contradicting u <3 v. The outdegree (at most 1) 
properties of < t  and <* imply thus: R3(u) ~ R3(v), Rl (v) ~ Rj (u), and R2(v) 
Rz(U ). These inclusions being proper, there follows u3 < v3, vl < ul ,  v2 < u2. 
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As each three-dimensional representation of a graph G can be extended, by 
adjunction of three new exterior elements, to a standard representation of a 
triangular supergraph of G, we obtain 

COROLLARY 5.4. To each three-dimensional representation <l ,  <2, <3 of  a 
graph G corresponds a barycentric embedding v • V(G)--> (vx, v2, v3) ~- ~3 
of  G such that u <~ v ¢:, u, < v~for all edges {u, v} of  G and i = 1, 2, 3. 

6. Planar Graphs have Dimension at Most Three 

We now show that each planar graph has dimension at most three. By Theorem 
4.1 or Corollary 5.4, this fact implies, in particular, that each planar graph 
has straight line embeddings, a result of Ffiry [4], Stein [16] and Wagner [21]. 
Our proof of three-dimensionality is based on their methods, as analyzed by 
Kampen [9]. 

Two independent versions are given: construction of a straight line embedding 
in this section and a coordinate-free proof in Section 7. 

We first review the method of edge contraction. For a vertex x of a graph 
G, N(x) denotes the set of neighbors of x in G. If {x, y} is an edge of G, the 
contracted graph G)(x, y) is obtained from G by removal of the vertex y and the 
edges incident on y and by introduction of an edge {x, z} for each vertex = 
N(y)  - N(x). The edge {x, y} is contractible i fx  and y have exactly two common 
neighbors. If G is a maximal planar graph on at least four vertices and {x, y} 
is a contractible edge of G, then G/(x, y) is a maximal planar graph. 

LEMMA 6.1 [9]. Let G be a triangular graph on n >1 4 vertices. I f  a, b and c 
denote the exterior vertices of  G, then there exists a neighbor x ~ a, b of  c such 
that the edge {c, x} is contractible. 

Thus to each triangular graph corresponds a sequence of 'allowed contrac- 
tions' transforming this graph into a triangle. 

THEOREM 6.2. Each planar graph has dimension at most three. 
Proof By the monotonicity of the dimension, it suffices to prove the theorem 

for triangular graphs G. Let V be the vertex set of G and let a, b, c denote the 
exterior vertices of G in counterclockwise order. We show the existence of an 
embedding of V in the plane such that (identifying the vertices and their 
images): 

(a) a, b. c are affinely independent and each vertex v ~ V lies in the triangle 
delimited by a, b and c. 

(b) The partial orders <1, <2, <3 defined on V by the barycentric coordinates 
o I , 02, 03 of the vertices v c V with respect to a, b, c (u <, v ¢:~ u, < v,) 
satisfy the hypothesis of Lemma 4.2 (if l VI >~ 4). 

The proof proceeds by induction on the number n = ] VI. The claim is trivial 
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if n -- 3. Let n >/4 and assume that the claim is true for all triangular graphs with 
less than n vertices. 

Consider some neighbor x ~ a, b of c such that the edge {c, x} is contractible 
and let p = v ~, v 2 . . . . .  v r = q be the neighbors of x, distinct from c, in counter- 
clockwise order. The vertices p and q are the two common neighbors of c and x 
(Figure 7). 

b 

C a 

Fig. 7, 

By induction hypothesis, there is an embedding f of V -  {x} in the plane 
with the above properties (a) and (b). Lemma 4.2 implies that f is a barycentric 
embedding. By Lemma 5.2, this embedding is therefore a straight line embedding 
of G/(c, x )  (Figure 8). 

b 
:.q=v 4 

V2 

f-=vl 
O 

C ~ a 

Fig. 8. 

Notice that as c3 > u3 for all u ~ V -  {c} and f i s  a straight line embedding of 
G, condition (2) of the definition of barycentric embeddings applied to the 
wheel of c implies that 

1 "~ r r [ - 1  1 
p2----O2<O2<...<o2=q2 and q l = v l < v  < . . . < v l = p ~ .  

Let d denote the point with barycentric coordinates (ql, P2, 1 - -  ql - - P 2 ) .  By the 
above inequalities, there is a choice of x sufficiently close from d in the quarter- 

, ' (i  = 1 , 2 ,  r), plane u~ >q~ u 2 > p 2  that will satisfy the relations: x 3 > v  3 ..., 
' ~(i  2,  r -  1). xl  > ql , xx > P2, Xl < vl and x2 < v 2 . . . . .  
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For i = 1, 2, 3 let <, denote the partial order defined on V by u <, v ¢~ u~ < v~. 
By the choice of x, we have x<~p, x<*q, x<~c and v'<~x for all i~ 1,r. 
Therefore, the outdegree o f x  in each of the relations <~', <*, <~' is exactly one. 
Using the induction hypothesis, it is easy to verify that the outdegrees of each 
interior vertex y ~ x of G in the relations <~', <~', <~' are exactly one (notice that 
for i =  2 . . . . .  r -  1 the edge {v ~, c) of G/(c. x) has been replaced in G by the 
edge {v ~, x} and that there holds v r <~x). 

Observe that we placed x close to d and far from c. The standard proof that 
G has a straight line embedding would position x arbitrarily close to the vertex c. 

Remark. If < l ,  <2, <3 is a standard three-dimensional representation on a 
set V of cardinality ] V] >/4 and c is the maximum of <3, then the maximum 
x of V-{c}  in <3 is a neighbor of c and the edge {c, x} is contractible. This 
fact could have been used to prove Theorem 5.3 by suitably modifying the 
proof of Theorem 6.2. However, the resulting proof would not provide the inter- 
pretation ofbarycentric coordinates as counts of elementary triangles. 

Theorem 3.3 has shown that each three-dimensional representation of a 
triangular graph decomposes this graph in three edge-disjoint directed trees 
whose vertices include all interior vertices of the graph. However, not every 
such tree-decomposition corresponds to a three-dimensional representation as 
the acyclicity of the induced relations <1, <2, <3 is not guaranteed. This 
acyclicity was ensured in the proof of Theorem 6.2 by the use of coordinates. In 
the next section, we present the topological properties of the tree-decomposition 
that correspond to the above acyclicity. Rather than using trees, however, it 
will be convenient to apply the equivalent notion of labelings of angles. 

7. Labeling the Angles of a Triangular Graph 

The angles of a triangular graph G are the angles of its elementary triangles. 
If G is induced by a standard three-dimensional representation <1, <2, <3, 
then each angle L(xy, xz) of G determines a unique label k~ {1, 2, 3) such that 
x >~ y, z (since {x, y, z) is a triangle and the inequalities y >/x, z and z >, x, y 
must also be satisfied). 

The representation <l ,  <2, <3 induces in this way a labeling of the angles 
of G with the labels l, 2, 3. 

EXAMPLE 7.1. The representation <l : b c x y z a, <2 : c a z x y b, <3: a b y z x c 
on V-- {a, b, c, x. y, z} induces the labeled graph given as Figure 9. 

The essential properties of this labeling are summarized in the following 
definition. 

DEFINITION. A normal labeling of a triangular graph G is a labeling of the 
angles of G with the labels l, 2, 3 that satisfies the conditions: 
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(1) Each elementary triangle of G has an angle labeled 1, an angle labeled 2 
and an angle labeled 3. The corresponding vertices appear in counter- 
clockwise order. 

(2) The labels of the angles of an interior vertex x of G form, in counterclock- 
wise order, an interval of l 's followed by an interval of 2's followed by an 
interval of 3's. 

In the remainder of this section, the expression labeled triangular graph will 
be used to denote a triangular graph together with a normal labeling of its 
angles. 

PROPOSITION 7.2. The labeling induced by a standard three-dimensional 
representation is a normal labeling. 

Proo/i Let G be the triangular graph induced by a standard three-dimensional 
representation < ~, <2, <3 and consider a straight line embedding of G with the 
properties shown in Proposition 5.3. 

Define the counterclockwise orientation of the plane by the cycle a I, a 2, a 3 
(in this order). Property (1) of normal labelings is then trivially satisfied. 

Let x be an interior vertex of G and let u l, u :, u 3 denote the (unique) neigh- 
3 bors of x with x <*u'. Notice that the ordering u l, u ", u is counterclockwise. 

It is easy to see that all angles at x in a sector (xu', xu '+l) have the same label 
i + 2 (indices and labels are modulo 3). This shows that property (2) of normal 
labelings is also satisfied. 

A vertex v belonging to a cycle Z in a labeled triangular graph will be said 
to be of type i ( i=  1,2, 3) with respect to Z if all angles at v, interior to Z, have 
the label i. The interpretation of three-dimensional representations by bary- 
centric coordinates motivates the following lemma. 

LEMMA 7.3. Each cycle Z in a labeled triangular graph G has a vertex o f  type 
I, a vertex o f  type 2 and a vertex o f  type 3. 

Proof. Each interior edge {u, u} of G belongs to two elementary triangles 
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{x, u, v} and {y, u, v}. The labels of the angles at u and v in these triangles will 
be cal!ed labels of  u and v along {u, v}. The definition of a normal labeling 
implies that these labels have (up to a renaming of u and v) the form given in 
Figure 10, where i, j, k is a cyclic permutation of 1, 2, 3. Thus, the labels of u 
along {u, v} are distinct from the labels ofv  along {u, v}. 

X 

Fig. 10. 

Assume that there exist cycles for which the statement of the lemma is false. 
Among these cycles, consider a cycle Z enclosing the minimum number n 
of elementary triangles. By definition n >/2. Suppose, for example that Z has 
no vertex of type 1. 

Case 1 (Figure 11): There is an edge {u, v} interior to Z whose vertices u and 
v are nonconsecutive vertices of Z. The edge {u, v} divides then Z in two cycles 
Z~ and Z2, each containing less than n elementary triangles of G. 

u 

V 

Fig 11. 

ZI and Z2 have vertices of type 1. As Z does not have such a vertex, one of 
the vertices u, v has type 1 in Zl and the other has type 1 in Z2. Therefore the 
labels o fu  along {u, v} and the labels ofv  along {u, v} are not distinct, in contra- 
diction to the preliminary observation. 

Ca.se 2 (Figure 12): No two nonconsecutive vertices of Z are joined by an 
edge interior to Z. Let u, v be counterclockwise consecutive vertices of Z and 
let x be the vertex in the interior of Z such that {x, u, v} is an elementary 
triangle (observe that x is not a vertex of Z). Let the angles at u, v and x in this 
triangle be labeled i, / and k, respectively. 

Then Z has a vertex of type k. Indeed, let Z '  denote the cycle obtained 
from Z through replacement of the edge {u, v} by the two edges {u, x} and 
{x, v}. Z '  encloses n -  1 elementary triangles and has, therefore, a vertex w of 
type k. The remark preceding case 1 implies that w ¢  u, v. The definition 
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of normal labelings implies that w #  x. Therefore,  w is a vertex of type k in 

the cycle Z. 
Applying this argument to i = 2 and j = 3, it follows that Z has no vertex 

o f  type  2 or 3. There fore  Z has no  vertex o f  type  1, 2, 3; again a contrad ic t ion  
to the a b o v e  argument .  

In particular, the exterior cycle of  a labeled triangular graph G has a vertex 

of type 1, a vertex of type 2 and a vertex of  type 3: the exterior vertices of G. It 
can easily be seen that these vertices appear  in counterclockwise order. (For an 
illustration, see Example 7.1.) 

PROPOSITION 7.4. Let G be a labeled triangular graph and <l ,  <2, <3 he 
the binao' relations defined on I '(G) by: x <~ 3'¢::> there exists an elementao' 
triangle {x, y. z} of  G such that the label of  ± ( yx. yz) is k. Then the relations 
<~, <2, <3 are acj'clic and any three total orders extending <~, < , ,  <3 on I '(G) 
form a three-dimensional representation oYG. 

Prooll Suppose that there exists a cycle x = x0 </, .x-~ </, ... <~ .\-,, = x (n >/1). 
The underlying cycle Z of G does not have any vertex of type k. This contra- 
dicts Lemma 7.3. 

Condit ion (2) of  the definition of a normal labeling implies that each interior 

vertex of  G has outdegree exactly one in <~ (k = 1, 2, 3). Together  with Lemma 
4.2, this implies the second statement of  Proposition 7.4. 

We now give the second (coordinate-independent)  version of the proof  of 
Theorem 6.2. 

T H E O R E M  7.5. Each triangular graph has a normal labeling. There[bre. each 
planar graph has dimension at most three. 

Proo/i The second statement of the theorem follows from the first combined 
with Proposition 7.4 and the monotonici ty  of the dimension. 

We prove the first statement by induction on the number  n of  vertices of  a 
triangular graph G. The case n - - 3  is trivial. Let n >~ 4 and assume that the 
theorem is true for all triangular graphs having less than n vertices. 

Let a. b, c denote the exterior vertices of  G and x ~ b. c be a neighbor of a 
such that a and x have exactly two common neighbors. Let a. v~, v_~ . . . . .  ~, 

be the vertices of  the wheel of  x, listed in counterclockwise order (Figure 13). 
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V4 

& 

Fig. 13 

By induction hypothesis, the graph G/(a. x) has a normal labeling and 
we may assume that all angles at a have the label 1 (Figure 14). 

a 

Fig. 14. 

Fig. 15. 

This labeling can trivially be transformed in a normal labeling of G by label- 
ing the angles ±(xv,, xv,+t) and ±(avl, ax), L_(ax. av,.) with 1, as shown in 
Figure 15. 

Notice that all normal labelings of a triangular graph can be obtained by the 
above method. 

8. Adding the Faces: Hypergraphs 

In this section, we consider (simple) hypergraphs H=(V, E) consisting of a 
nonempty set V of vertices and a set E of hyperedges that are subsets of V having 
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cardinality at least two. We call H a closed hypergraph if the implication 
X ~  Y ~ I  Y - X I =  I or Y - X e E  holds for any two distinct hyperedges X 

and Y of H. 
l Each hypergraph H =  (V. E) determines two partial orders <~  and <t4 on 

V u  E. The order <~/corresponds to the set inclusion (vertices being identified 
l with singleton sets). The order <H corresponds to the incidence relation and is 

defined as for graphs. The superscripts oo and 1 indicate the upper bounds on 
the heights. 

We therefore have two notions of  order-dimension for a hypergraph H: 

d i m ~ ( H ) = d i m ( V u E ,  <~) and d i m l ( H ) = d i m ( V w E ,  <ZH). 

As a variant of Lemma 2.1, we obtain Lemma 8.1. 

LEMMA 8.1. A closed hypergraph H with vertex set V has dim l(H) <~ d 
if  and only i f  there exists a sequence <l ,  <2 . . . . .  <~/ of  total orders on V satis- 
fying the following conditions." 

(1) the intersection o f < l ,  <2 . . . . .  < j  is empty, 
(2) for each hyperedge X and each vertex 3'¢ X of  H, there is at least one 

order <, in the sequence such that x <, ),.for all x e X. 

Proof The 'only if' part is trivial. The ' i f ' ,par t  is proved by extending a 
sequence < l ,  <2 . . . . .  < j  of total orders on V that satisfies conditions (1) and (2) 
to a sequence <[ ,  <~ . . . . .  <} of total orders on V w E  whose intersection is 

1 
<H" 

The order <~' is obtained by insertion in <, of each hyperedge X just after its 
maximum (with respect to <,). Hyperedges having the same maximum are 
inserted in order of decreasing cardinalities. 

We show, for example, that distinct hyperedges are incomparable in the 
intersection of < ;, <~ . . . . .  <}. That  is, given any two distinct hyperedges X and 
Y, there must exist an order < ;  such that X <,' Y. 

Case 1. Y -  X ~ O. Then there exists a vertex y ~ Y with y ¢ Y. By (2) there is 
an order <, such that x <, y for all x e  X. Hence, X < ;  Y. 

Case 2. Y - X =  O. Therefore Y c X. Since H is a closed hypergraph X is a 
disjoint union X = Y w Z, where Z e E or Z = {z} for some z e ~'. l e t  y be any 
element of Y. By (2) or (1) there is an order <, such that - < , y  for all - e  Z. 
Hence, X and Y have the same maximum in this order <,. Since I YI <[XI,  there 
follows X < '~ Y. 

Remark. This lemma remains true if dim t (H) is replaced by d im=(H)  (even 
when H is not closed). Therefore, if H is a closed hypergraph there holds 
dim ~ (H) -- dim = (H). We denote this common value with dim(H).  

Let now G be a maximal planar graph on at least four vertices and let H(G) 
be the hypergraph whose vertex set is V(G) and whose hyperedges are the 
edges and faces of G. With H-(G) we denote the hypergraph obtained from 
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H(G) by elimination of one of the faces of G. Then H(G) and H-(G) are closed 
hypergraphs and dim H(G), dim H-(G) are well defined. 

THEOREM 8.2. I f  G be a maximal planar graph on at least four vertices, then 
dim H(G) = 4 and dim H-(G) = 3. 

Proof. View G as a triangular graph whose exterior face is the face missing 
in H-(G). Let <a, <2, <3 be a three-dimensional representation of G. From 
the proof of Lemma 4.2, it is easy to see that for each elementary triangle 
{x, y, z} and each vertex v ~ {x, y, z} of G there is one order <, of the representa- 
tion satisfying the inequalities x <, v, y <, v and z <, v. 

Thus the sequence <~, <2, <3 satisfies conditions (1) and (2) of Lemma 8.1 
with respect to H-(G). As dim H-(G) > 2, there follows dim H-(G) = 3. 

Let <4 be any total order on the vertex set V of G whose three smallest 
elements are the exterior elements of the representation <~, <2, <3. Clearly, 
the sequence <l ,  <2, <3, <4 satisfies both conditions of Lemma 8.1 with respect 
to H(G). Therefore, dim H(G) <~ 4. 

Suppose that dim H(G) ~< 3. Then there exists a sequence < f, <~, <~ of total 
orders on V that satisfies both conditions of Lemma 8.1. This sequence is, 
therefore, a three-dimensional representation of G in the sense of Section 2, thus 
standard as G is maximal planar. Hence, no vertex of G is greater than the three 
exterior elements of <f,  <_~, <~ in any of these orders. As these three elements 
form a face of G this contradicts condition (2) of Lemma 8.1. 

Remark. The inequality dim= H(G) >/4 holds for all polyhedra [15]. 

References 

1. L. Babal and D. Duffus (1981) Dimension and automorphism groups of lattices, A/g, Umv. 
12, 279-289. 

2. B. Dushnik (1950) Concerning a certain set of arrangements, Proc. Amer Math. Soc 1, 788- 
796. 

3. B. Dushnik and E. W. Miller ( 1941) Partially ordered sets, Amer J Math 63, 600-610. 
4. 1. Ffiry (1948) On straight line representation of planar graphs, Acta Set. Math Szeged 11, 

229-233. 
5. T Gallal (1967) Transitiv orientierbare Graphen, Acta Math. Acad Sct Hungar 18, 25-66. 
6. M.C. Golumbic (1977) The complexity of comparability graph recognition and coloring, 

Computmg 18, 199-203. 
7. R. G~sln (1977) Dimension transltlV orientlerbarer Graphen, Acta Math Acad Sct Hungar 29, 

313-316. 
8. T. Hlraguchl (1951) On the dimension of orders, Sct Rep Kanazawa Umv 1, 77-94. 
9. G R. Kampen (1976) Orienting planar graphs, Dz,screte 34ath 14,337-341. 

10. D. Kell} (1977) The 3-irreducible partially ordered sets, Canad. J Math 29,367-383. 
11. H. Komm (1948) On the dimension of partially ordered sets, Amer. J Math. 70, 507-520. 
12. D. Kelly and W.T. Trotter Jr. (1982) Dimension theory for ordered sets, in I. Rival (ed.), 

Ordered Sets, D. Reldel, Dordrecht, pp. 171-211. 
13. C. St J.A. Nash-Williams (1961) Edge disjoint trees of finite graphs, J London Math Soc 

36,445-450. 



PLANAR GRAPHS AND POSET DIMENSION 343 

14. J. Spencer (1971) Minimal acrambling sets of simple orders, ,4eta Math Acad Scz Hungar 22, 
349-353. 

15. V. Sedmak (1954) Quelques apphcations des ensembles ordonn6s, Bzdl, Soc Math Ph)',~ Serhte 
6, 12-39, 131-153. 

16. S. K. Stein (1951) Convex maps, Proc Amer Math Soc 2,464-466.  
17. E. Szpilrajn (1930) Sur l'extenslon de l'ordre partiel, Fund Math 16,386-389. 
18. W. T. Trotter Jr. (1983) Graphs and Partially Ordered Sets, m L. Bemeke (ed.), Graph Theory. 

Vol. 2, Academic Press, London, pp. 237-268. 
19. W.T. Trotter, Jr and J. 1. Moore Jr, (1976) Characterization problems for graphs, partially 

ordered sets, lattices and famlhes &sets, Dz,wrete Math 16, 361-38 I. 
20. W.T. Trotter, J. I. Moore and D. E Sumner (1976) The dimension of a comparability graph, 

Proc. Amer Math Soc. 60, 35-38. 
21. K. Wagner (1936) Bemerkungen zum Vierfarbenproblem, ,labor,her Deut,~h ltath - !'erem 

46, 26-32. 
22. D. B. West (1985) Parameters of partial orders and graphs: packing, covering, and representatmn, 

in I. Rival (ed.), Graph,s and Orders, D, Reidel, Dordrecht, pp. 267-350. 
23. M. Yannakakls (1982) The complexity of the partial order dimension problem, SI, 1U J 

Alg. Dzscrete Method,~ 3, 351-358. 


