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Summary. A model for the isothermal transport of bound water through the cell wall of wood is 
developed, based on the assumption that the driving force for moisture movement is the gradient 
of "spreading" pressure qS, as first proposed by Babbitt (1950). This pressure is a surface phenome- 
non, derivable from the surface sorption theory of Dent (1977), a modification of the BET sorp-- 
tion theory. The force resisting moisture transport is assumed to be inversely proportional to 
moisture content and directly proportional to the equivalent viscosity of the sorbed water, calcu- 
lated to be orders of magnitude larger than that of free water. The coefficients normally used to 
describe isothermal moisture transport in wood are derived from the model, and their predicted 
behavior as functions of the relative vapor pressure h of the cell wall are described graphically. 
An attempt is made to calculate a quantitative magnitude for the diffusion coefficient D, based on 
an assumed relationship between viscosity and the activation energy for water diffusion. 

Introduction 

The mechanism of  moisture movement  through the cell wall o f  wood,  particularly the 

nature of  the driving force, has been the subject of  some controversy recently in wood 

science literature. In this paper,  a model  for bound-water movement  through the cell 

wall of  wood is presented. I t  is basically a modif icat ion of  Babbit t 's  (1950) analysis of  

the mechanism for the diffusion of  absorbed molecules in solids, and is l imited to the 

isothermal case. 

Before discussing the model ,  some of  the forms for expressing the driving force for 

moisture t ransport  will be given, together with the relationships among them. The 

driving force in each case is taken to be the space gradient of  the assumed potential ,  

such as moisture content ,  moisture concentrat ion,  vapor pressure, etc.,  as well as the 

spreading pressure as defined by Babbit t  (1950). These equations are summarized in 

Table 1, together with their relationship to Fick 's  first law (additional equationg 

included in Table 1 are discussed later). In Fick 's  first law, the flux J of  moisture is 

0043-7719/82/0016[0123[$ 3.2P 
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Table 1. Summary of some of the moisture transport coefficients used for wood, their assumed 
potentials, and their relationships to the diffusion coefficient D 

Assumed Symbol Transport Relation to 
potential cgs units coefficient diffusion 

cgs units coefficient D 

Moisture c D = - J/(a c/a x) D = D 
concentration g/cm 3 cm2/s 

Fractional m K m = - J/(a m/ax) K m = D (a c/a m) 
moisture content g/g g/cm-s 

Percent M K M = - J/(a M/a x) K M = D (a c/a M) 
moisture content g/100 g g/100-cm-s 

Vapor p Kp = - J/(a p/a x) Kp = D (a c/a p) 
pressure dyne/em 2 g-cm/dyne-s 

Relative h K h = - J/(a h/a x) K h = D (a c/a h) 
vapor pressure ratio g/cm-s 

Osmotic ll Klq = - J/(3 II/~ x) K1- I = D (3 c/a rI) 
pressure dyne/cm 2 g-cm/dyne-s 

Spreading 4~ Kq5 = - J/(3 d)/a x) K~ = D (3 c/3 ~) 
pressure dyne/cm g/dyne-s 

assumed to be directly proportional to the product of the gradient of moisture concen- 

tration c and the material parameter D, defined as the diffusion coefficient. For 

simplicity, this discussion is confined to movement in one dimension, the x-direction. 

It should be noted in Table 1 that the moisture transport coefficients K can each be 

related to the diffusion coefficient D if the rate of change of the assumed potential 

with respect to moisture concentration c is known. They can also be related to each 

other in an analogous manner. The coefficient D which is based on the gradient of 

concentration c is unique in that it appears in unmodified form in the second form of 

Fick's law. All other forms of K are modified, in analogy with the relationship 

between thermal conductivity and thermal diffusivity in heat transport. It  is also of 

interest to note that D has the same dimensions as the thermal diffusion coefficient, 

i.e., area per unit  time. 

Moisture Transport Model 

The model proposed here is based on that proposed by Babbitt (1950) in that the 

driving force for the transport of sorbed gases through solids is taken to be the space 

gradient of the spreading pressure q~, rather than of concentration c as is assumed when 

Fick's law is applied. 

Babbitt (1950) applied his diffusion model to wood, using the Bmnauer, Emmett,  

Teller (or BET) isotherm, first proposed by Bmnauer et al. (1938), to explain multi- 

layered adsorption of gases on surfaces. Babbitt predicted how the coefficient Kh 

should vary with relative vapor pressure h based on the assumptions used in his model. 
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In the present paper, the Babbitt model is extended to cover a refinement of the 

BET sorption theory, the Dent (1977) theory, which gives a better fit to moisture 

sorption data for wood. Furthermore, some of Babbitt's final equations have been 

simplified into alternate forms which are more convenient for making calculations in 

certain cases. Finally, Babbitt's model is interpreted more explicitly in terms of a 
simplified cell wall structure for wood. 

Dent Moisture Sorption Theory 

Before discussing the Babbitt moisture transport model, certain aspects of the Dent 

(1977) sorption model will be summarized. The Dent model is similar to the BET 
sorption model in that water in a polymer such as the wood cell wall is presumed to be 
sorbed in two forms. These are "primary" water molecules, sorbed directly on 

"primary" sorption sites in the cell wall and "secondary" water molecules sorbed on 

"secondary" sites. The primary sites are taken to be sites of high binding energy such 
as accessible hydroxyl groups in the case of wood. The secondary sites are of lower 

binding energy and may be thought of as sites superposed on primary sites or other 
secondary sites, as is shown schematically in Fig. 1. 

The model described thus far is identical with the BET model which assumes that 

the thermodynamic properties of the secondary water are identical with those of 
ordinary liquid water. The Dent model differs from the BET model in that the 

secondary water is assumed to be thermodynamically different from liquid water. 

However, in common with tile BET model, the Dent model assumes that the water in 

the various secondary layers, that is, the second, third, fourth, etc. layers, has identical 

properties. The Dent model, therefore, requires three fundamental constants to 

describe the sorption isotherm rather than only two as for the BET model. These con- 

stants are designated as mo, the moisture content corresponding to complete mono- 

layer coverage, b o related to the binding energy of the primary water, and b, related to 

the binding energy of secondary layers. The constants m o and b o are identical with the 
corresponding BET constants in which b is taken to be unity as in the BET model. 

If  the three Dent constants too, b o and b are known, the following equations can be 
used to calculate the total moisture content m, the primary water content m 1, and the 
secondary water content m 2, respectively, at any relative vapor pressure h. 

' , / / / / / /  

Fig. I. Schematic diagram showing primary sorption sites (vertical lines) in the cell wall, some of 
which are unoccupied and othels occupied by primary water molecules (dark effcles) and some- 
times by secondary sorbed molecules (open circles) 



126 Ch. Skaar and M. Babiak 

m o b o h 
m = m 1 + m 2 = (1 -- bh) (1 + b o h -  bh) (1 a) 

m o b o h 
m 1 = m (1 - bh) = (1 + b o h - bh) (1 b) 

m o b o bh2 
m 2 = m b h  = (1 - bh) (1 + bo h - bh) ( l c )  

Similar relationships can be wri t ten in terms of  moisture concen t ra t ion  c, recalling 

that  c = pwGm, where Pw is the density of  water and G is the specific gravity of  the 

wood (or of  the cell wall in the case of  bound-water  movement )  based on dry weight 

and volume at moisture con ten t  m. I f  the swelling o f  the cell wall is neglected, i.e., G is 

assumed to be constant ,  as it  is in this paper,  c, Co, c 1 and c 2 can be subst i tu ted for m,  

too, m l  a n d m 2  in Eqs . (1 ,  a, b, c). 

The Dent  model  predicts a sorpt ion isotherm of  the form 

h /m  = A + Bh - Ch 2 (2) 

where the empirical constants  A, B and C are related to the fundamenta l  constants  mo, 

b o and b as follows: 

E 

0.25 

0.20 

0.15 

0.10 

I I I I 

....  t.o .. . .  

/ i  

mz- 7' 
/ 

s 

/ 
I 

. . . . . . .  j 
0.05 . . . . . . .  / "- 

. /  

s / 

0.00 ~ -  " ' l  i I I 

0.0 0.2 0.4 0.6 0.8 1.0 

h 
Fig. 2. Adsorption isotherm (25 ~ showing m, m 1 , and m 2 as functions of h, and also the constant 
mo, based on the Dent (1977) sorption model 
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A = 1/(b o mo) 

B = A (b o - 2b) = (b o - 2b)/ (b  o too) 

C = Ab (b o - b) = b (b o - b)/(b o too) 
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(3a)  

(3b) 

(3c) 

Figure 2 shows a typical  sigmoid sorption isotherm for wood, m vs. h, together with 

curves o f m  1 and m 2, as well as the value m o. 

In the model  proposed by Babbitt ,  moisture migration is considered to occur on a 

surface rather than in bulk as is the case for diffusion in a liquid or in a gas. The 

sorbent,  water in this case, is considered to form a film on internal surfaces of  the 

sorbate or cell wall where it has condensed into one or more layers. The condensed 

water, designated here as bound water, migrates in the sorbed form as individual 

water molecules in the water film. This is in agreement with the viewpoint of  surface 

sorption theories such as the BET and Dent theories, as discussed previously. Figure 3 is 

a schematic diagram of  such a surface, showing the sorption sites distributed uniformly 

over the surface, with some of  the sites occupied by water molecules. 

Spreading Pressure 

The spreading pressure q~ is a surface analog of  hydraulic pressure P or of  osmotic 

pressure rr. For  the three-dimensional case, the hydraulic pressure P (or zr), according 
to Babbitt  (1951), is given by 

zr = P = - (3 F/3 v) = (kT/v) lnh (4) 

where F is the free energy content  per water molecule, v the molecular volume, k the 

Boltzmann constant,  T the Kelvin temperature and h the relative vapor pressure. The 

analogous two-dimensional spreading pressure ~ as defined by Babbitt  (1950) is 

= - (~ F/b  a) (5) 

0 �9 x O ~  

~ 0  �9 x �9 x A f x / ~  

/ o  oo / 

Fig. 3. Diagram showing sorption sites, both occupied (o) and unoccupied (x), on the internal wood 
surface. The area per sorption site a is shown as the area within the parallelogram in the center of 
the diagram 
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where ~b has dimensions of energy per unit surface area if a is the surface area per sorp- 
tion site or the area per water molecule when there is one molecule of water on each 
sorption site, that is, complete monolayer coverage (Fig. 3). 

For a system described by the BET sorption model, Babbitt (1950) gives the , 
spreading pressure ~ in terms of the total number of localized sorption sites and the 
fraction 0 of these which are occupied by at least one water molecule (monolayer 

coverage). This can be written, for the Dent as well as for the BET sorption model, as 

-- (kT/a) in [1/(1 - 0)] -- (kT/a) In [1/(1 - (mJmo))] (6) 

since 0 = ml/m o. Equation (6) can also be written as, 

q~ = (kT/a) In [mo/(m o - ml)] (7) 

If moisture is expressed in terms of moisture concentration c (mass of water/volume of 
wood), Eq. (7) takes the form, 

4~ = (kT/a) In [Co/(C o - q ) ]  (8) 

The spreading pressure can be expressed in terms of relative vapor pressure h and 
the constants b0 and b by substituting for mx/m 0 in Eq. (6) its equivalent given by 
Eq. (1 b). Making this substitution and rearranging gives 

q~ = (kT/a) In [(1 + bo h - bh)/(1 - bh)l (9) 

This equation is identical with the spreading pressure equation as given by Dent (1977), 
except that it includes the term a. Thus, the spreading pressure as defined by Dent has 
dimensions of energy per sorption site whereas ~b as used here has dimensions of energy 
per unit area of sorption surface, in agreement with Babbitt's convention. 

Figure 4 shows how the spreading pressure q~, given by Eq. (9), varies with h for the 
case of b o = 10.26 and b = 0.777, using adsorption isotherm data for wood at 25 ~ as 
given by Okoh and Skaar (1980). For convenience, the dimensionless ratio q~/(kT/a) 
is plotted rather than r itself, since (kT/a) is constant. For comparison, a similar curve 
is shown based on the BET model, given by Eq. (9) with b taken as unity. The BET 
spreading pressure approaches infinity as h approaches unity but the Dent pressure 

approaches a finite value. 

Driving Force 

Babbitt (1950) assumed that the gradient dq~/dx of the spreading pressure was the 
driving force for the diffusion of bound water on the internal surfaces of the cell wall. 
He took as the fundamental dynamical equation of diffusion for unidirectional flow, 

the relationship 

u = - ( l / f)  (Or (10) 
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Fig. 4. Curves of the dimensionless ratio ~/(kT/a) against h, based on the BET and Dent sorption 
isotherms 

where u is the component of molecular velocity in the x-direction and f is a coefficient 
of frictional resistance. 

In the discussion which follows, the driving force d~b/dx and its relationship to the 
potential gradients normally measured in wood will be considered first, followed by 
discussion of the resistance force f. 

The gradient 3~/ax of spreading pressure, that is, the driving force for diffusion 
according to Babbitt (1950), can be obtained from Eqs. (7), (8), or (9). Using Eq. (7) 
it becomes, 

Oq~ kT 1 ~m 1 ~m 

0x a m o - m  1 ~m ~x (11) 

Equation (11) can be shown (Babbitt, 1950) to be equivalent to 

~__~ = kT/a ~m 

ax [(m - ml) 2 + 4mm o (b/bo)]l/2 " a x (12) 

which relates ~q~/~x to ~m/~x as used in Fick's law. Similar equations can be obtained 
in terms of c or of M, by substituting the appropriate terms for m and m o in Eq. (12). 
The relationship between spreading pressure gradient and relative vapor pressure 
gradient can be obtained by taking the space derivative of Eq. (9) and rearranging to, 

~b kT b o ~h 
a--~ = -~-" (1 - bh) (1 + b o h - bh) : 3--~ (13) 

Equation (13) can be modified to relate 3 ~/O x to the vapor pressure gradient 
bO/ax under isothermal conditions. Thus 

04 kT bo Po ~P 
O--x a (Po - bp) (Po + bo P - bp) ax (14)  

where Po is the vapor pressure of water at temperature T. 
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Other potential gradients such as 31r/3 x, the gradient of osmotic or swelling pres- 
sure rr can be related to 3r The pressure P in Eq. (4) is equivalent to 7r for the 
wood-water system. Taking the space derivative of rr (= P) in Eq. (4) and combining it 
with Eq. (13) yields, after rearrangement, 

3r v boh 3rr 
3---x a ( 1 - b h ) ( l + b o h - b h )  3x (15a) 

It may also be written in terms of m or c. For example, 

3r v . c .  OTr 
3--x-a c o 3x ( lSb) 

The gradient of chemical potential 3#/8 x is equal to 3 7r/8 x multiplied by the molar 
volume V of water. 

The relationship between the gradient a r x of spreading pressure and any of the 
gradients such as a h/3 x, 3m/3 x or 3 c/3 x, which are commonly used to describe 
moisture transport coefficients for wood (Table 1), can be shown by plotting curves of 
3r 3r or 3r against h or m. Figure 5 shows such curves for 3(.b/3m and 3r 
as functions of h using Eqs. (12) and (13), for both the BET and Dent sorption models. 
Curves of 3r against h are essentially similar in form to those of 3r against h. 

Resistive Force 

Returning to the frictional resistance f, it is evident, after writing Eq. (10) in the form 

- fu = ar  (16) 

that the resistive force is given by - fu, which is equal in magnitude and opposite in 
sense to the driving force 3 r for the steady-state condition. 
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Fig. 5. Curves o f  ( a r  (a/kT) and of  (a@/am) a/kT) as funct ions  o f  h, for both  the BET and 
Dent sorption isotherm models  
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In order to determine the effect of moisture concentration c on the resistance to 
moisture movement, it should be recalled that the flux J (mass of water per unit time 
per unit cross-sectional area of the cell wall) is given by the product c �9 u. Multiplying 
both sides of Eq. (10) by c and equating this to J gives 

J = cu = - (c/f) (ar (17) 

The term c/f is the moisture conductivity based on the spreading pressure gradient 
0r Its reciprocal f/c, therefore, is the moisture resistivity. As Babbitt (1951, 
1958) noted, therefore, the resistance to movement of each molecule sorbed is 
inversely related to the number already sorbed. 

Transport Coefficients 

The moisture transport coefficients, based on gradients of moisture concentration 
c/0 x (D), moisture content ~ m/ax (Kin), relative vapor pressure 0 h/0 x (Kh), etc., 

can be expressed in terms of Eq. (17) by substituting the appropriate relationships 
for Or given by Eqs. (11) thru (15). The equations obtained for these coefficients 
as well as the other coefficients defined in Table 1 are given in Table 2. 

It is possible to predict how the moisture tranport coefficients based on various 
assumed driving forces as given in Tables 1 and 2 should vary with wood moisture 

Table 2. Equations for the moisture transport coefficients obtained by use of the basic and 
modified Babbitt transport models 

Coefficient Basic model Modified model 

(c o kT/fa) (c/c O) (c o kT/f  0 a) (c/c0) 2 
D 

[(c - c0)2 + 4 cc 0 (b /b0 ) ] l / 2  [(c - c0)2 + 4 cc 0 (b /bo ) ] l / 2  

(c o kT/fa) (m/m 0) (c0kT/f  0 a) (m/too) 2 
Km 

KM 

Kp 

Kh 

KrI 

K~ 

[ ( m -  mo)2 + 4 mm 0 (b /bo ) ] l / 2  

(c o kT/fa) (M/M o) 

[(M - Mo) 2 + 4 MM 0 (b/bo) l  1/2 

(c o kT/fa) (bg po 2 p) 

[(P0 - bp) (P0 + bo P - bP)] 2 

(e 0 kT/fa) (b0 2 h) 

[(1 - b h )  (1 + b o h - b h ) ]  2 

(v/a) (c/f) (c/c 0) 

(c/f) 

[(m - too)2 + 4 mm 0 (b/b0)]1/2 

(c O kT/ f  0 a) (M/Mo)2 

[(M - MO)2 + 4MM 0 (b /b0 ) ] l / 2  

(c o kT/f  O a) (b0 3 po 3 p2) 

[(Po - bp) (P0 + b0 P - bP)] 3 

(c o kT/f  0 a) (bg h 2) 

[(1 - bh)  (1 + b 0 h - bh)13 

(v/a) (c/f o) (c/co)2 

(c/fo) (C/Co) 
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content or relative vapor pressure. Babbitt (1950) for example, gives the equivalent 
of the ratio Kh/(c 0 kT/fa) as a function of h for the cell wall of wood, based on the 
BET model with b 0 = 11.6. Figure 6 shows similar ratios for the coefficients D and 

K h, both based on the Dent model, using adsorption isotherm data for wood at 25 ~ 

given by Okoh and Skaar (1980), who found mo = 0.0594, b o 10.26, b --- 0.777, " 
A = 1.64, B = 14.28, and C = 12.09 (Eqs. 2 and 3). Also plotted in Fig. 6 are similar 
curves based on the BET model, with b taken as unity, and b 0 = 10.26. It is evident 

from the curves that the BET isotherm model predicts higher values of Kh than does 
the Dent model, approaching infinity as H approaches unity. The corresponding curves 

for D are notably similar for the two sorption isotherm models. 

Modification of Transport Model 

The bound-water diffusion coefficient D as measured for wood by Stamm (1959) 

increased with moisture content over the entire moisture range in contrast to the 
behavior predicted by the model, which indicates that D remains nearly constant for h 

greater than about 0.4 (Fig. 6). Babbitt (1951) noted that experimental data on water 
vapor flow through keratin (a hygroscopic solid with sorption properties similar to 

those of wood) showed considerably greater increases in flow rate J with increasing h 
above h = 0.4 to 0.5, than were predicted from his model. He hypothesized that the 
water molecules were even more mobile at high moisture contents than his model pre- 

dicted. 
A possible modification of Babbitt's model which would further increase the 

mobility of water molecules at higher values of h is to assume that the frictional 
coefficient f is not constant but decreases with increasing moisture content. Such a 

relationship can be obtained by noting that f is the surface analog of the volume 
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Fig. 6. Curves of c~D and of c~K h (c~ = fa/c 0 kT) as functions of h, for both the BET and Dent 
sorption isotherm modets 
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DRY CELL WALL 

Fig. 7. Schematic diagram showing four layers of water sorbed on a portion of the internal surface 
of the dry cell wall. The thickness of each layer is 80 and the total thickness is 8, equivalent to 
480 in this case 

coefficient of  friction r/, to which it can be related dimensionally by setting , /=  f8 or 
f = r//8, where 8 is the mean thickness of  the sorbed water film. The thickness 8 may 

be taken to be equivalent to 8 o (C/Co), where 8 o is the thickness of  a single layer 
(Fig. 7). Thus, f varies inversely with c if r/is constant, or 

f = (r//8o) (co/.c) = fo (Co/C) (18) 

where fo = rff6o- 

I f  fo rather than f is now considered to remain constant, the transport coefficient 

equations given in Table 2 can be modified by substituting fo (Co/C) for f in each case. 
The effect of  this is to introduce the ratio c/c o as an additional multiplying factor for 

the transport coefficient. Table 2 lists the coefficients D, K h, etc. as predicted for the 

modified model for comparison with those based on the original model. The equations 

for K h and Kp were modified to eliminate variables other than h (or p) by substituting 
for c/c o (= m/m0) its equivalent in terms of  h as given by Eq. (1 a). 

Figure 8 shows curves of  the ratios D/(c o kT/ f  o a) and of  Kh/(C o kW/f 0 a) for the 
modified transport model plotted against h, for the Dent sorption model only. Also 
shown for comparison are the curves for the same coefficients taken from Fig. 6. The 
corresponding curves intersect at h = 0.278, the point at which c = c o or m = m o = 

0.0594 g/g in this case, the moisture content equivalent to complete monolayer  
coverage (Fig. 2). 

It is apparent from Fig. 8 that D, based on the modified model, increases with h 
over the elatire range as anticipated, because of  the multiplying factor C/Co. This is 
qualitatively in agreement with the experimental results obtained by Stamm (1959), 
although his curves are steeper at higher moisture contents than even the revised 
model predicts. It  is also apparent that  Kn (and, therefore, Kp) also increases at a 

greater rate with increasing h in the modified than in the unmodified transport model,  
particularly for large values of  h. 
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Fig. 8. Curves of a0 D and of a 0 K h (c~ 0 = fo a/co kT) against h for the modified transport model, 
for comparison with those of aD and c~K h (a = fa/c 0 kT) for the unmodified model. All curves are 
based on the Dent isotherm. The corresponding curves intersect at h = 0.278, the point at which 
c = c 0 and therefore f = f0 

As noted earlier, swelling of  the cell wall with increase in moisture has been 

neglected in relating m and c. The diffusion coefficient D can be modif ied to account 

for this swelling by multiplying D by (Go/(1 + G O m)) where G O is the dry volume 

specific gravity of  the cell wall taken as 1.5. This factor assumes that the partial 

specific volume of  the sorbed water is equal to that of  liquid water. Although this 

assumption is not  strictly correct (Stamm 1964) it simplifies the model  somewhat. 

Evaluation of the moisture transport coefficients 

The absolute magnitudes of the diffusion coefficient D and of  the other transport  

coefficients can be evaluated if the term (kT/fa) is known. The value kT is known at 

any temperature,  but the area a per sorption site and the frictional term f can only be 

estimated. The area a will be estimated first followed by consideration of  f. 

An approximate lower limit a' for the term a can be calculated as the square of  6 ' ,  

the mean spacing between water molecules in the liquid state. Thus, 6'  is essentially 

equivalent to the cube root  of  v, the molecular volume of  water as used in Eq. (4). 

This is about 30 x 10-24 cm 3 for liquid water assuming cubic spacing, giving values of  

3.1 x 10-  8 cm for 6 ' ,  and 10 x 10-16 cm 2 for a'. 

An upper l imit a" for a can be calculated from Co, or from too, by assuming a uni- 

form dispersal of  sorption sites throughout the entire cell-wall volume. This gives 

a" = (6") 2 = (v") 2/3 = [18/(c o No)]2/3 ( !9 )  



A Model for Bound-Water Transport in Wood 135 

where N O is Avogadro's number (6.02 x 1023) and c o = pwGmo, where G is the speci, 

fic gravity of the dry cell wall and Pw is the density of  water. Taking pwG = 1.5 g/cm 3 
and m 0 = 0.0594 g/g, gives 8" = 7.0 x 10-  8 cm, a" = 48.3 x 10-  16 c m  2, and 
v" = 335 x 10-24 cm 3 per sorption site for the dry cell wall. 

The preceding calculation of  a" gives too high an estimate for a because the crystal- 

line regions of  the cell wall are inaccessible to water which is confined to the amor- 

phous regions and the surfaces of  the crystalline regions. Stamm (1977) for example, 
has calculated probable crystallite diameters ranging upwards from 15.8 x 10 - 8  cm for 
wood cellulose of  65 % crystallinity. He also estimated that only 20 to 30 percent of  

the hydroxyl  groups on the surface of  these crystaUites and within the amorphous 

regions are available for sorbing water. The sorption sites, therefore, are outside of  the 

crystalline regions. If  it is assumed that they are excluded from 65 percent of  the 

wood volume the effective value o fv"  decrease to 35 percent of  335 x 10 -24  or to 

117 x 10 -24  cm 3 per site. The corresponding effective value of  a, therefore, is 

24 x 10-16 cm 2 per site. 

Although wood contains other constituents besides cellulose, the figure of  

24 x 10-16 cm3/site will be taken as an estimate of  a. Likewise, the effective mean 

distance 5 between sorption sites in the non-crystalline portions of  the wood is 

approximately the square root of  a, or 5 x 10 - 8  cm. Since the crystallites are 

elongated in the direction of  the microfibrils, the simple model will consist of  

elongated prisms oriented lengthwise o f  the cell axis (the dominant orientation) with 

the sorption sites confined to the surfaces (Fig. 9). This is similar in concept to the 

model first proposed by Stamm (1946) in his pioneering effort to calculate the diffu- 

sion coefficients for wood based on its structure as understood at that time. This 

simple model also partially explains the higher longitudinal diffusion rate in the cell 

wall compared with the transverse rate since in the latter case the moisture must 

migrate around the non-accessible regions of  the cell wall. 

The last and most  difficult term to evaluate in the transport model is the resistance 

term f, or f0 in the modified transport model. I f  it is assumed that f = f0 (c0/c) and 

?2 
?2 

Fig. 9. Schematic diagram of a portion of the cross-section of the cell wall showing inaccessible 
crystallites (shaded areas) which are oriented lengthwise of the cell axis. In this simple model, 
water sorption and transport is limited to the spaces between the crystallites 
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that fo = r//6o (equation 18), the problem reduces essentially to evaluating the 
viscosity term r/, since 60 can be approximated by 6' = 3.1 x 10 -8  cm, already given 
as the mean spacing between liquid water molecules. 

It is proposed, in the discussion which follows, to obtain an estimate of r/by virtue 
of its inverse relationship to the diffusion coefficient D, particularly with respect to 
the effect of temperature. 

In Stamm's (1946) attempt to calculate the diffusion coefficient D for bound water 
movement in the cell wall of wood, he used the viscosity of liquid water r/w and the 
Einstein diffusion equation, 

Dw = kT/(6rr r r/w) (20) 

where r is the particle radius, approximately equal to half of 6', to calculate Dw, the 
self-diffusion coefficient for water in the cell wall of wood. Although Stamm (1959) 
later rejected this model as inadequate, the Einstein equation is useful for the present 
discussion since it shows that D is inversely related to r/, that is, the product D �9 r/is 
nearly constant with temperature except for the small direct effect of T in Eq. (20). 

Jost (1960) uses the relationship of constant D �9 r/for liquids to point out that the 
activation energy E, obtained by application of the Arrhenius equation to diffusion in 
liquids (or solids) based on the "hole" theory, is essentially the same as the activation 
energy obtained by application of the same equation to the variation of the viscosity 
r /of  the same liquids. This is basically because the energy required to form "holes" in a 
liquid is the most important factor affecting the viscosity,just as it is for diffusion. 

Jost (1960) shows that the relationship of D to T is given essentially by 

D = D O exp ( -  E/RT) (21) 

where Do is a constant. If D and r/are interchanged in Eq. (20) and the equivalent for 
D given by Eq. (21) is substituted for D, the result obtained can be rearranged to 

r/= (D O kT/6 rr r) exp (+ E/RT) (22) 

A comparison of Eqs. (21) and (22) shows that, except for T in the kT term, which is 
essentially negligible compared with the exponential term, the effect of temperature is 

the same on D and 1/r/. 
If T in k/T is neglected, it can be shown from Eqs. (21) and (22) that 

r//r/w = Dw/D = exp [(E - Ew)/RT] (23) 

where r/, D and E apply to the bound water, and r/w, D w and E w to the free liquid 

water. 
Equation (23) can now be applied to estimate a value of r / to be used in Eq. (18). 

For example, if r/w, E and E w are known, r/can be evaluated. The viscosity r/w of 
water is 0.0089 at 25 ~ and E w, obtained from the rate of change of r/w with T 
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based on the Arrhenius equation is about 4000 calories per mole. The activation 
energy E for bound-water movement has been measured experimentally with varying 
results (BramhaU, 1979). Choong (1963) gives a value of 8500 calories per mole, 
which will be used here. It will be assumed to be constant with moisture content, 
although one would expect it to decrease with increasing moisture content (Skaar and 
Siau 1981). 

Using these values in Eq. (23) gives ~ = 1990 r/w = 1990 (0.0089) = 17.7 dynes-s per 
cm 2, almost 2000 times the value for free water at 25 ~ The corresponding value of 
fo is 17.7/(3.1 x 10-8), or 5.7 x 108 dynes-s per cm 3. The term (c o kT/afo), with a 
taken as 24 x 10-16 cm 2 per site, and c o = 1.5 too, becomes 2.68 x lO=9g/cm 3 at 
25 ~ 

The predicted value for the bound-water diffusion coefficient D can now be 
obtained by multiplying the values of D/(c o kT/afo) shown in Fig. 8 by 2.68 x 10-9. 
Figure 10 shows a plot of D against h obtained in this way. Also shown is an experi- 
mentally measured curve given by Stamm (1959), for comparison. Clearly, the values 
predicted from the revised model are lower than those measured by Stature, averaging 
about 30 percent of the measured values. Furthermore, the measured values increase 
more rapidly with h than do those predicted by the model at the higer relative vapor 
pressure. 

Using the present model, it is obvious that the value of ~ is extremely sensitive to 
the value assumed for the activation energy E. For example, if a value of 12,000 calories 
per mole as given by Stature (1959) for Sitka spruce bound-water movement is substi- 
tuted in place of 8500 as used here, the calculated values of D are more than two 
orders of magnitude lower than those given above. Furthermore, if E decreases with 
increasing m, as Skaar and Siau (1981) propose, the calculated value of D increases 
even more rapidly with h than the curve shown in Fig. 9 indicates. 
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Fig. 10. Curves of D against h as measured by Stamm (1959) and as predicted by the modified 
transport model 
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Conclusions 

The Babbitt  (1950) moisture transport  model,  which proposes that  the driving force 

for bound-water moisture transport  is a two-dimensional spreading pressure r can be 

related to any of  the empirical driving forces normally assumed for isothermal mois- 

ture transport  in wood. Applicat ion of  the Babbitt  t ransport  model  in terms of  the 

Dent (1977) moisture sorption model  yields moisture transport  coefficients based on 

gradients of  c or m which are not  very different from those based on the BET sorption 

model which Babbitt  used. However, the coefficients based on gradients o f h  or p 

increase much less rapidly with increasing h for the Dent than for the BET (193 8) 

sorption model,  in the lat ter  case approaching infinity as h approaches unity.  

Calculation of  the magnitudes of  the moisture transport  coefficients, based on the 

transport  model  used, requires knowledge of  the magnitudes of  a, the effective area 

per sorption site, and also the equivalent viscosity of  the bound water. The value of  a 

can be approximated,  but  quantitative information is not  available for calculating the 

viscosity ~ of  the bound water. This is believed to be orders of  magnitude greater than 

that of  ordinary liquid water, based on the close relationship between the activation 

energy for diffusion and that  for viscosity. Both energies may be related to the energy 

required for "hole"  formation (JoSt 1960) in the water. 
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