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Mechanical properties in the initial stage 
of sintering 

P. ARAT0,  E. BESENYEI, A. KELE, F. WteBER 
Research Institute for Technical Physics, Budapest, P.O. Box 76, H-1325, Hungary 

Silicon nitride-based ceramics with different compositions were sintered in the 60%-90% 
range of theoretical density. Linear correlations between the apparent density and the 
modulus of elasticity, the three- and four-point bend strengths or the Vickers hardness, were 
observed, The slopes of the straight lines were nearly the same for all compositions. 
Furthermore, the modulus of elasticity, hardness, fracture toughness and strength were 
calculated as functions of density by modelling the structure as a random arrangement of 
spheres as suggested by Fischmeister and Arzt. The relationships obtained have been 
compared with the measured ones. 

Nomenclature 
a averag e contact area 
ao increase of the area of a crack 
A area of the reference plane 
b size of the critical defect 
c constant in Equation 4 
D density 
Do density before shrinkage 
DT theoretical density 
e direction of macroscopic strain 
E modulus of elasticity 
Eo modulus of elasticity of the dense material 
f force loading a contact 
f(0) projection of force f to e 
F force loading the reference plane 
9 geometry parameter in the Griffiths relation- 

ship 
H hardness 
K~c fracture toughness 
N number of particles in unit volume 
N(0) the fraction of N in a given spherical angle 
n(0) number of particles in the volume around the 

reference plane 
P porosity 
R initial particle radius 
R' particle radius after fictitious growth 
R" particle radius after redistribution of material 
RsQ shared correlation coefficient 
S surface energy of the defect 
v vector connecting the centres of neighbouring 

particles 
W work necessary for increase the area of 

a crack 
Z average coordination number 
Zo initial coordination number 

strain 
~T strain at theoretical strength 
cr strength 
GT theoretical strength (limit of elasticity) 
0 angle between v and e 

1. Introduction 
The sintering process can be divided into three stages: 
initial, intermediate and final I-1,2]. In the initial 
stage, necks develop between the grains, and this stage 
ends when the necks begin to impinge. The inter- 
mediate stage can be characterized by networks of 
interconnected grains and interconnected open pores, 
while in the final stage the pores become isolated. 
Some authors [3, 4] do not distinguish between the 
second and third stages; on the other hand the re- 
arrangement of particles before they begin to coalesce 
may be considered as a separate stage I-3, 5]. A large 
number of papers has been published modelling the 
different stages, predicting the morphology of the 
structure and the kinetics of the densification. Differ- 
ent stackings of spheres were suggested to describe the 
initial or the initial and intermediate stages I-3, 6-8], 
while the intermediate stage could be modelled by 
a cellular array of cylinders 1,9]. 

Silicon nitride-based ceramics developed for struc- 
tural applications are usually completely densified. 
There are numerous studies concerning the relation- 
ships between their mechanical properties and chem- 
ical composition, phase composition or different 
processing parameters (e.g. [-5, 9-13]). The density of 
samples was frequently in the range 3-3.3gem -3 
(0.9-1 theoretical density, TD), relatively few data are 
available for lower densities. Yeheskel and Gefen [14] 
measured the modulus of elasticity for silicon nitride- 
based materials of TD 0.55-0.95 prepared by different 
procedures; Godfrey 1-15] determined the flexural 
strength of pressureless sintered ceramics containing 
different additives having 0.85-1 TD, while Heinrich 
et al. 1-16] measured the same quantity for reaction- 
sintered silicon nitride samples with TD 0.45-1. The 
fracture toughness as well as the modulus of elasticity 
and the flexural strength of reaction-sintered Si3N 4 
were measured by Rice et al. 1,17] for TD 0.4-0.8. 
Datta et al. 1-18] carried out a regression analysis for 
the modulus of elasticity-porosity relationship using 
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different approximative functions. A total of 156 data 
were collected in the TD 0.62-1 range. 

A systematic study of the development of micro- 
structure and the variation of mechanical properties 
during the initial stage of sintering was carried out by 
Coronel et al. [4] on commercial glass powder. The 
value of the volume fraction after sintering ranged 
between 0.63 and 0.98; they presumed the microstruc- 
ture to be an evolution from a stacking of spheres 
to a body containing isolated pores. The transition 
between the two types was observed at ~ 0.75 TD. 
This type of experiment on silicon nitride-based 
ceramic is not known to the authors. 

The understanding of the relationship between the 
structure and mechanical properties of a porous body 
is a different task. It is clear that the morphology of the 
structure must be taken into account. The question is, 
to what extent are the average structural features, such 
as grain size and porosity, characteristic and where 
should the weakest-link statistics be applied [ 19] ? The 
published calculations based on models of microstruc- 
tures concentrated on a single property, either on the 
pressure required for isostatic pressing [3, 20, 21], or 
on the modulus of elasticity [22]. 

The Griffiths relationship is often used to connect 
the strength, o, with structural parameters 

= gKic(b)- l /2  (1) 

where b is the half-size of the critical defect, 9 is 
a geometry parameter (0.774 for a small, flat semicir- 
cular, surface flaw with radius, b), K]c is the fracture 
toughness given by 

KIt = (2SE) 1/2 (2) 

where E is the modulus of elasticity and S is the 
surface energy of the defect. The difficulty in applying 
the Griffiths equation is in the shortage of knowledge 
on the defects controlling the fracture. 

Our aim was to examine experimentally and theor- 
etically the mechanical properties of partially sintered 
silicon nitride-based ceramics in the 0.6-0.9TD 
range. It is thought that the investigation of this stage 
may be interesting not only in theory but also in 
practice, because the properties of a fully densified 
ceramic depend on the way in which the sintering was 
conducted. 

2. Experimental procedure 
2.1. Materials 
Mixtures of SiaN4, AIN, A1203 and Y203 powders 
were milled in ethanol in a planetary-type alumina 
ball mill. The composition of materials is given in 
Table 1 and Fig. 1; the equivalent oxygen content was 
calculated without taking yttria into account. The 
selected series is suitable to detect the effect of silicon 
nitride content. Samples were compacted by dry press- 
ing at 290 MPa. The  sintering experiments were 
carried out in an ABRA-made HIP apparatus in 
1-2 MPa high-purity nitrogen using BN embedding 
powder. The heating rate was 25~ min -1. After 
reaching a certain temperature, T (1230-1730 ~ the 
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B 87 4 4 5 
C 84 8 4 4 
D 76.9 15 4.1 4 
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Figure 1 Composition of materials. 
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T A B L E  I Composition of materials (mass %) 

Si3N4 A1N Al203 Y203 

sintering cycle was interrupted and the samples were 
cooled at 40 ~ min- 1 

2.2. Methods 
Samples were characterized by the apparent and bulk 
densities, which were measured using the water im- 
mersion method after 72 h impregnation. The appar- 
ent density was also calculated from the geometrical 
and weight data; the results obtained coincided, within 
experimental error, with those obtained by the 
Archimedes method. The modulus of elasticity and the 
four-point bend strength were determined at room 
temperature with spans of 40 and 20 mm. The three- 
point strength was measured on the same samples 
(span 20 mm). Hardness was determined by a Vickers 
diamond indentor on a polished surface; the load was 
5 N. Fracture toughness, K1c, was calculated from the 
length of the indent cracks using Niihara's formula for 
short cracks. The microstructure analysis was carried 
out by scanning electron microscopy on polished sam- 
ples etched in NaOH. The ratio of ot and 13 phases was 
determined using Gazzara and Messier's method [23]. 

3. Results 
3.1. Densi f ica t ion  
The apparent density is shown in Fig. 2 as a function 
of the highest temperature of heat treatment, T. Slight 
differences were observed between the rates of densifi- 
cation: B was the most active material. The density 
began to increase with increasing temperature only if 
the value of T exceeded 1400 ~ Its value, averaged 
for the first four heat treatments, was only slightly 
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Figure 2 Apparent density as a function of the highest temperature 
of heat treatment. Compositions: (+) A, (x) B, (O) C, (A) D, ([5]) E, 
(see Fig. 1 and Table I). 

300 

n 

200 

._o • 

~ 5 /  
~6 

100 .  
/ . ,  - ",/ 

"o + / / /  
O 

......... # , / ,  
0 [ ' ' ' I ' ' I ' ' 

1.6 1.9 2.2 2.5 2.8 3,1 

A p p a r e n t  d e n s i t y  ( g cm -3 ) 

Figure 4 Modulus of elasticity as a function of the apparent density. 
Compositions as for Fig. 2. ( - - - - - - )  Best fit straight line, ( ) 
Equation 14, (---) Wang's calculation. 

T A B L E  II  Characteristic densities of materials 

Material Density (g cm - 3) 

Highest Compacted Initial 

A 3.25 1.99 2:01 
B 3.25 1.95 1.97 
C 3.22 1.95 1.98 
D 3.25 1.98 1.98 
E 3.27 1.98 1.99 
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Figure 3 (O, []) Apparent and (O, II) bulk densities for materials 
(O, 0 )  C and ([5], II) E as a function of the highest temperature of 
heat treatment. 

higher than the density after compaction (compare the 
initial and compacted densities in Table II). 

The density of the pore closure can be determined 
[24] by plotting the apparent and bulk densities as 
a function of temperature (see Fig. 3). The first closed 
pores appear when the bulk density begins to de- 
crease, while the closure of the open channels is reflec- 
ted by the equality of the apparent density and bulk 
density. The value of apparent density, at which the 
bulk density begins to decrease, is in the 2.4-2.6 
g cm-3 range for all materials. The matching of the 
two curves was achieved at 1730~ for materials 
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Figure 5 Vickers hardness as a function of the apparent  density. 
( - - - - - - )  Best fit straight line, ( ) Equation 15 for ~T = 6.1 GPa  
theoretical strength. 

C (Fig. 3, full lines) and B; the obtained densities of 
pore closure were 2.96 and 2.98 gcm-  3, respectively. 
In the case of materials A, D and E (Fig. 3, dotted 
lines) a small difference between the apparent and 
bulk densities occurred even at the highest temper- 
ature, but the range 2.89-2.97gcm -3 probably 
contained the matching value. 

Numerous samples from the materials examined 
were heat treated using pressureless or high-pressure 
processes [24-263. The values of the highest possible 
densities were determined by measuring the densities 
of these samples; they were taken as the theoretical 
densities (see first column of Table II). The calculation 
of TD from structural data was not possible owing to 
the lack of sufficient information about the inter- 
granular phase. For all materials, the measured 
compaction density was equivalent to 0.61 TD; at 
0.74-0.80 TD the development of the closed pores 
began; the density of pore closure was 0.90-0.92 TD. 

3.2. Mechanical properties 
The modulus of elasticity as well as the hardness 
and bend strength increased with increasing apparent 
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Figure 6 Four-point bend strength as a function of the apparent 
density. (------)  Best fit straight line, ( ) Equation 21 for 80 gm 
defect size. 
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Figure 7 Three-point bend strength as a function of the apparent 
density. (-- --) Best fit straight line, ( ) Equation 21 for 55 gm 
defect size. 

density as expected. It was striking, however, that at 
a given density the values obtained for different mater- 
ials were very similar (see Figs 4-7). The modulus of 
elasticity was certainly a linear function of density 
(Fig. 4); in the case of other properties, the scatter of 
points around the straight lines of best fit was greater 
(Figs 5-7), but the trend seemed to be obvious. 

To obtain a more exact evaluation of the results, 
a linear regression was performed. The first and sec- 
ond material groups of Table III gives the slopes of 
property-densi ty  lines and the intersections of these 
lines with the horizontal axes for the different mater- 
ials. The results of analysis of complete data set are 
given in the third group. The densities belonging to 
the intersections of these lines with the horizontal axes 
are also shown. The results of analysis of the total data 
set measured on samples with different compositions 
can be seen. 

The measured moduli of elasticity fitted well with the 
common straight line (RsQ, the shared correlation coef- 
ficient, was 0.99), the differences between the values of 
slopes or intersections of lines belonging to different 
materials were smaller than their standard deviations, 
s.o. (6-8 GPa  cm 3 g-1). The density value of the cross- 

1 8 6 6  

ing of a common line with the E = 0 axis (1.91 g cm- a), 
was slightly smaller than the compacted density. 

The scattering of the hardness values around the 
common straight line was wider than that of the 
moduli, the s.D. of the individual slopes was 
1.4-0.5 G P a c m 3 g  -1 (the number of measurements 
was too small), therefore the significance of the differ- 
ences between them is low. The density at zero hardness 
coincided with the compaction density within the S D. 

The differences between the slopes of s trength- 
density curves of different materials both for four- 
and three-point measurements exceeded the S.D.S 
(typically 10-15 MPa cm a g - 1). The strength of ma- 
terial A was higher, and that of materials C and D was 
lower, than the average. The density of zero strength 
was smaller by 1 S.D., than the compaction density. 

The accuracy of our toughness measurements was 
not sufficient to determine the density dependence. 
K ~ c = 3 . 8 M P a m  1/2 was a typical value in the 
2.5-3.0 g cm-3 (TD = 0.75-0.9) range. 

The amount of a phase was 0.85 _-t- 0.1 for all sam- 
ples except three; for them it was 0.68, 0.57, 0.56. It is 
not possible to deduce anything about the effect of 
phase composition on the mechanical properties from 
the examined set of samples. The results of regression 
analysis did not change significantly after erasing the 
data of these three samples. 

4 .  M o d e l  o f  t h e  s t r u c t u r e  
Three experimental facts had to be taken into account 
when choosing a model for further considerations. 
(t) The mechanical properties were linear functions of 
density in the 0.6-0.9 TD range. (2) The parameters of 
these lines only slightly depended on the composition. 
(3) All the properties has zero value at 0.58-0.61 TD. 
Fact 1 suggests that there is no substantial change 
in the mechanism of densification in the 0.6-0.9 TD 
range. Fact 3 contradicts a model supposing an array 
of cylinders. The observed structure (Fig. 8) looks like 
an arrangement of spheres. Fischmeister and Arzt [3] 
developed a model (FA model) for describing the 
densification of an irregular packing of spherical 
particles. If the mechanical properties of a porous 
material are controlled by the number and size of 
interparticle contacts, this realistic concept may be the 
competent basis for their calculation. 

In the FA model, the spheres have equal radii, R, 
and their packing is initially dense and random. The 
densification treatment is carried out by replacing the 
decrease in the centre-to-centre distance of the spheres 
by a fictitious increase of their radii from R to R' 
(Fig. 9a, b). The two situations are geometrically 
equivalent; the scale factor is R' /R .  R '  is related to the 
density D by 

R ' / R  = (I)/1)o) 1/3 (3) 

where Do is the relative density before shrinkage; for 
dense random packing Do = 0.64 Dr where DT is the 
theoretical density. 

In the FA model the average coordination number, 
Z, is a linear function of R' 

Z = Zo + c ( R ' / R - - 1 )  (4) 



Figure8 Micros t ruc tu re  of mate r ia l  C heat  t rea ted  to (a) 

T = 1230~ (b) T = 1580~ (c) T = 1680~ 

where Z0 = 7.3 is the initial coordination number, 
while the second term refers to the new contacts devel- 
oping during densification; c = 15.5. As a result of the 
size change, the initially contacting spheres would 
overlap, and the material is squeezed out from the 
contact zone (darkened area in Fig. 9b). It was as- 
sumed that the excess material was distributed evenly 
over those parts of the sphere surfaces that were not 
taken up by the old and new contacts (Fig. 9c). The 
redistribution process resulted in a further increase of 
the radius to R" 

R "  = R '  + 

4Zo(R' -- R)2(2R ' + R)  + c (R '  - R ) 3 ( 3 R ' / R  + 1) 

12R'[4R' - 2Zo(R' - R )  - c R ( R ' / R  - 1)23 

(5) 

In the calculation of Equation 5, the increase of coor- 
dination number and the decrease of free surface due 
to redistribution, were neglected. The average contact 
area, a, in the same approximation was 

a / R  z = 7 z [ 3 ( R  ' '2 - -  R Z ) Z o  + cR 2 

+ c R " 2 ( 2 R " / R  - 3 ) ] / 3 Z R  '2 (6) 

The FA model was found to be valid up to 0.9 TD, 
when it was applied to the compaction of spherical 
bronze powders [3]. At this density level the impinge- 
ment of adjacent contacts began. The resemblance 
between the model and the real structure of silicon 
nitride-based ceramics is weaker than in the case of 
bronze powder. Our materials contained, in addition 
to SisN4 grains, large grains of other components 

Old contact 

New contact 

(a) (b) (c) 
Figure 9 FA model: (a) initial state, (b) after a fictitious grain 
growth, (c) after the redistribution of material. 

(Fig. 8a) in the beginning, and a certain amount of 
intergranular phase later. The application of the FA 
model to silicon nitride ceramic may be arbitrary; its 
outcome, however, is in surprisingly good accordance 
with the observations: 
(1) no change is predicted in the mechanism between 
the start of densification and 0.9 TD; (2) the model is 
purely geometrical, and the composition of spheres 
plays no role in it. We note that the composition of-the 
material affects the amount and viscosity of the liquid 
phase [5, 13] resulting in differences between kinetics, 
but this effect may be neglected when mechanical 
properties belonging to the same densi ty  are com- 
pared; (3) the theoretical initial density, 0.64 TD, is 
only slightly higher than the measured one, 0.61 TD. 
Wang [22] calculated the modulus of elasticity of 
porous materials supposing a simple cubic array; in 
this case the value of Do is 0.52 TD. The results of our 
density measurements seemed to be contrary to the 
FA model, because the formation of closed pores 
started at 0.74-0.80 TD and finished at 0.90-0.92 TD. 
It is believed, however, that in the 0 .74-0.90TD 
range, the network of soft intergranular phase closed 
the pores, not the firm intergranular contacts. 

5. Calculation of mechanical properties 
5.1. Modulus of elasticity 
There are two well-known approximations for calcu- 
lating the elastic properties of a polycrystalline body; 
in the Reuss model each grain feels the same stress, 
while in the Voigt model the strain is homogeneous. 

1867 



Figure 10 Geometry used in the calculation of modulus of elasticity. 
A is the reference plane, e its normal vector shows the direction of 
the macroscopic strain, vector v connects the centres of two neigh- 
bouring spheres, a is the contact area. 

We computed the force loading a reference plane 
perpendicular to the direction of strain, applying the 
Voigt approximation. The real stress field was re- 
placed by forces connecting the centres of contacting 
spheres. If a vector, v, connecting the centres of neigh- 
bouring particles, is parallel to the direction of the 
macroscopic strain, e, force, f, acting in the given 
contact is 

f = Eoae (7) 

where E0 is the modulus of elasticity of the dense 
material (it differs from the effective modulus of the 
porous body, E), a is the contact area, ~ is the strain. 

Let the angle between v and e be 0 (Fig. 10), then it 
can be assumed that the projection of force to e is 

riO) = f cos0  (8) 

Vector v cuts the reference plane if the distance of the 
centre of the "upper" sphere and the plane is smaller 
than 2Rcos0 that is this centre is inside a volume 
2ARcos0, where A is the area of the plane. The 
number of contacts in unit volume is N Z / 2 ,  where N is 
the number of particles in a unit volume. N is related 
to the density by 

4rtR3N/3 = D/DT (9) 

The number of contacts for which the angle of v and 
e is between 0 and 0 + dO in unit volume N(0) is 

N(O) = N Z s i n O / 2  dO (10) 

The number of such contacts in volume 2 A R  cos 0 is 

n(O) = 2ARn(O) cosO (1!) 

The force, F, loading the reference plane can be ob- 
tained by using Equations 8, 10 and 11 and by integ- 
rating for 0 

;? F = f N A R Z c o s  2 0 sin 0 dO (12) 

The definition of E is 

F = AEe  (13) 

From Equations 7, 9, 12 and 13 

E = Eo(O/Ox)Za/4RZrr (14) 

The value of E computed from Equation 14 is plotted 
in Fig. 4 as a function of density. The FA model gave 
the values of Z (Equation 4) and a/R 2 (Equation 6); 
330 GPa was measured on dense a sialons for Eo [26], 
DT was 3.25 gcm -3 (Section 3.1). The agreement be- 
tween the calculated and measured values is fair. The 
only significant difference is that the density belonging 
to zero modulus is smaller than Do = 0.64 predicted 
by the FA model, this deviation may be attributed to 
the fact that in our experiments the particles of start- 
ing powder were not spheres with equal radii. 

Fig. 4 also shows the density dependence of the 
modulus of elasticity according to Wang's prediction 
(the curve was calculated from data of Table III of 
[22], with Eo = 330 GPa, D T = 3.25 g c m - 3 ) .  There 
were significant differences between his derivation and 
ours. He supposed that the' centres of spheres formed 
a primitive cubic lattice consequently Z is a constant 
number (6), while in the FA model the array was 
random and Z increased. Furthermore, Wang exactly 
computed the force loading a contact in the ideal case, 
then corrected the result for the misalignment of the 

T A B L E  I II Results of linear regression. The slopes and their standard deviations (S.D.) are given in GPa cm3g -1, GPa cm 3g-I ,  
MPa  cm 3 g-1,  MPa cm 3 g-1, respectively, the intersections and their S.D.S are given in g cm-3 

Material Young Vickers Four-point Three-point 
modulus hardness strength strength 

A Slope 234 11.2 261 318 
B Slope 228 13.2 233 276 
C Slope 233 13.7 205 260 
D Slope 231 13.7 211 250 
E Slope 228 11.8 221 281 

A Intersection 1.93 1.97 1.95 1.94 
B Intersection 1.88 2.00 1.90 1.88 
C Intersection 1.91 1.98 1.89 1.86 
D Intersection 1.91 1.92 1.88 1.87 
E Intersection 1.91 1.95 1.88 1.88 

All slope 231 12.8 226 278 
All intersection 1.91 1.97 1.90 1.89 
All RsQ 0.99 0.97 0.96 0.95 
All S.D. (slope) 3 0.5 5 6 
All S.D. (intersec.) 0.04 0.11 0.10 0.09 
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array and for the "hinging" effect of necks. Simplifying 
assumptions were used for estimating the porosity 
dependence of corrections. We described the angle 
dependence of the contact force by Equation 8, which 
is wholly hypothetical. In spite of dissimilarity of pos- 
tulations, the calculated curves practically coincide in 
the 0.7-0.9 TD range, while its deviation is obvious at 
low values where the difference between the models in 
initial density is effective. 

5.2. Hardness 
In the case of hardness measurements, the stress 
field around the indentor destroys the intergranular 
contacts. Supposing that the material is an ideal 
elastic-brittle type, a contact is broken if its deforma- 
tion exceeds the limit of elasticity. The penetration of 
the indentor stops when the stress in intergranular 
contacts becomes lower than the theoretical strength, 
CrT. As the value of the equivalent uniaxial stress in the 
plane of the indentor equals one-third of the hardness, 
H, from Equations 7 and 13, we obtain 

H = 3E/Eo~T (15) 

that is, the hardness is proportional to the effective 
modulus of elasticity. The measurements really 
showed that both properties were linear functions of 
the density. Neglecting the small difference between 
the intersections, we find from the slopes of Table III, 
that H/E  = 0.055 and Ov = 6.1 GPa. The curve cal- 
culated using this value is given in Fig. 5. Note that 
Equation 15 is generally valid, while Equation 14 is 
valid only in the initial stage of sintering. 

5.3. Toughness 
The value of toughness depends on the energy needed 
for creating a new surface. When the thickness of 
a crack is smaller than the particle size, its area can 
increase if the contacts in its plane have been broken. 
The deformation necessary to achieve the fracture of 
a contact, ~ r ,  is 

~'T = ~ T / E o  (16) 

When the area of the crack increases by ac, the volume 
of the deformed zone is 2ar consequently the defor- 
mation work, W, is 

W = o2acRE/E 2 (17) 

The surface energy equals 

S = W/Zac (18) 

Using Equations 2, 16 and 18 

Klc = OTR1/ZE/Eo (19) 

The value of Kic can be calculated from Equations 
14 and 19, the results are given in Fig. 11. The 2R 
particle size is 0.6 Ixm for the LC12 Si3N4 powder 
used. The obtained value is 1.0 M P a m  1/2 for 0.75 TD, 
and 2.3 M P a m  1/2 for 0.9 TD. 

The increase in toughness suggested by Equation 19 
has not been detected by our measurements. The 
measured length of the indentation cracks was about 
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Figure I1 Fracture toughness as a function of the apparent density, 
( ) Equation 19 for ~r  = 6.1 GPa theoretical strength and 
R = 0.3 pm initial particle radius. 

2-8 ~tm, therefore their relative error was high. The 
experimental value of toughness, 3.8 M P a m  1/2 was 
larger than the calculated one. 

The calculation presented is not valid, if large elon- 
gated grains "bridge the crack" [12, 27] and hinder its 
extension. 

5.4. S t r e n g t h  
In the preceding sections the deformations of particu- 
lar contacts were taken as separate processes. This 
assumption may be reasonable in the range of elastic 
deformation or in the case of indentor loading, but is 
surely unrealistic when the bend strength is deter- 
mined. If the failure occurred when the average stress 
in the contacts reached OT, the strength would be 
according to Equations 13 and 16 

cy = E/Eoo-r (20) 

The measured strength was lower by one order of 
magnitude than the value given by Equation 20 (e.g. at 
0.75 TD it was 120-160 MPa and 1.2 GPa, respect- 
ively). 

In fact, in a bending experiment the extension of 
a single defect results in the failure of the sample. Such 
a defect may be, for instance, the lack of a group of 
grains or the relative weakness of contacts at some 
places due to the local shortage of liquid phase neces- 
sary. From Equations 1 and 19 

cy = CrTR1/ZE/Eog(b) -1/2 (21) 

If the defect size, b, does not change during the 
coalescence of particles, the strength is proportional to 
the effective modulus of elasticity, and consequently to 
the density. This linear relationship was observed in 
our experiments. The differences between the slopes of 
the strength-density curves of different materials (first 
rows of Table III) indicate that the defect size depends 
on the composition. Using Equation 21 and taking 
0.774 for 9 we obtained 65-100 lam as the defect size 
for four-point bending and 40-70 ~tm for three-point 
bending. In Figs 6 and 7 the strength-density curves 
calculated for 80 and 55 txm, respectively, are shown. 
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The difference between the four- and three-point 
slopes reflects that the volume of the deformed zone 
affects the size of the critical defect. This effect can be 
analysed by using statistical methods. 

It must be emphasized that Equation 21 is valid 
only if the particles are spheres, they are connected by 
isolated contacts, and the characteristic defect size 
does not change during sintering. Different methods 
are used to produce a microstructure not  fulfilling 
these conditions but giving a high strength [19, 273. 
The success of these attempts, however, may depend 
on some features of the structure development during 
the early stages of sintering. 

6. Comparison with published 
measurements 

So far the calculated values of mechanical properties 
have been compared with our own measurements. By 
comparing them with the results of other studies it is 
possible to test the range of validity of the calculation. 
To do this it is suitable to convert the slopes of 
property-density lines (Table III) to slopes of prop- 
erty-relative density lines. The result for modulus 
of elasticity is 751 GPa, for hardness 41.5 GPa, for 
the four- and three-point strengths 734 MPa and 
903 MPa, respectively. 

Yeheskel and Gefen [14] measured the relationship 
between the modulus of elasticity and density. For five 
samples with 65 _+ 22% a content, they obtained 

E = 337(1 -- 2.23P) 

= 337 - 752P (22) 

where P was the porosity 

P = 1 --  D / D T  (23) 

The porosity of these samples was between 0.28 and 
0.46. The measured slope (752 GPa) was equal to our 
result (751 GPa), while the intersection (0.55 TD) was 
slightly smaller. Values of 200 GPa cm 3 g-  1 (638 GPa) 
can be calculated for the slope and 1.87gcm -3 
(0.59 TD) for the intersection from measurements 
by the same authors on another set of samples ([10] 
Fig. 8). 

An exponential density function was suggested by 
Rice et  al. [171 

E = 345exp( - 3.7P) (24) 

Approximating linearly this function in the P = 0.1- 
0.4 range, 533 GPa was obtained for the slope; this 
value is smaller than ours. Their samples were manu- 
factured by reaction sintering, and the modulus was 
50 GPa at P = 0.5, suggesting that the number of 
contacts differs from that supposed by the FA model. 

Datta et  al. [18] proved that in the case of high 
porosity a linear elasticity-porosity function gave 
almost as good fit with the measured data as expo- 
nential formulae. The slope calculated for the 
P = 0.10-0.38 range was 524 GPa. 

The modulus of elasticity and the hardness were 
measured simultaneously in certain papers [10, 11]. 
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The value of theoretical strength can be calcu- 
lated from their ratio (Equation 15). We obtained 
5.5-6 GPa for three pressureless sintered samples 
[11], 4.5-5.5 GPa for four HIPed samples [10], and 
3 GPa for a single sample [10]. 

The variation of toughness in the function of the 
porosity was measured by Rice et  al. [17] 

Krc = 3.5 exp ( - 2.4P) (25) 

Equation 25 gives 2.8 MPa m ~/2 for 0.1 porosity; this 
value is not far from the results of our calculations 
(Equation 19), but the decrease with increasing poros- 
ity is significantly smaller than our prediction. 

The density dependence of the four-point strength 
of reaction-bonded silicon nitride was found to be 
exponential [16, 17]. A linear approximation in the 
0.1-0.4 porosity range gave 613 MPa for the data of 
Heinrich et al. [16], and 646 MPa for results of Rice 
et  al. [17]. 

Godfrey [15] supposed a linear relationship be- 
tween the density and the strength of pressureless 
sintered disc samples; the slope was 580 and 
790 MPacmSg - 1 for two different starting powders. 
The covered density range was 2.8-3.4gcm -3, the 
scatter of points was significant (RsQ = 0.28 or 0.85). 

Hayashi and Kosakai measured the three-point 
strength and the hardness of pressureless sintered ma- 
terial [28]. According to Equations 15 and 21, their 
ratio is proportional to ( b / R )  1/2. Six of the samples had 
a relative density in the 0.86-0.96 TD range, the ratio 
of the hardness and the strength was 20.2-20.5 for 
three samples containing a certain amount of additive 
and 22.5-22.9 for the other three with other composi- 
tions, suggesting that the critical defect size did not 
change in this density range. 

The outlined analysis of published results showed 
that proportionalities could often be observed 
between the modulus of elasticity and the density, 
between the modulus and the hardness, between the 
hardness and the strength, in agreement with the re- 
sults of our calculations. The differences in the values 
of structural parameters between our measurements 
and the published ones seem to be logical. In the case 
of reaction sintering, the decrease of modulus of elas- 
ticity, toughness and strength with increasing porosity 
was weaker than suggested, because in this material 
intergranular contacts existed even at densities lower 
than the possible smallest value of a packing of 
spheres. 

7. Conclusion 
The modulus of elasticity, hardness, fracture tough- 
ness and strength can be calculated by modelling the 
structure by a random arrangement of spheres. If this 
model is valid, the modulus of elasticity, hardness and 
fracture toughness are quasi-linear functions of the 
density, consequently a linear relationship exists be- 
tween them. The strength is a linear function of the 
other three mechanical properties if the size of the 
critical defect does not change. The following mater- 
ial-dependent parameters were used in the calcu- 
lations: the density and the modulus of elasticity of the 



fully densified material, the particle size of the starting 
powder, the theoretical strength necessary for fracture 
of an intergranular contact, and tla~ size of a critical 
defect. The assumption used is probably valid in the 
0.6-0.9 TD range. 

Our measurements on partially sintered silicon 
nitride-based ceramics gave linear relationships be- 
tween the modulus of elasticity, the hardness, the four- 
and three-point bend strengths and the density. Al- 
though no fitting parameter has been used, the ob- 
served modulus of elasticity-density curve was in 
good agreement with the calculated one. 

It is thought that the results of calculations are valid 
for materials other than silicon nitride-based ceramic 
if their grain structure is similar. 
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