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The Light-Gap Technique as a Tool for Measuring Residual Stresses in 
Bandsaw Blades 

By Ricardo O. Foschi 

Western Forest Products Laboratory, Vancouver, British Columbia 

Abstract. The relationship between residual stress distribution induced in bandsaw blades by 
cold rolling during tensioning and the transverse deflected shape obtained when the tensioned 
blade is bent over a given radius is studied. It is shown that the light-gap technique is not a 
reliable estimator of residual stresses since, while two transverse deflected shapes may be close 
to each other, the corresponding stress distributions may be far apart. The technique may be 
improved, within limits, by decreasing the tolerance with which a desired transverse deflected 
shape is approached during the tensioning process. A method for computing this tolerance is 
given. 

Introduct ion 

To increase bandsaw stability and thus improve sawing accuracy, handsaw blades 

are cold rolled to introduce a residual stress distribution with tensile stresses towards 

the edges of  the blade and compressive stresses towards the center. The process is 

usually known as the "tensioning of  the blade" and the stresses introduced are in 

addition to residual stresses already in the blade and to those created by operation 

in a bandmill. It  is important ,  therefore, to be able to estimate the magnitude of  

the residual stresses due to the cold-rolling process, to avoid excessively stressed 

blades that  may exhibit  fatigue and gullet cracking problems during operation. 

Residual stresses are difficult to measure with accuracy by non-destructive means 

and Szymani and Mote [1974] have presented a review of  the different techniques 

that could be applied to bandsaw blades. Traditionally,  saw fflers have controlled 

the level of  tensioning in a blade by measuring the "light-gap" when the blade is 

bent over a certain radius. Fig. 1 shows a tensioned blade, with residual stresses 

e o(y) ,  bent over a radius R. Due to the internal stresses Oo, a transverse curvature 

is observed and, for example, the straight line AOA becomes the curve A'O'A'  when 

the blade is bent. The ordinate ~ of  this curve is known as the light-gap, as it  is 

the gap allowing light to pass through the narrow slit between the blade and a 

straight edge touching both points A'. I t  has been observed that ~ depends upon 

the number of  cold-rolling passes, their location and the pressure used [Aoyama 

1970, 1971, 1974]. It has been inferred, therefore, that  6 can be used as a mea- 

sure of  the residual stresses introduced. 
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Fig. 1. 
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Bent bandsaw blade and transverse deflected shape 

This paper presents an analysis of  the relationship between the light-gap 6 and the 

residual stress system and, finally, a discussion of  the accuracy of  the light-gap 
technique is presented. 

Governing differential equation 

Consider again Fig. 1. The differential equation governing the problem and relating 

the displacement w corresponding to the transverse blade curvature to the residual 

stress system o 0 is given by 

d 4 w + 12 (1 - p2) - 12 (1 - ~2) 
d y~ R2 t2 w = E R t 2 a~ (y) (1) 

where R is the radius, t the blade thickness, E the modulus of  elasticity and v the 

Poisson's ratio for the blade. 
The problem is very closely related to that of  the anticlastic curvature of  flat plates 

and the derivation o f  Eq. (1), for the case of  oo(y  ) = 0, can be found in the work 

of  several authors [Conway, Nickola 1965; Bellow et al. 1965; Ashwell 1962]. 
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Boundary conditions for Eq. (1) are given by d2w j 
dy 2 

d 3 w  _ 

d y  3 

at y = -+ B/2 

which imply that the edges of  the blade are free of  stresses. 

(2) 

Homogeneous problem 

The homogeneous equation associated with Eq. (1), that is, when o o = 0, has the 
general solution 

w = K 0 c o s h ~ y  c o s ~ y  + K I sinh a y  s i n ~ y  

where 

(3) 

~/3 (1 - v 2) 
= R2 t2 (4) 

and K 0 and K 1 are arbitrary constants. Only solutions which are symmetrical about 
y = 0 are considered in Eq. (3). I f  the boundary conditions of  Eq. (2) were used to 

determine the value of the constants K 0 and K1, the solution thus obtained would 

correspond to the anticlastic curvature of  the bent blade, as shown by Conway and 

Nickola [ 1965]. In the general case of  a tensioned blade, the homogeneous solution 

of Eq. (3) must be complemented with particular solutions for the given system of  

residual stresses o 0 (y). 

Parabolic residual stresses 

For the purpose of studying the solution to Eq. (1) in detail, in the case of  a ten- 

sioned blade, assume that the residual stresses o 0 are given by 

2 
O o ( y ) = - O c +  1 2 a t ( y )  (5) 

where a c is the magnitude of  the compressive stress at the center o f  the blade. At 
the edges y = + B/2, Eq. (5) gives a tensile stress o t = 2 %. This parabolic distribu- 
tion is shown in Fig. 2. 

A particular solution to Eq. (1), when Eq. (5) is introduced in its right-hand side, is 

wP=  E 1 - 12 (6) 

and the general solution can be obtained by adding the result of  Eq. (3). The un- 

known constants K o and K 1 can be determined from the pair of  boundary condi- 
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tions of  Eq. (2) and the transverse deflected shape w can finally be expressed as 

follows: 

w - - - - - ~  1 - 1 2  + 

v 2 4 a c R  ] 
+ ~ + ~ ]  [3'1 c o s h a y  c o s a y  + 3'2 sinho~y s inay]  (7) 

where the constants 71 and 72 are given in the Appendix.  The light gap 5 is given 

by 

6 = w (0) - w (B/2) (a) 
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and it may be expressed in nondimensional form as follows: 

- =  C + 2 4  1 - c o s h  7 x / ~  t z ~ cos  - a  2 s i n h ~ s i n ~  + 

+ 3 fl/C (9) 

where the constants a 1 and a 2 are given in the Appendix and C, 3' and j3 are defined 

a s  

C = B2/R t ] 

7 = ~/3 (1 - v2) [ (10) 

---g (B/t) 2 

Assuming that the distribution of residual stresses is parabolic, therefore, Eq. (9) can 
be used to determine the light gap 5 for any combination of blade geometry and 
level of tensioning. This equation is plotted in Fig. 2 for different values of the 

parameters C and ~. This figure may be used to calculate g if the stress a c (and 

thus fl) is known, or, vice versa, knowing the light gap ~ and the parameter C from 
the blade geometry, the parameter fl (and thus ac) can be calculated. 

Fig. 3 shows a plot, from Eq. (7), of the relationship between ~ and R for a par- 

ticular blade and a given level of tensioning. The blade considered for this example 
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had the dimensions B = 8.0in and t = 0.058in. It was assumed to have been rolled 

until a compressive residual stress o c = 8.333 lbs/in 2 was introduced. A maximum 

light gap is obtained for a radius o f  approximately R = 150in. after which 6 de- 

creases approaching zero for infinite radius, that is, for a flat blade. The shape of  

the curve shown in Fig. 3 compares well with that experimentally obtained by 

Eklund [ 1972], although a direct comparison is not possible since it would have to 

be assumed that the blade used by Eklund had a parabolic distribution o f  residual 

stresses. 

General case of  residual stresses 

Consider now the general case where the system of residual stresses is represented, 

to a satisfactory degree of  accuracy, by a Fourier series of  the form 

o0(y ) = 2 a n cos . (11) 
n = l  

A particular solution to Eq. (1) for this general stress system may be taken in the 

form 

wp = 2~ b n cos 
n = l  

with b n as unknown coefficients. These can be determined by introduction o f  

Eq. (11) and Eq. (12) into Eq. (1). Thus, 

(12) 

_ _ R a n  ( 1 3 )  
bn E [ n ~ ]  4 

1 + 4 [ a B J  

with a as given by Eq. (4). Once again, the general solution is found by adding to 

Eq. (12) the result o f  Eq. (3). The constants K 0 and K 1 are determined from the 

pair of  boundary conditions of  Eq. (2) and the transverse deflected shape w can 

finally be expressed as follows: 

w = 2; b n cos + 
n = l  

+ ( _  1)n ( 2 n r r l  2 
B ! (3'1 c o s h a y  c o s a y  + 3'2 sirth~y s in~y)]  (14) 

with 3'1 and 3'2 as given in the Appendix. In order to obtain the transverse deflected 

shape for any residual stress distribution, therefore, it is only required to expand the 

distribution function in a Fourier series of  the form given by Eq. (11), obtain the 
coefficients a n and, with Eq. (13), the corresponding coefficients b n for use in 

Eq. (14). 
It is worthwhile to discuss now the results of  Eqs. (13) and (14). Consider a situa- 
tion where the blade has been rolled in such a manner that a periodic stress system 
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of the form 

o0 (y) = aN COS ( - ~ )  (is) 

has been introduced. Further, assume that N is a relatively large number. Accord- 
ing to Eq. (13), the amplitude of the deflected shape is inversely proportional to the 
fourth power of N and, thus, the larger N is, the smaller the light gap. At the same 
time, however, the amplitude aN of the stress distribution may be a relatively large 
number, producing a situation of high stresses that could escape detection by the 
light gap technique. This effect is shown in Fig. 4, for the same blade considered in 
plotting Fig. 3. The blade is now assumed bent over a radius R = 30 in., and Fig. 4 

shows the results for three different stress distributions a o (y). 

In Case I, a simple cosine distribution (N = 1) is assumed, with an amplitude of 
10,0001bs/in 2. Eq. (14) can be used to determine the corresponding transverse 
deflected shape and this is shown in Fig. 4. The maximum deflection from the fiat 
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occurs at the edges with Wmax. = 11.98 x 10 -3  in. The light gap ~ is, on the other 

hand,/~ = 21.03 x 10 -3  in. 

Case I1 shows the results for a cosine distribution with N = 5 and an amplitude of  

5,000 lbs/in 2. It is seen that the transverse deflected shape is almost flat, with 

maximum deflection at the edges o f  Wmax. = 0.68 x l0  - a  in and a light gap 

= 0.76 x 10-3in.  Thus, if transverse deflected shapes are measured with an 

accuracy of  1 x 10-3in,  for example, the shape of  Case II could not  be distinguished 

from the fiat and a stress of  5,000 lbs/in 2 could go undetected. 

Case Ill  is a superposition of  the two previous cases. The new stress distribution is, 

of  course, very much different from that of  Case I. However, the corresponding 

transverse deflected shapes are almost identical and could not  be differentiated from 

one another if these shapes are measured with an accuracy of  1 x 10 -3  in. 

The next section discusses in more detail the accuracy of  the method as an estima- 

tor of  residual stresses and how to set operational requirements to minimize its 

shortcomings. 

Accuracy of the technique 

The light gap technique may be used to estimate the residual stresses introduced in 

the blade by following an indirect approach to the problem. Upon deciding the 

level o f  residual stresses desired and the shape of  their distribution function, the 

transverse deflected shape may be calculated by using, for example, Eq. (14). Since 

the solution to the governing differential equation is unique, conformity of  the 

transverse deflected shape of  the blade to the calculated one will ensure that the 

obtained residual stresses agree with those desired. 

The conformity o f  a measured transverse deflected shape to a desired one is the 

usual manner in which the light gap technique is used by saw tilers, although, in 

general, no connection is made between this process and the underlying system of  

residual stresses. It has been found experimentally by Allen [ 1973] that, if a blade 

is tensioned until its transverse deflected shape approximately agrees with that cor- 

responding to a parabolic residual stress distribution, sawing accuracy improves over 

that obtained with blades differently tensioned. According to the previous discussion, 

however, although the shape is made to agree closely with that of  a parabolic stress 

distribution, the stresses themselves may differ markedly from being parabolic. The 
question to be answered is then the following: How close would the operator have 

to come to a desired transverse deflected shape to be within a certain tolerance of  

the residual stresses corresponding to that desired shape? 

To answer this question, consider a residual stress system o o to which corresponds 

a transverse deflected shape w o. I f  the system a 0 is perturbed by adding the distri- 

bution 

A o = ~ a n cos - -  
n=l  
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the transverse shape w 0 will change by an amount A w, which, according to Eq. (14), 
is given by 

A w = 2; b n cos + 
n = l  

+ ( -  1)n ( - ~ )  z 
(71 coshay cosay + 72 sinhay sinay)] . (17) 

By defining the nondimensional variable ~ = 2 y/B, it is possible to express Eqs. (16) 
and (17) in the form 

N 
A o =  Z angn(~) , (18) 

n = l  

N R 
Aw= 2; g an fn(~) (19) 

n = l  

with the functions gn (~) and fn (~) as given in the Appendix. These functions and 
the amplitudes a n in Eq. (16) may be considered components of N-dimensional 
vectors. Thus, if 

fl (~) [ gl (~) al 

fz (~) I g2 (~) az 
{F} =, " . ; (G} = " ; {g} =, " ; (20) 

�9 I i i 

fN(~) gN (~) aN I 
Eqs. (18) and (19) become 

A a = (G} T {A} (21) 

and 
R 

A w = ~ {F} T {A) (22) 

where (G} T and (F} z signify the corresponding transpose vectors of {G} and {F}. 
To compare the deviations in transverse deflected shape with the corresponding 
deviations in stresses, the norms of the functions A o and A w are used. These 
norms are defined in the following manner [Courant, Hilbert 1953]: 

+1 
IIa oll =+ f (aa)2 d~, (23) 

--1 

+1 
II Axwll =~- f (Axw) 2 d~ , (24) 

- 1  

and can be calculated by using Eqs. (21) and (22). 

l l A o [ ' = ~  {A}T[_~ll{G}{G}Td~](A}, 

That is, 

(25). 
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[+1 ] 
l tAwl[= �89  {A} T f {F} {F} T a t  {A}. . 

-1  

The ratio of the norms II/X oll and II/x wl[ can then be expressed as 

[,A ol,_[R12 {A} T [M] (A} 

IIAwtl ~EJ {A} T(A} 

where [M] is the matrix 

+1 
[M l = f {F} {F} T d ~ .  

--1 

It can be shown that, for any vector {A}, 

{A} T [M] {A} 
)~min < {A} T {A} ~< Xmax 
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(26) 

(27) 

(28) 

(29) 

where •max and )tmin are, respectively, the largest and smallest eigenvalues of the 
matrix [M]. If  the square root of the corresponding norm is regarded as the measure 

of the deviations from the desired shape and stress distributions and these measures 
are defined as E w and Eo, respectively, it is obtained from Eqs. (27) and (29) that 

For all possible forms of the perturbation A o, that is, for all vectors {A}, the devia- 

tion Er between stress distributions and the deviation E w between the corresponding 

transverse deflected shapes will satisfy the unequality of Eq. (30). It is important to 

note that the bounds obtained for E G in Eq. (30) are given in terms of eigenvalues 
of the matrix [M] which was assumed to be N x N. If  the function A o contains 
terms with frequency larger than N, the matrix [M] will change and its eigenvalues 
will naturally change. The upper bound in Eq. (30) is of importance, for, if it is 
desired that the deviation E o in stresses do not exceed a prescribed tolerance T o, the 
deviation E w in transverse deflected shape must not exceed the value 

Tw To 

Since the smallest eigenvalue of the matrix [M] depends on N, the tolerance of 
Eq. (31) must be referred to as "with respect to a given N". Fig. 5 shows the 
dependence of ~/Xmin on the parameters C and N. It is seen that, as N increases, 
X/~,mi n approaches zero for all values of C, implying, from Eq. (31), that very precise 
tolerances T w are required to detect stress deviations T o with relatively high fre- 
quency components. This effect is the same as that discussed in the previous section 

in connection with large N. 
As an example, consider the blade used for plotting Fig. 3. Bent over a radius 
R = 30in., and assuming that it has been rolled until a parabolic stress distribution 
has been introduced with o c = 8,333 lbs/in 2, Fig. 3 shows that the light gap is 
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6 = 0 .018 in .  The corresponding value of  C is 36.78. Table I shows the tolerances 

T w for different  values of  N and for a tolerated stress deviation, from the parabolic 

dis t r ibut ion,  o f  Ta = 2,5001bs/ in 2. For  example,  any  stress deviat ion with N up  to 

N = 2 will be less than or equal to 2,500 lbs/ in  2 if  the shape for the parabolic  distri- 

bu t ion  is approached to wi th in  T w = 0.001225 in. But  stress deviations larger than 

Table 1. Required tolerances I 

N N/~mi ~ Tw 
(inches x 10 -3 )  

2 0.490 1.225 
3 0.125 0.313 
4 0.015 0.038 

1 B = 8.0 in; t = 0.058 in; R = 30.0 in; E = 30 x 106 lbs/in2; stress tolerance To = 2,500 lbs/in 2. 
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2,500 lbs/in 2 would produce transverse shapes differing from that of the parabolic 

stress distribution by less than 0.001225 in. if N = 4. Accordingly, to be able to 

detect stress deviations larger than 2,500 lbs/in 2 when N = 4, the tolerance T w must 

be reduced, in this case, to T w = 0.000038 in. This number would be reduced even 

further if stress deviations with N = 6 or larger were to be considered. 

It is obvious then that the method may be used within rather narrow bounds as an 

estimator of residual stresses. Eq. (31) may be used to set a given tolerance T w 

after a decision has been made on the number N to be protected against and the 

stress difference T o to be tolerated, but it is important to keep in mind that an 

indiscriminate rolling schedule may induce stresses with components of large magni- 

tude and relatively high frequency and that these would be almost undetectable by 

the light gap technique. 

Conclusions 

The relationship between residual stresses induced by cold rolling of bandsaw blades 

and the transverse deflected shape obtained when a blade is bent over a given radius 

has been studied. It has been shown that, while this transverse shape is uniquely 

related to the distribution of residual stresses, two different shapes may be very 

close to each other while the corresponding stress distributions may be far apart. 

This is a characteristic of the light gap technique which reduces its accuracy as an 

estimator of residual stresses. In particular, it has been shown that the combination 

high frequency-high amplitude in a periodic stress distribution could be almost un- 

detectable by the technique. The method may be improved by adjusting the tole- 

rance with which the saw filer approaches a desired shape during tensioning, and a 

procedure for computing this tolerance has been presented. Nevertheless, the light 

gap technique cannot be considered a reliable estimator of residual stresses and other 

non-destructive, more accurate methods, should be investigated for application to 

bandsaw blades. 

Appendix 

aB  aB 
sinh ~ -  cos ~ - cosh sin - -  

71 = ae(s inhaB + sin aB) 

aB  
2 

' ~ 2  = 

aB  aB ~ ozB 
sinh ~ cos ~ + cosh sin 

a 2 (sinh a B + sin a B) 

s i n h - -  
v,fC ,/-e Ly c 

-~ cos - - - 7  -- cosh sin - - 3 '  2 ~ 

al = 7 2 C (sinh 3' x/C + sin 3' @-) 
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0~ 2 - 

sinh cos ~ + cosh sin ---T- 

3'2 C ( s inh  3' ~ + sin 3' x/rC) 

fn(~) = b* cos(nrr~) + ( - 1 ) n 4 n 2 ~ r  2 o~ 1 c o s h ~  c o s - -  

+ ~2 s m n ~  sin 

g. (~) = cos (n 7r ~) ,  

and 

b * -  1 ]4 
1 + 4  13, V/_Cj 

3',fc  
+ 
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