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Analysis of strain localization in strain-softening 
hyperelastic materials, using assumed 
stress hybrid elements 

W. Seki, S. N. Atluri 

Abstract Newly developed assumed stress finite elements, based on a mixed variational principle which 
includes unsymmetric stress, rotation (drilling degrees of freedom), pressure, and displacement as 
variables, are presented. The elements are capable of handling geometrically nonlinear as well as materially 
nonlinear two dimensional problems, with and without volume constraints. As an application of the 
elements, strain localization problems are investigated in incompressible materials which have strain 
softening elastic constitutive relations. It is found that the arclength method, in conjunction with the 
Newton Raphson procedure, plays a crucial role in dealing with problems of this kind to pass through the 
limit load and bifurcation points in the solution paths�9 The numerical examples demonstrate that 
the present numerical procedures capture the formation of shear bands successfully and the results 
are in good agreement with analytical solutions. 

List of Symbols 
u displacement 
R rotation 
U right stretch tensor 
r* Biot stresss tensor 
t first Piola Kirchhoff stress tensor 
r Cauchy stress tensor 
I identity tensor 
F deformation gradient := I + (Vu) r 

t J__ ab := a, bjg g - dyad 
a.b := a,b '= dot product 
A.b := A .bJg ' ; 
A-B := Aik B~ g' gJ 

A:B :=A B 'j 
tJ 

v velocity := 6 
W spin tensor := 1~ 
D rate of stretch := (d 
t* UL rate of r* 
[ UL rate of t 
6 v Kronecker's delta 
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] := detF = det{I + (Vu) r} 
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symm (A) := ~ (A + A r) 
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lal 2 := a.a = a,a' 
[AI 2 :=A:A =AjA 'J 

where a, b; vectors, A, B; tensors (second order), At; transpose of A, (g,); base vectors. 
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1 
Introduction 
The purposes of this research are primarily, to present new assumed stress hybrid elements with drilling 
degrees of freedom, with and without volume constraints, for the analysis of large deformation problems, 
and secondarily, to investigate applicability of the elements for analyzing shear localization 
problems in strain softening hyperelastic materials. 

The assumed stress hybrid elements, based on the complementary energy variational principle, were 
pioneered by Pian (1964) for linear elasticity. The formulations of the assumed stress hybrid elements 
for nonlinear problems were presented by Atluri (1973), Atluri and Murakawa (1977), and by Murakawa and 
Atluri (1978, 1979) using mixed variational principles with and without volume constraints. Although 
the earlier formulations of assumed stress hybrid elements suffered certain deficiencies (e.g. 
kinematic or spurious modes, coordinate invariance, stability etc.), several significant contributions 
have appeared to establish robust assumed stress hybrid element formulations. See Plan and Sumihara 
(1984), Xue et al. (1983), Punch and Atluri 0983), Rubinstein et al. (1983), Reed and Atluri (1983). 

In the research on mixed formulations of finite elements methods, the elements with drilling degrees 
of freedom have attracted much attention recently for shell and membrane problems. The concept of 
these elements appeared first in the mid-'6os and was revived by Allman (1984). In the earlier works, 
however, the drilling degrees of freedom were not treated as independent fields and the efforts were mostly 
unsuccessful. The variational formulation with a so-called regularization term, proposed by 
Hughes and Brezzi (199o), makes it possible to utilize complementary-energy based variational principles 
to construct robust mixed element formulations with drilling degrees of freedom. For geometrically 
linear problems, Cazzani and Atluri (1993) presented a quadrilateral membrane element with a drilling 
degree of freedom, unsymmetric stress, and displacement as independent fields. The excellent performance 
of the elements was thoroughly examined (see also Iura and Atluri 1992) and the present work may be 
thought of as a generalization of these elements for nonlinear problems. 

The applications of finite elements for shear localization problems has been extensively studied during 
the last decade. However, it is observed that shear bands captured by ordinary displacement-type finite 
elements are mostly mesh-dependent because the width of shear bands is usually much smaller than 
the available element size. Several approaches to overcome these difficulties in displacement-type finite 
elements have appeared so far: for example, the introduction of the embedded localized strain fields (Ortiz 
et al. 1987; Belytschki et al. 1988), adaptive mesh method (Batra and Ko 1992), etc. 

In this paper, the assumed stress hybrid elements, recently developed by the authors, are presented 
and applied to the solution of the shear localization problems. These elements are quite attractive because: 
(i) the shear band emerges as a natural solution of a boundary value problem without resorting to 
bifurcation analysis at each element level: (ii) the elements are free of locking under incompressible 
deformation through the use of multiplicative decomposition of the distortional and the volumetric 
strain fields. Four noded quadrilateral shaped plane stress and plane strain elements are developed, 
based on the discretized forms of the mixed variational principles with deviatoric parts of unsymmetric 
stress (Blot stress), hydrostatic pressure, displacement, and drilling degree of freedom as independent 
fields. 

The material properties treated in this paper are rate-independent hyperelastic types, though the 
developed methodology is also applicable to elastic-plastic problems. The strain softening type constitutive 
relations are specified through strain energy functions with a small number of material parameters. 
The development of shear localization is triggered only by the characteristic of the constitutive relations, 
and no further threshold conditions are involved. 

The arclength method (Riks 1972; Chrisfield 1983; Kondoh and Atluri 1985) is used to solve the snap- 
through and bifurcation phenomena which are encountered in dealing with elastically unstable problems. 
It is found that the use of this method in conjunction with the Newton-Raphson procedure is crucially 
important, since in most of the cases, there are limit loads and/or limit displacements in the global 
mechanical response of the body, and a simple load- or displacement-control method cannot follow 
the solution path. Numerical examples demonstrate that the elements successfully capture the shear 
bands and the results are in good agreement with the analytical solutions. 

The contents of the paper are as follows. In Sect. z, the basic variational principles, the multiplicative 
decomposition of the deformation, rate forms, and the regularizations of the principles are discussed. 
In Sect. 3, the appropriate discretizations of the principles and the numerical strategy are presented. 
Some benchmark test results are also given in this section. In Sect. 4, numerical examples of shear 
localization problems are presented and discussed. 
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2 
Variational principles for finite deformation 
We start with a discussion of the basic variational principles of continuum mechanics to construct finite 
element formulations for nonlinear problems. 

In this section, we choose the suitable forms of variational principles from several possible forms, using 
alternative stress and conjugate strain measures as shown by Atluri (1984). In this research, we adopt the 
forms using an unsymmetric stress as the stress measure. For practical numerical implementation, strain 
fields are eliminated in the mixed variational principles, leading to a finite element stiffness approach. 

The second step is the decomposition of distortional and dilatational portion of the deformation fields. 
In this paper, due to the necessity of dealing with finite strains, we choose the principles with multiplicative 
decomposition of deformation, as derived by Atluri and Reissner (1989). 

As a third step, we derive the rate forms of the variational principles for the time integration of the 
derived initial value problems. We focus on the Update Lagrangean rate forms to deal with hyperelastic as 
well as elastic-plastic materials. 

In the fourth step, we suggest the regularization of the variational principles for large deformation 
problems. Since the strain energy density function depends on only the symmetric part of the strain, it is 
not possible to eliminate the stress fields at element level using the complementary energy function in 
the context of finite element formulation. For linear elasticity, Hughes and Brezzi (1989) proposed to 
modify the variational principle. Through a regularization term in order to make the complementary 
energy function be quadratic in terms of the skew parts of the stress components. Since this process is quite 
important for finite element formulation, especially for shell or membrane problems, several 
regularization forms are proposed and discussed. 

2.1 
Variational principle using unsymmetric (Piola or Blot) stress 
It is well known that every field equation and boundary condition of a boundary value problem of a n  

elastic body can be derived from the stationary condition of a general variational functional (Washizu 
1982). For discussing the mechanics of a finitely deformed body, we adopt the Lagrangean description which 
uses the coordinate system fixed to the body at C o state. (C O state may or may not be the undeformed 
state.) The kinematics of the body are described, based on that coordinate system. We assume the 
existence of the strain energy W 0 as a function of right stretch tensor U. The four field mixed variational 
principle which includes the displacement u, the right stretch tensor U, the unsymmetric Biot stress 
tensor r*, and the rotation R as variables, is written as follows (Atluri 1984). 

F 1 (u, U, R, r*) = y { W o (U) + r ' r :  [R r. (I + Vou) T -  U] - Pob.u} dv + [Surface Integral] 
Vo 

where 

(1) 

[Surface Integral] = - ~ 1 ' -u  d s  - ~ ( t T - n ) . ( u  - fi) ds 
S~O Suo 

(2) 

and V 0, P0 are respectively the volume and density of the body at Co; b is the body force; t is the first 
Piola Kirchhoff stress tensor (t = r*.R~); n is the normal vector of the surface; So is the surface of the 
body at C o on which the load vector T is applied; Su0 is the surface on which the displacement fi is prescribed. 

Note that, as the a priori conditions, we require the symmetry of U(U r = U) and the orthogonality 
ofR(Rr .R = I). 

It may be instructive to derive the Euler equations corresponding to the stationary of F 1 by taking 
a variation. 

r U' R' r*) = !o ([_ ~ lJ  

where 

7 
symm r* J :  bU + [RT.(I + Vou) T - U]: fir *T 

+ [RT-(I + Vou)Lr*] : [RLbR] --[Vo.(r*-R T) + pob] . 6 u  } dv 

+ c~ [Surface Integral] (3) 

6 [Surface Integral] = - -  ~ ( t r . n  - T ) . f u  ds  - ~ ( u  - u ) . ( f t T - n )  ds. 
Sr Suo 

(4) 
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The stationary condition 3F, = 0 gives following equations. 
�9 Constitutive Relation (CR) 

aWo(U) 
0U symm r* = 0. 

�9 Compatibility Condition (CC) 

RT.(I + Vou) T -  U = 0. 

�9 Linear Momentum Balance (LMB) 

V0.(r*.R T) + p0b = 0. 

�9 Angular Momentum Balance (AMB) 

R T. (I + V0u)T.r * = symmetric 

�9 Traction Boundary Condition (TBC) 

t L n - T = O  on S~o. 

�9 Displacement Boundary Condition (DBC) 

u - f i = O  on S~o. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Note that in AMB, we use the a priori condition that RT-bR = skew symmetric. 
The compatibility condition (I + V~ T= F = R.U is often referred to as the polar decomposition of 

the deformation gradient F. 
For deriving TBC, we use the Gauss' divergence theorem: 

t : ( V o b u )  d r  = ~ - ( V o . t ) - 3 u  d v  + ~ - ( tT .n ) .3u  ds. (11) 
v0 v0 so 

Now, for practical finite element implementation, it is preferable to eliminate the stretch U. One way 
to do this, is to choose for U (which is required to be symmetric a priori) not an indepedent field, 
but to write it in terms of the independently chosen fields u and R, as: 

U = symm [ R r. (I + V 0 u) T] (12) 

then we have a three field principle with u, R, and skew(r* ) as variables. One may also obtain a principle 
with only kinematic fields, by eliminating skew (r*) to construct displacement type elements. 

However, in this research, we take the opposite approach. Through the contact transformation: 

- Wc(symmr*) = Wo(U) - U : r  *T= W0(U ) - U: (symmr*) .  (13) 

We have the following functional, as a basis for a three field mixed principle. 

F 2 (u, R, r*) = S { - W~(symmr*) + r'T: [RT.(I + V0u) r] - p0b.u} dv 
v0 

+ [ Surface Integral]. (14) 

In this form, the symmetry of U = R w. (I + V 0 u) r is enforced through the Euler equation: 

~3 Wc (symm r*) 
= Rr-(I + V0u) T= symmetric. (15) 

0(r*) ~ 

Murakawa and Afluri (1978) and Reed and Atluri (1982) constructed finite elements based on the 
principle using the first Piola Krichhoff stress tensor t. This form can be derived using (1) and 
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t = r*.R r as follows. 

F2(u, U, R,t)  = S { W0(U) + t T : [ ( I  + V0u) ~ -  R.U] -- P0b.u} dv 
v0 

+ ]Surface Integral]. (16) 

Theoretically, the principles (1) and (16) are almost equivalent and both of them are applicable for nonlinear 
problems. From the practical point of view, the notation can be slightly simplified to treat nonlinear 
constitutive laws by using the Biot stress tensors, so we adopt the previous form (1) in this research. 

2.2 
Multiplicative decomposition 
To deal with problems of incompressible materials, it is often convenient to separate dilatational parts 
from distortional parts in the deformation field. For nonlinear problems, it can be done through 
multiplicative decomposition. We introduce the new fields U' and ] defined as: 

] = det U 

U' = U J - i/3. (17) 

The strain energy function Wo (U) will be given in terms of the now independent fields U' and ] as: 

Wo(U) = Wo (U'/I/3) = W'o (U',J).  (18) 

We also need to decompose stress field r* to (r*',p) corresponding to (U',]). Then, the principle (1) 
can be rewritten as the following 6-field principle (Atluri and Reissner 1989). 

t ~'  t t ' T - 1/3 / G l ( u , U , J , R , r  ,p)  = ~ {W0(U,J )  +r*r:[Rr'(I + VoU) ]u,g - -U ] 
go 

+ [ f ( J . , R ) - f ( J ) ] P - - P 0  b 'u} dv 

+ [Surface Integral] (19) 

where we use the following 'dummy' variable (which depends on u, R) for ease of exposition: 

]u,~ = det { symm [RL(I  + V0u) r} (20) 

and f is smooth and monotone (f '  # 0) function. If we choose f(]) = 1-  1, p has the physical meaning 
of hydrostatic pressure. 

Again, by taking the variation of GI, 

fGI(U,U',],R,r*',p)= S { I  ~W'~ 
Vo ~3U' 

] IOW'~ f ' ( I )P] ~1 symmr* '  :flU' + c~J 

V u ] T T ~  1 / 3 -  U t J : ~ r * ' T - ]  - [ f ( l . . R ) - f ( ] ) ]  @ + [ R r ' (  I +  o J ~.a 

+ [Rr-(I + Vou)r.r* 1 .~"  

_ 1  [r* :{(I + Vou).R}/._d/3] Rr.(I + Vou)r.U -1 
3 

+pf'(Iu,R)I,,RRr'(I + Vou)r-rJ -1]: [Rr.bR] 

1 , r~ ; , ,_r,_l/3_~[r,:{(i+ Vou).R}]~,~/3]~ 5 1.RT -- l v  o. tr  . r t  Ju,R 

-~-R r} + po b ] . 3 u } d v  + Pf' (Ju,R) Ju,~ f5 

+ 6 [Surfce Integral] 

where U = symm [RT.(I + Vo u)T]. 

(21) 
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Then, we have the following Euler equations. 

�9 Constitutive Relation (CR) 

0W'~ symmr* '  = 0 
0U' 

~W'~ f ' ( l ) p - -  O. 
o1 

�9 Compatibility Condition (CC) 

. ~ T T  113 - -  U f RT'( I + VoUJ Ju.R = 0 

lu,R - - I  ---- O. 

�9 Linear Momentum Balance (LMB) 

(22) 

(23) 

f r* '  RTJ -1'3-~1 [ r * ' : { ( I §  1.RT ' ^ } Vo'[  �9 u,R Ju,R J + p f  (]u.R)Ju.RU I'R~ + p o b = 0  (24) 

�9 Angular Momentum Balance (AMB) 

1 [r*' :{(I + Vou).R } 1-1/3] Rr.( i  + V0u)Z.O-1 RT'( I + V0u) r ' r* '  - ~  u,R 

+ Pf '  (Ju.R) ]u,R RT" ( I + V 0 u) r. 0 - '  = symmetric (25) 

TBC, DBC are the same as before. 
To see that LMB, AMB, and TBC are expected ones, we note that the stationary condition gives: 

RT.(I + V0u) T -- symmetic = U = U 

SO 

~T 1.RT= [(I + Vou) r] -1 = (I + Vou) T (26) 

and by using the relation: 

t = r* .R T 

= r* ' .Rr l  -~" l [ r * ' : { ( l + V o u ) . R } J - l " ] ( I + V o u ) - r + p f ' ( l ) I ( I + V o u ) - r  (27) -?  

one may find that LMB, AMB, and TBC are equivalent as before (7) ~ (9). 
Now, a four field mixed variational principle can be achieved through the contact transformation: 

- W; ( symm r*', p) = W 0 (U', J) - U': syrnm r*' - Pf(J).  (28) 

Thus, we have the four field principle, with the associated functional: 

G2 (u, R , r , ' , p  ) = j { W ; ( s y m m r , , p ) + r , ' T : [ R r . ( i +  Vou)Tju.R-113 ] 
Vo 

+ f(J,.R)P -- Po b 'u}  dr 

+ [Surface Integral]. (29) 
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Now, the constitutive relations are separated into distortional and volumetric parts as follows: 

8 W' c ( symm r*', p) = Rr" ( I + V 0 u)Tj~..~/3 = symmetric 
8 ( r , ' ) r  

8 W'~(symm r*' ,p) 

8p =f(L.R). (30) 

The decomposed forms (19) and (29) are applicable for both compressible and incompressible materials. 
Perfect incompressibility is imposed through W0: 

8 W'r (U', J) = bulk modulus = oo (31) 
8J 

or through We: 

8 W'c(symm r*' ,p) 

8p 
= bulk compliance = 0. (32) 

2.3 
Rate principles 
In order to develop continuation methods to solve nonlinear problems, it is often convenient to 
consistently 'linearize' the variational principles into their rate forms. In solid mechanics, the Total 
Lagrangean (TL) and Update Lagrangean (UL) forms are widely used. The TL rate form refers to the 
initial or undeformed configuration of the body C 0, whereas the UL rate refers to the configuration at 
the previous incremental step C N. Usually, the UL form is preferred for hyperelastic and elastic-plastic 
problems due to its simplicity. Here, we discuss the rate forms using the Update Lagrangean (UL) 
descritpion only. For a discussion of TL forms, see Atluri (1977, 198o). The UL rate of a physical quantity 
x is denoted as ~. For brevity, we also use the following notations. 

f i = v ,  U = D ,  R ,=W.  (33) 

It is well-known that D r = D and W r = - W. 
Once again, we start from the four field principle for consistency and ease of manipulation. The rate 

form of the principle/:i, given by Atluri (198o), is as follows. 

/~i (v, D, W,i:*) = I ~ ( D ) - - ~  rN: (W.W r) + rNT:[wr.(VNv) r ] 
VNt. 

+/ :*r :  [ (VNv)T -- D -- W] -- pN1)-V} dv 

+ [Surface Integral] (34) 

where 

[Surface Integral] = - ~ T . v d s -  ~ ( [ r . n ) - ( v - ~ e ) d s  
SeN SuN 

r N is the Cauchy (true) stress tensor and pN is the density at the C. state. 
The rate forms of Euler equations are presented as follows. 
�9 Constitutive Relation (CR) 

~W(D) 
OD s y m m i *  = O. 

(35) 

(36) 

�9 Compatibility Condition (CC) 

(VNv) T -  D -- W = 0. (37) 
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�9 Linear Momentum Balance (LMB) 

vN. ( t  * - rN.W) + p %  = o. (38) 

�9 Angular Momentum Balance (AMB) 

/:* + [(VNv) T -- W].  r N = symmetric. (39) 

�9 Traction Boundary Condition (TBC) 

i t . n - - T = 0  on S~N (40) 

�9 Displacement Boundary Condition (DBC) 

v -  ~, = 0 on SuN (41) 

The rate form of the 6-field theory (Gt) is given as: 

G1 (v,D'',], W, r'*'',p) = vS{ l ,{ r ' (D ' , ] ) -  ~ rN: (W. W r ) + r ~ : [ w T . ( V n v )  r ] 

1 
+ i'*'r: [ (VNv) r -- D' -- W -- - trace (Vtev)I] 

3 

+ [Surface Integral] (42) 

where we choose f ( J )  = ] -  1. 
Note that: 

]~,R = trace (VNv). (43) 

So, the multiplicative decomposition results in a similar form of additive decomposition in its UL rate from. 
The Euler equations are shown below: 

�9 Constitutive Relation (CR) 

01~ ' (D ' , j )  
CD' symm t*'  = 0 

~ W ' ( D ' , j )  aj p=o. 

�9 Compatibility Condition (CC) 

1 
(VNv) r -  D' -- W - - -  trace (VNv) I = 0 

3 

trace (VNv) -- j = 0. 

�9 Linear Momentum Balance (LMB) 

VN'(  i'*' 1 ) - - -  trace(~*')I + p I  -- rN.W + pNfD = O. 
3 

(44) 

(45) 

(46) 
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�9 Angular Momentum Balance (AMB) 

/TX" "q - [ (VNv)  T -  W]"  ,~n= symmetric (47) 

TBC and DBC have the same forms as in the four field theory (/51). One may need the relation among 
t, ]?*, and W to discern the TBC. 

t = i ' *  - -  rN.w 

1 
= ~ * ' - - -  trace (t* ')  1 +pI - rN.w. (48) 

3 

By eliminating the stretch rate D from F1, we have the rate form of F2: 

[~2(v,W,~*) = ~ - l, Vc(symmi* ) - -~ rn:(w'w r) + rNr:[wr.(vNv) r ] 
vN 

+ i ' r :  [(VNv) r -- W] -- pNb.v} dv 

+ [Surface Integral] (49) 

where the contact transformation: 

- Wc(symm t*) = l~' (D) -- D: symm i* (50) 

is used. 
Likewise, by eliminating D' and j from G1, we have the rate form of G2: 

1 rN :(W.WT) rNr:[wr.(VNV)r] 42(v 'W'rYe,  P )  ~- f - -  l~'c(symm t * , / ~ ) - ~  + 
vN 

-I-r.*'T:[(VNv)T--w- ~ trace (VNv) I 1 

+ trace(VNv)]5 -- pNb.v} dv 

+ [Surface Integral] (51) 

where the contact transformation is: 

- I~'c (symm t* ,p)  = W'(D ' , J )  - D': symm t * ' - - j p .  (52) 

2.4 
Regulation of the principles 
In the three- and four-field mixed principles, (Eqs. (14), (29) and their rate forms in Eq. (49), (51) as 
well), the complementary energy W c depends only the symmetric part of Biot stress r*. Hence, W c is 
not positive definite in terms of r* alone, and in the context of finite element formulation, it is not 
possible to eliminate every stress component at element level. This was a bottle-neck in constructing 
robust elements with drilling degrees of freedom. Hughes and Brezzi (1989) proposed to modify the 
following three field functional for linear elasticity: 

]U[ (v,W, a) = 5 {-- Wc(symm a ) + o'T: [ (VoV)T--  W]  -- p0b.v} dv 
i vo 

+ [Surface Integral] (53) 
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through a regularization given by: 

[I (v' W' a) = l-[ (v' W' ~r) - ~-7 !o ]skew a]2 1 (54) 

where 7 is a positive constant. Here, a, the stress tensor for small deformation, is not assumed to be 
a priori symmetric (but is a posteriori symmetric). The regularized principle is positive definite in 
terms of a because it is now quadratic in the skew part of a. Nevertheless, the regularized principle 
gives formally equivalent Euler equations�9 Therefore the process is quite important for numerical 
implementation of the elements with drilling degrees of freedom. 

Cazzani and Atluri (1993) used the form: 

F2(v,W,t)= S f -- Wc(symmt) +tr:[(Vov)r--w]--pob.v}dv 
vok 

+ [Surface Integral] (55) 

with the regularization: 

F2y (v 'W' t )  = Fz ( v , W , t )  _ 1  ~ lskewt ]2 dv 
ZTv0 

(56) 

for linear analysis of membrane elements. Since we have skew t = 0 in the limit for infinitesimal 
deformation, it is applicable for linear problems and some modifications are required for nonlinear cases�9 

Several suggestions already exist on the regularization for nonlinear problems in the literature�9 
Ibrahimbegovic (1993) proposed the following form: 

F2~ (u,R,r* ) = F2 (u,R,r* ) --l-~ !o lSkewr*12 dv. (57) 

This form is applicable only for isotropic materials because r* is in general unsymmetric for anisotropic 
materials. 

Simo et al. (1992) proposed the principle: 

H (u, R, T) = ~ { W o ( [I + Vou ] �9 [I + Vou] T) + T: skew [R r. (I + Vou) r] - pob.u} dv 
2 vo 

+ [Surface Integral] (58) 

with the regularization: 

1 5 ITpdv H (u'R'T)= H (u'R'T) - ~  v (59) 

where T, a skew-symmetric stress measure, works as a Lagrange multiplier to enforce the condition 
that R r-(I + V0u)r= symmetric. However, for constructing assumed stress elements, this is not suitable 
for our objective, since T vanishes at equilibrium. 

Here, we propose the regularized form to use the derived principles for nonlinear problems: 

1 
FI~ = F 1 + ~ !0 ]skew (U.r*)12 dv (60) 

where F 1 is defined in Eq. (1). Remember that AMD requires skew (U.r*) = 0, it can be easily seen that 
the Euler Eqs. (5) ~ (lo) also satisfies the stationary condition of the regularized fiFx7 = 0. 

The rate form of FI~ is given as 

�9 �9 1 
F17=F1 +27~ ~ [skew(/'* + D. rN)[2 dr. 

vN 
(61) 
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The Euler equations derived from ~i6,~. are: 

�9 Constitutive Relation (CR) 

OW(D) 
symm[~* + 7 -1 rN.skew (/: * + D. r•)] = 0. (62) 

0D 

�9 Compatibility Condition (CC) 

(VNv) r -- D -- W -- 7 - i  skew (/:* + D. r n) = 0. (63) 

AMB (skew(i:* + [(Vnv) r -  W]. r n) = 0), LMB, TBC, DBC remain unchanged. Now, we find the 
requirement that the regularized Euler Eqs. (62), (63), AMB etc. result in the previous forms (36) ~ (41). 
To see this, it suffices to prove that skew(i:* + D. r N) = 0. 

Using AMB and compatibility, 

0 = skew(/:* + [ ( v N v )  r -- W]" r N) 

= skew [/'* + {D + 7 -1 skew(t* + D. rN)}  �9 r N] 

= skew [/:* + D. r N + ~ 1 { skew 07" + D. r N) }. r N] 

= skew [ [ skew (~* + D. r N) } .  ( I  + y 1 r N) ]. (64) 

If (I + 7-~ r N) is positive definite, the Eq. (63) holds only if skew(i:* + D. r N = 0. Therefore, it is safer 
to choose 

7 > - Gin  (65) 

where Zmm is the minimum eigenvalue of r N. 
For implementation of the three field mixed variational principle, we replace U by Rr.(I  + V0u)~: 

1 

F2Y = F2 -- 27 !01 skew(Rr ' (1  + V~ d v  (66) 

Notice that the sign of the regularization term has changed, to make the regularized complementary 
energy W~ positive definite in terms of the skew symmetric part of the stress. 

Likewise for the four-field mixed variational principle, one can obtain: 

1 . 
G~v = G 1 + ~ !o ] skew(U'.r*')]2 d v  

1 j, ]skew(RT.( I + V0u)Lr,,)j2dv. (67) G 2 7 = G z - - F v o  

Note that the hydrostatic pressure does not affect AMB. 
The rate forms of (66), (67) are shown below. 

F27 = F2 -- ~ ,  f I skew(t* - W. r N + (VNv) T" r N) 12 d v  (68) 
a f  vN 

�9 1 
G2T = G2 -- 7 -  i I skew(i:*' - W. r N + (V~rv) T. z "N) 12 dv .  (69) 

ZY v N 

3 
Finite element modeling and numerical schemes 
So far, the general forms of variational principles are discussed from the view point of continuum 
mechanics. In this section, we focus on numerical schemes to implement the principles for nonlinear 
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problems. To begin with, we discuss the spatial discretization of the principles. This is no longer a trivial 
process and there are certain requirements to establish robust finite element formulations. It is known 
that the LBB (Ladyszhenskaya-Babuska-Brezzi) condition plays a crucial role to judge the existence and 
stability of the finite element solutions based on mixed variational principles. 

We consider only two-dimensional plane stress or strain problems in this paper, even though the 
concepts are also applicable for three dimensional cases without intrinsic difficulties. The element concepts 
are based on the four noded membrane elements as developed for linear elasticity by Cazzani and Atluri 
(1993) which has displacements, unsymmetric stress, and a drilling degree of freedom as independent 
fields. In this research, we extend the numerical schemes to deal with geometric as well as 
material nonlinearities. The hydrostatic pressure is also introduced to the fields independently to count 
for the incompressibility of the material. The basic performances are checked by patch tests and some 
benchmark tests in the last part of the section. 

3.1 
Discretization of the field variables 
We consider here the field discretization based on finite element concepts to construct two types of 
elements. The first one is the formulation without volume constraints, using the three field principle 
(49) and the second one is the formulation with volume constraints (incompressibility is one such case), 
using the four field principle (51) which includes the hydrostatic pressure. In either case, each field variable 
should be discretized independently. We allocate displacements as nodal variables and the rest 
(stress parameters, rotation, and hydrostatic pressure) as internal or element variables. Herein lies the 
reason for calling the present element formulation as the 'hybrid stress element formulation'. 
Displacements are continuous (C o continuity) across the element borders, while the other element variables 
are discontinuous in general. It is preferable to use small numbers of parameters to discretize the fields 
in order--(i)  to save computer resources, and (ii) to avoid spurious modes which make the elements 
stiffer. In the well-established isoparametric elements, displacements are interpolated through the 
isoparametric mapping from the Cartesian coordinates (x,) to the natural coordinates (4,) of the elements. 
For the assumed stress hybrid elements, the other field variables are interpolated using the natural 
coordinates as well to construct the least order coordinate invariant elements (Pian and Wu 1988; Cazzani 
and Atluri 1993). Now, we discuss the discretization of the fields individually for a single element (denoted 
by the superscript 'rn'). 

3.1.1 
Discretization of displacement (u) 
In order to describe the motion of the body, we use Cartesian coordinates with base vectors (e~, e 2, ea) 
so that the material is isotropic at least along the e3-axis and the field variables are homogeneous in e 3 as 
well. Among these types of two dimensional deformation, we discuss two special cases--plane strain 

= u. 3--0 where u , j = ~ ,  i,j= 1 ~ 3) and plane stress ( r * = r * =  0) cases. We start the (u~,, 
investigation with the four noded quadrilateral elements, the simplest elements of their kind. The 
displacements in the m-th element can be interpolated by the same shape function as in the standard 
displacement-type four noded isoparametric elements. 

u, = n=({l, 4~) q,,L (70) 

where i = 1 ~ 2, c~ = 1 ~ 4, ul and u 2 are the displacements along (el, ez), respectively. The displacement 
parameters q,,~ ~ q,,4 coincide with the displacements of each node. The number of displacement 
parameters in 8 and the functions N, are given by: 

1 
N~(~l, 42) = a  (1 + cl,,~1)(1 + c2~) (71) 

where (cl,,, c2, ~) = ( -  1, - 1), (1, - 1), (1, 1), ( -  1, 1), for ~ -- 1,2,3,4. For later use, we introduce the 
matrix notation: 

u,} = [N(~I, 42)] {q~}. 
{u)-- u2 

(72) 
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We adopt the common notation, [ ] for matrices, [ } and [1 for 'column' and 'row' vectors, respectively. 
The gradient of displacement is also given as: 

/tI'1 } 

f ) U2.1 
\V0u j = 

Ul.2 

U2,2 

= [B(~ , ,~2 ) I  [qm}. (73) 

In UL rate form, velocity field v is interpolated as; 

{v}=[N(~  N,~N r ~.:)] ~ ~. (74) 

V1,i 

(vN]2  = ]22.1 

~ ]21.2 

~, ]?2, 2 

= [B(~.N,~)]  ((tm}. (75) 

where ( ~ ,  ~2 N) are the natural coordinates of the element at C N state. 
As shown in (7o), (71), this shape function has no 'incompatible' modes. It is still possible to introduce 

an additional discontinuous strain field to construct so called 'sub-h' elements (Belytschko et al. 1988) 
which facilitate capturing shear bands that are thinner than the mesh size. In this research, we adopt 
the ordinary shape functions (7o), (71), so that a shear band, if captured by the element, has about the same 
order of thickness as the element size ('iso-h' elements). 

The present elements do not display any shear-locking, which is often observed in ordinary 
displacement type elements. (The comparison between the present elements and displacement-type 
elements is shown in Sect. 3.5.) 

Displacements along e 3 direction need not be considered as long as the three field formulation (49) 
is adopted. Whereas, some modifications will be required to implemment the four field formulation (5a) due 
to the existence of pressure field in the formulation. This point is discussed again in the forthcoming 
Sect. (3.2). 

3.1.2 
Discretization of rotation field (R) 
Since all the kinematics are restricted to (el, e2) plane, we need to consider the rotation 0 or the 
spin W( = 0) around e 3 axis only. Reasonable choices, using one, three . . . .  parameters respectively, 
are" 

w (  r ~2) = co;" 

w(~_l, r = co;" + col" r +~'2"'~ ~2~N 

: (76) 

We may increase the number of parameters to 4 or more. However, it is known that the incrase of the 
kinematic parameters may result in the increase of stress parameters to suppress the zero energy 
modes. Numerical studies (Cazzani and Atluri a993) show that one parameter is enough to represent 
the rotation field if 6-stress parameters are taken. Therefore, we choose one parameter model 
W(~I, ~2) = coo in which the parameter o) 0 can be associated with a rigid rotation of the centroid of the 
element. For later convenience, we introduce the matrix notation: 

f .1} { o t W~ 2 --CO0 
{ w } =  w21 = coo 

w22 0 

= [,.Q] {corn} (77) 

where [.(2] is the shape function for the spin and [X2] = [0 - 1 1 Off in this one parameter model. 
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3.1.3 
Discretization of hydrostatic pressure (p) 
For incompressible materials, the hydrostatic pressure field p is required in the constitutive relations, 
and also, the pressure parameters are kept as unknowns in the global stiffness equation. The discretization 
ofp is similar to the rotation field shown below: 

56z �9 (78) 

Since the increase of the parameters may cause locking of the elements, we also choose a one parameter 
model with 16 =P0. Likewise, we introduce the matrix form: 

i0 = [p]  { P %  (79) 

The volume constraint holds in an average sense if one parameter discretization [P] = [1] is used. 

3.1.4 
Discretization of stress (r* or r*') 
So far, the discretizations of the kinematic fields (u, R) and the pressure p have been introduced. For 
discretizing the stress field, it should be considered that the following condition needs to be met to suppress 
all the kinematic modes. 

s >__ d - r ( 8 0 )  

where s is the number of stress parameters; d is the number of kinematic parameters; and r is the number 
of the rigid body modes. The necessary (but not sufficient) condition (8o) comes from the discrete LBB 
condition or the rank condition. See Ying and Atluri (1983), Xue et al. (1985). Strictly speaking, in order 
to guarantee the stability of the solution, we need to prove that the constant, which appears in the inequality 
of the LBB condition, is independent of the mesh size. This problem is extensively studied by Oden and 
his coworkers (Oden et al. z982; Oden and/acquotte 1984), but we do not go into the details here. It is 
also known that if stability and convergence are achieved, the least order stress parameters can be given 
by the equality in (8o). Since we have d = 9 (displacement: 8 parameters; and rotation: 1 parameter) 
and r = 3, the preferable number for s is 6. In the earlier works of the assumed stress hybrid elements, 
stress components are interpolated using Cartesian coordinates of physical space. 

In Murakawa's element (1978), stress functions, which are expressed as complete polynomials in 
Cartesian coordinates, are used. Therefore, at least 10 stress parameters are required for four noded 
plane elements to achieve coordinate invariance. Nan and Sumihara (1983) reduced stress parameters 
to 5 (using symmetric stress) for the same types of elements by utilizing the natural coordinates of the 
elements. Punch and Atluri (1984) constructed the least order [two versions of 5 parameter] assumed 
stress finite elements based on symmetry group theory. The least number is 6 in the formulation using 
unsymmetric stress as shown by Cazzani and Atluri (1993). 

If the natural coordinates, instead of Cartesian coordinates, are used, the linear momentum balance 
holds only in an average sense. Hence, the elements have some distortion sensitivity which will be shown 
by benchmark tests in the forthcoming Sect. 3.5. 

There are several ways to represent stress components by the natural coordinates and Cazzani and 
Atluri (1993) investigated the following five cases for linear problems. To avoid confusion, we use i, j , . . .  to 
represent Cartesian components,/, l , . .  for covariant (by subscripts) or contravariant (by superscripts) 
components. 

(i) Stress shape functions are expressed in the natural coordinates, but stress components are assumed 
to be Cartesian: 

i'* = i~e, ej 
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where ~ ;  the Cartesian components, [~/]; shape function for stresses, and {tim}; stress parameters: 

[ 1 

I 
L 
J, 

A 
Ii=}= L 

i= 
L 

(82) 

(ii) Stress shape functions are expressed in the natural coordinates, and are assumed to be contravariant 
(curvilinear) convected components: 

/., = t,~Ig~i 

(83) 

where ~,~i are the contravariant components, (g~, gl) are covariant convected base vectors�9 
(iii) Stress shape functions are expressed in the natural coordinates, and are assumed to be covariant 

(curvilinear) convected components: 

~* = t~gIg J" 

(84) 

where ~j are the covariant components (g~, g J) are contravariant convected base vectors. 
(iv) Stress shape functions are expressed in the natural coordinates, and are assumed to be contravariant 

components referred to the centroidal base vectors: 

/-, = t*~IL~ I 

{~*"}: [�9 {~=} (85) 

where f,~1 are the contravariant components, (~z, gl) are covariant centroidal base vectors. 
(v) Stress shape functions are expressed in the natural coordinates, and are assumed to be covariant 

components referred to the centroidal base vectors: 

;..~ = [~]{/j-') 
t~lIJ (86) 

where ~} are the covariant components, (~I, ~J) are contravariant centroidal base vectors. 
According to Cazzani and Atluri 0993), choices (ii), (iii) do not pass the patch test. Among (i), (iv), 

(v), the element (iv) shows the best result (less sensitive to element distortion). Therefore, it is reasonable 
to adopt the element (iv) for nonlinear problems. 

In element (iv), the Cartesian components ~* are obtained from the contravariant components ~*~J as 
follows: u 

where Ji., = ~fe, is a Jacobean component of the element at the centroid. 
Then, we have matrix representation: 

{~,): IA] {~-) = [ t ]  [ d ]  {~m) 
where 

1/11Jll 
[ f ]  _- |J11L.~ 

! L J H  
[_ L.fll.~ 

]1fl2.1 L1Jll ]2.1121 
filL.2 hiL., L.IL.2 
J1.2J2.1 f22J1.1 J22J2.1 

(87) 

(88) 

(89) 
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For later use, we introduce these representations as: 

[Asymm ] = [ ~ ]  I 1 1/2 1/2 

1/2 1/2 

1 

~N 
2 

564 i ~ ~ 1 
1/2 -- 1/2 

[Askew] = [ ~ 1  --1/2 1/2 (90) 

0 0 

so that we have: 

[Asy~m] {fi~} = symmetric  part  of  ?,~ 

[Askew ] {tim} = skew part  of i,~. (9~) 

To implement the four field formulation, ~ can be discretized using the same shape function. 

3.2 
Reduction from general 3-D field formulation to 2-D formulation 
Since the principles are derived from general three dimensional theory, the stress and strain components 
associated with e 3 (r* and u3.3) are involved in the formulation even if a plane stress or strain condition 
is imposed. Therefore, some considerations on the reduction of the dimension of the space from 3-D 
to 2-D are required�9 

In the following, ( ),j means the Cartesian components of a tensor and subscripts i , j ,  k, l . . . .  run from 
1 to 3, whereas ~, fl, y, 6 . . . . .  from 1 to 2. 

In three field formulation (without p), the stress component r3~ does not do any work for either the 
plane stress or strain case, so we can simply drop r~ and u3. 3 from the principle (since one of which 
vanishes). The plane stress or strain condition can be imposed through the following way. Suppose we 
have a rate form of the constitutive relation. 

1 
D~ = [c]ok ~ ~ ( ~  + i~) 

1 
( i'~ + i'j'~) = [e],jklDkt (9Z) 

w h e r e  [C]tjk l and [e],jk z are tangent compliance and elasticity matrices, respectively. For plane stress 
condition, we have ~, = ~ = 0, and the rate of complementary energy is given by: 

We(symm~ *) = ~ . [ c  ]~pva'~ ( i ~  + ~ , ) .  ( t ~  + r~v) (93) 

where [c' ] ~  is the submatrix of [c]0k I obtained by deleting components associated with %. 
For plane strain condition, using D3, = D3 = 0, 

�9 1 , , 1 . ,  . ,  . 1  ~g,) 
E ( s y m m / ~ * )  = ~. [e ] ~ 6 . ~  (rap + r ~ )  2 (?'% + (94) 

where [ e' ] ~ is the submatrix of [ e ]~jk~ obtained by deleting components associated with e 3. 
In the four field formulation (with p), it is not as easy as in the three field formulation, since there 

is a coupling term in (49) as: 

1 
-i'*'(vl'13 33 -{- 1'~2, 2 -l- V3,3)- (95) 

Since r~3' ~ 0 even in plane stress case, we need an interpolation for i~;' as well as for V3, 3. 
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One option is, as taken by Reed and Atluri (1983), to discretize i~3', v3, 3 by adding some more parameters. 
(In this form, the plane stress/strain conditions are a posteriori satisfied.) The simplest form (one 
parameter each) is: 

r~*2 A " r = " . (96) 
t v  J, 1 qs 

r2*-2 ~7 / v2'2 6)9 
r~3 ~ V3,3 

For later use, we introduce matrices [By] and [/3] such as: 

V1,1 "4- V2, 2 -}- V3, 3 ~- [By] {q  m } 

{1  } 
Vl,j  - } - ~  6U(VI, 1 -~ 1"2, 2 -}- V3,3) = [/~] (qm}.  (97) 

As shown, the above can be developed in a straightforward manner and we develop the formulations 
based on this form. However, we can also construct element formulations without increasing the 
parameters by satisfying plane stress/strain conditions a priori to eliminate ~ and v3, 3. 

For the plane stress case, it can be enforced by using: 

1 

~p  --  VI, 1 ~- 112, 2 -~- V3, 3, (98) 

For the plane strain case, we can use the constitutive relation: 

"~3' [ ]  D' (99) r ~-- e 33l.] U 

and the compatibility condition: 

1 
D'~,p = v~,fl - -  W~p --  ~ (vl ,  ~ + v2,2) 
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1 
D;3 = - ? (Vl,~ + v~,~). (lOO) 

Thus, i3~, v3. 3 are given in terms of i'~1', i~2', Vl.l/F'2,2) W~fl and/5. 
For the plane strain case (U31 = U32 = 0, U~3 = 1), there is another option at the risk of sacrificing 

some of the generality. One can perform the following multiplicative decomposition: 

U'~, 6 = Uo~1-1/2 w h e r e / =  d e t ( U ~ )  (lOl) 

instead of the factor ] -  1~3 used in (17). Since all the e 3 components can be dropped, this may provide 
the simplest form for the plane strain problems with volume constraints. 

3.3 
Discretized variational principles 
Now we are ready to discuss the discretized variational principles based on finite element concepts. 
Instead of seeking (v, W, i:*) in the continuous field theory (49), we try to find (v h, W h, ~,h) 

= I~[ (V m, W,~,/.,m) as an approximate solution in finite dimensional space which satifies the stationary 
m 
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condition of the discretized principle such that (49): 

1 rN: (wm.wmT) F2(vh, Wh, f*h)=~m(V!m(--~Vc(symmt*m)-- ~ 

+ z'Ivr: [wmT.(VNVm) T] + (/Tx-m)T: [(VNVm) T- W m ] - -  pNO'V m } dv 

566 

�9 ) -- S ~2"v'~ds- ~ ( i~r 'n) ' (vm -- re) ds 
~VN m(~ScN ~VN, mVhSuN 

where 0 V~r is the boundary of the m-th element. 
The stationary condition b/52 (v h, W h, i: *h) = 0 gives the following: 

= C3(f,~n)T t-(VNvm)T--wmI:b(f*~)T 

(lO2) 

+ ( t*~ + [(VNv'~) ~ -  Wml . r ~) :~W m 

+ [V~r (f  *m - rN.w ~) + pN 6 ] "6V m } dv 

+ S (~imr'n)'vmds-- S T . 6 v d s -  ~ (fitr.n).(v--re)ds). (103) 

Since the velocities are allocated as nodal variables, the velocity field is C o continuous and the compatibility 
across the elements is automatically satisfied. Suppose that the element m and n have a common edge 
pmC~pn, and n is the outward normal vector to the edge of the element m, then ( - n )  is the 
normal for the element n of the same edge. Hence, the surface integral in (lO3) becomes: 

~m ( ~ [(tm--t")r'n]'bv'~ds+ ~ ((tm)T'n-T)'bvmds 
gV~,m~Vn ~ ~VN,mC~Sr 

- -  j" (3 ( im)r 'n ) ' (vm--  ~) d s ) .  (lO4) 
QVn,mc~Gn 

Therefore, the stationary condition of the finite element formulation provides the weak forms of 
(i) constitutive relation, linear momentum balance, and angular momentum balance in each element. 
(ii) traction and displacement boundary condition at each element boundary. 
(iii) interelement traction reciprocity conditions. 
The same results can be seen easily for the discretized four field formulation G2 ( vh, Wh, f,'h, ph). The 

matrix forms of the discretized variational principles (inlcuding regularization terms) are given in 
Appendix-I. 

3.4 
Finite element assembly and strategy for numerical solution 
Now, we move to the discussion on the finite element assembly and solution strategy of the system of 
equations, (mixed stiffness equation) derived from the discretized principles. Since the stress parameters 
are eliminated at each element, the resulting 'assumed stress' method has only kinematic field parameters 
(velocity and spin) in the three field formulation. On the other hand, in the four field formulation, 
the mixed stiffness equation involves hydrostatic pressure parameters additionally. The mixed stiffness 
equations are solved by the standard Newton-Raphson procedure with simple load/displacement 
incremental method or with the arclength method. 

3.4.1 
Elimination of stress parameters f l  

It is a common practice to eliminate fi's from the mixed stiffness equations at each element level to 
reduce the number of unknowns in the mixed stiffness equation. As stated before, it is not possible 
without the regularization. (It can be easily checked that [H~] is not invertible, where [ H ~ ]  is invertible. 
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See Appendix-I.) In the earlier formulation of Murakawa and Atluri (1978), both the stress as well as 
the rotation parameters were eliminated simultaneously, without encountering any singular matrices. 
Singular matrices arise in this formulation, if only fl's are to be eliminated, without using regularization. 

As for the spin parameters co, it is optional. If we retain o ' s  as global variables, it is possible to impose 
rotational boundary conditions at each element and this is advantageous for some shell problems. 
Therefore, we keep co as unknowns in the mixed stiffness equation. 

As for pressure parameter/}, it is not possible to eliminate it at element level if the material is perfectly 
incompressible because [Hpp] = 0. (If the material is compressible, it is possible. Another case when we 
can eliminate p for incompressible materials is in plane stress problems.) In the present formulation, 
we keep/Ts for generality. 

The resulting single element stiffness equations for the three- and four-field formulations are given 
in Appendix-II. 

The whole stiffness equation can be obtained by summing up the equations at each element and node. 

3.4.2 
Newton-Raphson method and Arclength method 
The Newton-Raphson method is used for wide range of nonlinear problems and it is also applicable 
for the present element formulations. The method includes an iterative process to find an 'unknown' 
state CN+ 1 starting from the 'known equilibrated' state C~. The details are given in Appendix-III. However, 
if there are an unstable phenomena such as limit load and bifurcation processes, it is difficult to prescribe 
the loading and displacement conditions as a single value function of time. In such a case, the 
problem can be solved by specifying the increment in the variables to a given amount, or so called 
'arclength' ~l. This scheme, introduced by Rikes (1972), is called the arclength method. Crisfield (1983) 
modified the method suitable for finite element analysis using the 'modified' Newton-Raphson method. 
However, the 'standard' Newton-Raphson method is also applicable and it is difficult to say which is 
more efficient in general. For more details, see Crisfield (1983) and Kondo and Atluri (1985). 

3.5 
Eigenvalues, patch tests and benchmark problems 
So far, two types of element formulation are presented. The first one (three field formulation) has (u, R, r*) 
as independent variables and is called the compressible element. The second, (u, R, r~',p) as independent 
variables, and is called the incompressible element. It should be noted that the second type of elements 
can be applicable for nearly incompressible and even compressible materials if we use a finite bulk 
modulus. However, it is called so because the main objective is to develop the second type of elements 
for precise incompressibility problems. 

Before moving on to the application, the basic performance of the both compressible and 
incompressible elements are checked by some benchmark tests and the results are summarized in the 
following. Since the above formulations are extensions of the elements by Cazzani and Atluri (1993) to 
highly nonlinear problems, the behavior of the elements for linear problems is equivalent to that of 
Cazzani's. Therefore, the main focus in the following is on nonlinear problems. 

3.5.1 
Eigenvalues 
First, the eigenvalues of the stiffness matrix of a single perfectly square element are checked at its 
undeformed state. The eigenvalues are equal to those of Cazzani's for linear case as stated before. In 
addition to that, it is also confirmed that the eigenvalues are unaffected by: 

(i) Finite rigid rotation 
(ii) The value of the regularization coefficient 7. 

The test (i) is done by fixing one node and rotating the element by the angles 45 ~ 90 ~ and 180 ~ Then, 
the rotation is fixed and the stiffness matrix at the rotated state is calculated. The results show that the 
eigenvalues are unaffected by finite rigid rotation and no spurious or kinematic modes are detected. 

The purpose of the test (ii) is to check that the proposed regularization is valid for geometrically 
nonlinear problems. The range of~, used here is 10 -3 G ~ 103 G where G is the shear modulus. This test 
is done at the initial state and the states after finite rotations as in (i). 

3.5.2 
Patch tests 
The elements can pass the single element patch test with a minimum number of constraints such as: 

(i) A trapezoidal element with one side constrained (Fig. la) and subject to uniform tension applied to 
the opposite side (linear analysis). 
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Fig. 1. Patch tests (a) Single skewed element with minimum 
constraints. (b) Finite rotation followed by stretching. 
(c) Assembly of elements 

(ii) Fix the first node of the element in (i) and move the second node (by prescribed displacement 
condition) to rotate the element by angles 45 ~ 90 ~ and 180 ~ respectively, and fix the second node and apply 
uniform tension to the opposite side (Fig. lb). 

(iii) The element configuration and the boundary condition is the same as (i) and (ii), but some 
nonlinear stress-strain relations such as Neo-Hookean and the power law type (introduced in the next 
section) are adopted and the element is stretched up to several hundred percent. 

The test (i) is the same one as in Iura and Atluri (1992). The tests (ii) and (iii) are added in this reseach 
to check the element performance for geometrically and materially nonlinear problems. It can be seen 
that the elements also pass the multi-element patch test as shown in Fig. lC once each element passes 
the above single element patch test. 

3 .$ .3 
Thin s beam 
Some benchmark tests, e.g. the Cook's problem (Cook 1974), are also solved using the presented elements. 
As stated before, the results are the same as those in Cazzani and Atluri (1993) in linear case, so the 
details are omitted. Here, we demonstrate the thin cantilever beam undergoing finite rotation as 
a nonlinear benchmark problem since analytical solutions are known (as long as Hooke's law and the 
Euler-Bernoulli beam theory are valid). The tip deflection d vs. a tip load P is given as follows (Timoshenko 
and Goodier 197o): 

~i ~2 dO d 1 _  2 E~L2~2x/l_k2sin20d 0 
-- r x / 1 - k 2 s i n 2 0  ' L -  r 

(105) 

where 

2 , (b=s in -~  l+sinOen a 
(lo6) 

L; length of the beam, E; Young's modulus,/; inertia of the cross section, and the rotation at the tip 
0en d is used as a parameter. The problem is soved by the 'compressible' elements under plane stress 
condition with the regular and distorted meshes shown in Fig. 2a, b. The relation between the tip load 
and deflection (both are nondimensionalized) are shown in the Fig. 2d. Note that the nonlinearity in the 
response curve is due to geometrical nonlinearity, not from plasticity. For comparison, the solution by 
displacement-type four noded (Q4) and eight noded elements (Q8) are also shown in Fig. 2d. For Q4 
and QS, only regular meshes are used (shown in Fig. 2a and 2c). If the regular mesh is used, the result 
by the present hybrid elements coincides with the analytical result quite well as compared to the 
displacement-type elements. However, if the distorted mesh is used, the numerical solution deviates from 
the analytical solution as shown in the figure. 
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elements (3-elements, 18-nodes). (d) Tip load-tip deflection curves of the beam 

Once again, regardless of the element distortion, the element passes the linear and nonlinear patch 
tests if the deformation modes are simple stretching, shear, finite rigid body motion, and their 
combinations. But, element distortion makes the element stiffer in bending. The distortion sensitivity 
problem may stimulate further investigation on the element formulation. 

4 
Numerical examples of the shear localization problem 
In this section, we present some numerical examples of shear localization problems solved by the assumed 
stress hybrid elements. The sample problems, given below, are selected to check the applicability of the 
presented element formulation for strain localization problems. 

(i) Compression of a block. 
(ii) Twisting of a tube. 

In the following, only plane strain problems are treated and the materials are assumed to be perfectly 
incompressible, isotropic, and hyperelastic. The constitutive relations are derived from the strain energy 
functions with small number (3) of material constants. 

First, we review briefly the criteria of shear localization and its relation with the constitutive relations. 
Numerical examples are presented and discussed. 

4.1 
Ellipticity of the material constitutive relation 
The equilibrium condition of the finitely deformed body, in absence of body forces, is written in terms 
of the Cartesian components of the first Piola-Kirchhoff stress t /  

t,l.i = O. (lo7) 

We rewrite the equilibrium equation for displacements using the strain energy W(V o u): 

(aw(Vou)'   2w(vou) 
tv,,=~x (tb)=-~x '- ~ / - -  (~l.li.,(~igk, l IAk.li=e,jklblk.h=O. (108) 

The characteristic of the differential Eq. (lO8) depends on the elasticity coefficient e lki and it is called 
strongly elliptic if the inequality: 

euk t m,  m k nj n I > 0 (lo9) 

holds for every pair unit vectors m, n. (If the left hand side of (lo9) is negative for some m and n, it is 
called hyperbolic.) It is known that the Eq. (lo8) has a unique and smooth solution for a given 
boundary conditions if the inequality (lo9) holds. On the contrary, if the ellipticity fails, there may not 
exist a classical smooth solution. As a consequence, some characteristic lines (surfaces) may emerge on 
which the deformation gradient is discontinuous in the body. We call such a line (surface) as a shocldine 
(shocksurface), which is also referred to as an equilibrium shock or an elastostatic shock in the literature. 
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'Shear band' means the area (usually very thin) surrounded by shocldines (shocksurfaces), within which 
the shear strain level is significantly higher than that on the outside. This phenomenon is also called 
shear localization. 

Among the various cases, shear band formation in the incompressible material is of theoretical and 
practical interest. Any plane strain deformation of an incompressible body can be regarded locally as a 
simple shear followed by a rigid body rotation. Hence, the material consitutive relation can be completely 
specified by its stress-strain relation in simple shear. In the following, we denote r(k) for stess in simple 
shear as a function of k; the amount of shear strain in simple shear. (Note that k is not equivalent 
to the shear component of stretch tensor.) We also assume that z is an odd function of k, i.e. 
z ( -- k) = - z (k). Therefore, we presume that k > 0 in the following discussion. According to Abeyaratne 
and Knowles (1989), shockline(s) may exist in incompressible material under plane strain deformation 
if the inequality: 

[z(k~) - z(k2)] [kl - k21 = 0 (11o) 

holds for some k 1 ~ k2. The Eq. (110)  m e a n s  that the slope of the stress-strain curve in simple shear 
becomes negative in some strain range. 

Now, we introduce the constitutive relations which satisfy such a requirement through strain energy 
functions. It is a common practice to introduce strain energy function in terms of the invariants 11, 12 
of the right (Cauchy-Green) deformation tensor C = (I + V0 u).(I  + V0u) r for isotropic incompressible 
material, where 11 = trace (C), 12 = ! (i 2 _ C: C). Note that in the plane strain case, we have 11 = I 2. The 2 x t 
amount of shear strain, or simply shear strain k is calculated from C as: 

k 2 = trace(C) - 3 = 11 - 3. (111) 

So k is another invariant of the deformation field and can be used instead of 11, I z. Note that in (nl), 
we can replace C by the left (Cauchy-Green) deformation tensor G. 

In this research, the following hypothetical models are used: 
Type I--Power Law 

{ C  1(11-3)  i f k < k  0 (11z) 
W(I1)=  C2(i1_3) ,  i f k > k  0" 

Type I I--Strain Softening~Hardening 

W(/1  ) _ Cl (I1 - 3) ._}_ C3 (/1 _ 3)2 (113) 
I + G G - 3 )  

where Ca, C 2, C 3, n, k 0 are the material constants. In type I, we must have C 2 = Clk~2-2")/n so that the 
shear stress-strain curve is continuous at k = k 0 (The differential of the curve is not continuous at this 
point). So the independent material constants are C1, n, k 0 in this model and k 0 determines the 'critical' 
shear strain. This consitutive law is used in Abeyaratne and Yang (1987) for mode I crack problems. The 
form of the type II is chosen so that the material shows hardening in larger strain region. In this research, 
we use C~ = 1, n = 0.25, k 0 = 0.1 for the type I and C~ = 1, C 2 = 10 ,  C 3 = 0.05 for the type II. C 1 (Types I, 
II) and C 3 (Type II) have the dimension of stresses and n, k 0 (Type I) and C2 (Type II) are 
dimensionless quantities. 

The stress-strain curves in simple shear are calculated by: 

3W 3W 011 = 2k 3 w  (114) 
r -  0 k - 3 1 1  Ok 3I~ 7 

and the results for both models are shown in Fig. 3. 
In the following analyses, no other material parameters are involved (such as threshold stress or 

shear band thickness, etc.) The shear band formation is triggered only from the characteristics of the 
given constitutive relations. 

4.2 
Example 1: Compression of a block 
The first example is the compression of a block by uniaxial loads as shown in Fig. 4. A rectangular block 
with unit thickness is modeled by 16 x 32 perfectly square elements. (The size of a single element is 
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1 x 1.) The bottom edge is roller supported, the lateral sides are free, and the upper edge is fixed 
horizontally and pushed down in vertical direction. (Constrained displacement boundary conditions 
are imposed through the arclength method.) The material property (Type I - -power  law) is homogeneous 
throughout the block. 

To check the sensitivity of the solution to the initial configuration, we also analyzed the second model 
whose symmetry in the initial configuration is slightly disturbed by moving the upper left corner node 
to the right by 0.001 as shown in Fig. 4. 

Now, since the upper edge is fixed, it is expected that the stress concentration occurs at the upper 
left and right corners with the shear bands emerging from these corners. (Since the lower edge is roller 
supported, it does not occur at the bottom.) The global response curves (vertical displacement of the upper 
edge vs. total reactions from the edge) obtained by the finite element analysis are shown in Fig. 5- 
Up to the critical point (denoted by 'A' in the figure. 4.3% compression from the initial heights.), both 
perfectly symmetric and slightly unsymmetric models take almost the same paths. Moreover, no shocklines 
nor shear bands are observed. At point A, the shear band formulation starts at the upper corners as 
shown in the deformed mesh and the contour plot of shear strain k in Fig. 6. (In this paper, meshes 
and displacements are drawn to the same scale, so that the figures show the actual deformation. In the 
contour plots, the value k is calculated from displacements. In this formulation, it is also possible to 
calculate the strain field from the stress fields using the constitutive relations.) Note that in the area 
where the shear strain is greater than k~ --- 0.1, the material property becomes hyperbolic. 

After passing point A, the two models take different paths. For the symmetric model, the load (reaction 
force) drops sharply and reaches point 'B',  where the X shaped shear bands are developed as shown in 
Fig. 7. However, our numerical analysis shows that the symmetric deformation mode is unstable 
and another bifurcation occurs at point 'B'. One of the bands disappears and the deformation mode 
becomes unsymmetric at point 'C' as shown in Fig. 8. If the initial configuration is slightly unsymmetric, 
even though the imprefection is very small as assumed in the second model, we cannot find a symmetric 
deformation mode after the first critical point 'A' and the deformation mode goes immediately from 
symmetric 'A' to unsymmetric 'C'. From these observations, one may conclude that- - ( i )  The shear 
band(s) tends to shrink as the deformation proceeds to stabilize itself. (ii) The deformation mode is 
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Figs. 6, 7. 6 Deformed mesh 
and shear strain distribution 
of the block at state 'A'. 
7 Deformed mesh and shear 
strain distribution of the 
block at state 'B' 

quite sensitive to the initial configuration. (There are some similarities with the buckling of a column 
by compressive axial loads.) 

As stated before, once the eilipticity fails, the uniqueness of the solution is not guaranteed as shown 
in the finite element analysis. In this case, not only the deformed configuration but also the response 
curve (displacement-total load) cannot be determined uniquely. To see this, the following semi-inverse 
analysis is carried out by making simple kinematic assumptions as follows. As shown in Fig. 9, the block 
is decomposed into the two parts (I, II) and, in each area, the deformation gradient is homogeneous. 
There are two parallel shocklines which divides the area II, the shear band area, from the rest of 
the block (the area I). The area I is uniformly compressed in e2 direction with stretch ratio 2 ( < 1). 
Then, the deformation gradient F1 in the area I has the following matrix representation: 

0 
(l~S) 

where (F~),j are the Cartesian (i, j) components with respect to the base vectors e~, e~ and the e~ components 
are omitted. (F~)~ = 2 -~ comes from the incompressibility of the material. 

Now, the continuity of displacements along the shockline requires the following (Abeyaratne and 
Knowles 1989): 

F I I -  (I + tce~* e~).F I (116) 

where e~, e~ are tangent and normal unit vectors of the shockline. The interpretation of (116) is that 
F, can be regarded as a deformation F~ followed by a simple shear with amount to. The transformation 
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rule of the tensor components  shows that F~z has the matrix representation: 

= 2ca~c 2(1 -- CSK) (117) 

where c = cos 0 and s = sin 0. Now the equil ibrium condit ion along the shocklone is met if (Abeyaratne 
and Knowles 1989): 

V[~(ki) z(k,) \ ~7 
e*. ! l - -  G I - -  G i i | . e ;  / = 0 (118) 

L \  k, k ,  / J 

where 61 = F~.F/, Gi~ = F , .F~ are the left deformation tensors in the area I, II, respectively. By simple 
matrix algebra, we have: 

o,_E o 2 1 
I ,~_2(lq_cStl)2q_~2C4K 2 d,-2S2K(I+csK)--,~2CRK(1--CSK)] 

GII~ ,~_2S2K(I + csK)_d, Rc2K(I_csK ) )_2(I_csK)2 + d,_2S, K 2 j .  (119) 
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From the type I constitutive equation: 

z(ki) 
- - 2 C  1 ki 

r(kn) / k  \2.-2 
- 2 C  I ' ~ I I  

't, ko) 
(120) 

where k and k u, the amounts of the shear strain in areas I and II respectively, are obtained, remembering 
that a t~o dimensional expression is used, as follows: 

k~ = trace (GI) -- 2 

ki2i = trace (Gn) - 2. (121) 

The above conditions (equilibrium and continuity of the displacements along the shockline) are not 
enough to determine all the unknowns (k z, k,,  ~c, and 0). Usually, we need another condition such as 
energy dissipativity to determine the shockline inclination 0. However, to simplify the problems, we make 
the kinematic assumptions such that 0 = 45 ~ and remains unchanged during the deformation. (This 
assumption is not exactly true in the finite strain case, but the following results are not very sensitive 
to 0 if 0 does not change largely during the deformation or if the shear band thickness is small.) Thus, 
solving (115) ~ (121), we can find ~c, and the relation between the total load P and the displacement of 
the upper edge D is obtained from: 

P = 2 C 1 W ( 2  3--2)  

D = H ( 1  - -2)  + K2d/2 (122) 

where H, W are the heights and width of the block in the undeformed configuration. Now, d, the thickness 
of the shear band in the undeformed configuation, is another indeterminable quantity from equilibrium 
conditions. Here, we treat d as a parameter to calculate the relations of P and D and the results 
are shown in Fig. lO. For comparison, the result of the slightly unsymmetric model obtained by finite 
element analysis is overlapped in the figure by the dashed line. (The stress concentration at the upper 
corners makes the critical load by finite element analysis slightly lower.) 

If we take the energy dissipativity into the consideration and presume that the block is an ideal 
continuum body, we can see d ~ 0 in this way. Suppose that we compress the block until the edge 
displacement becomes, say, D = 2. In Fig. lO, the area below the each response curve represents the 
energy required to achieve such a compression. (e.g. the shaded area in Fig. lO is the energy for d = 0.5.) 
Then, as shown, the smaller the shear band thickness d is, the smaller is the energy required for the 
compression. And in the limit as d ~ 0, the energy also becomes zero. From the physical point of view, 
a material of this kind has a 'thickness' d as a intrinsic material constant which comes from the microscopic 
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structure of itself. In most of the finite element analyses, the mesh size plays a role of such a material 
constant unless it is a priori specified and involved in the formulation from the beginning, but the further 
discussions on this matter are beyond the scope of this paper. 

As shown in Fig. lO (and also from the observation of the deformed meshes), the elements capture 
the shear band with thickness d = 2 (width of two elements). This may be the smallest width that can be 
captured by the elements of this type, which do not involve an embedded shear localization field within 
each element. 

Another important observation is that there are backlashes in loads as well as displacements after 
the critical point 'A', unless the shear band is unreasonably thick. Therefore, simple load or 
displacement control method breaks down after the critical point and the use of the arclength method 
is inevitable. 

4.3 
Example 2: Twisting of a tube 
Abeyaratne (1981), Abeyaratne and Knowles (a987) extensively studied this problem since it provides 
good insights for the equilibrium shock problems, while it is simple enough to allow an analytical approach 
to some extent. 

As different from the previous example, we consider the stability of the tube from the beginning. 
As a consequence, we do not observe shear bands and the material remains elliptic everywhere in the 
tube- -  even though a shockline exists. For the material (type I), as used in the block compression problem, 
the tube is not mechanically stable when the load exceeds the critical point. (Remember that, in the 
previous problem, the advent of the shear bands does not necessarily mean that the block becomes 
mechanically unstable.) Therefore, we use the type II material model--strain softening/hardening 
model--as  the constitutive relation. We observe that a shockline is formed between the areas whose 
material properties are elliptic/elliptic in this example, whereas in the previous example, a shock occurs 
between elliptic/hyperbolic. 

The geometry and the boundary conditions used in the finite element analysis are shown in Fig. 11. 
A tube with inner and outer radii r 0 = 1 and r I = 1.8 respectively, is modeled by 16 x 32 elements. The outer 
surface is fixed and the inner surface is twisted by uniformly distributed forces as shown. (The load is 
specified by the torque T.) 

Before presenting the finite element analysis, we briefly review the analytical approach by Abeyaratne 
0981). From the symmetry of the problem, we can expect that a point (r, 0) moves to (r, 0 + q~ (r)) by 
deformation and also that the normal components of stresses are irrelevant to the deformation. 
Hence, we need to consider only (Cauchy) shear stress component zT0 (r), which can be given from the 
equilibrium condition as: 

T 
rr0 (r) - 2 7or 2" (123) 

Therefore, the problem is basically one dimensional and is solved by finding ~b (r). 
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There are three cases when the uniqueness of the solution is considered. 

(i) O~ T<2n(ro)2"Crnin 
(ii) 2~(ro)2"Cmm~ T<2n(rl)2Zmax 

(iii) 2rc(rl)2Zmax= < T 

unique smooth solution, no shocks 

solution is not unique, there may/may not be shocks 

unique smooth solution, no shocks 

In the following, we exclude the states invovling two or more shocks or the states wherein the local 
material property becomes hyperbolic, since those states are unstable. Now, the goal is to find the global 
mechanical response of the tube represented by the relation between the torque T and the twist ~b 0 = q~ (r0) 
at the inner surface. Since ~b (q) = 0, we have q50 as: 

~o = i 8~(r) dr (lZ4) 
Or rl 

and the form ~b (r) is determined through the shear strain k(r) in the tube given by: 

0 
r~r ~(r) = k(r) = f ( z )  (125) 

where f(z)  = k is the inverse map of z = z (k). Since f(z)  is not a single valued function, we need the 
following three branches fa, f2, f~ such that: 

0 ~ ( z ) < k l ,  k l S f z ( z ) < k 2 ,  k 2 ~ f 3 ( ~ ) <  09 (126) 

where kj, k 2 are shear strains corresponding to the maximum, minimum shear stresses, respectively 
(see Fig. 12b). 

Then, from (123) ~ (126) we have: 

, i ,  

rol 
(ii-a) ~b o = 5 - f x  2-7~r 2 dr 

rl T 

(ii-b) ~b o =  ~f~ d r + ! r f  3 ~nr2 dr 
ri 

, i i i ,  (127) 

The case (ii-b) includes shockline with the radius f, and the response relation (Twist qb 0, Torque T) is 
not unique since f is arbitrary. To determine the deformation, we need to specify f, or equivalently, 
the shear stress "? on the shockline. As shown in Fig. lza, b, if a shockline exists, there is a jump in the 
shear strain across the shock. At the point just inside the shock ( P ) ,  the shear strain is in the region 
[k 2, ~ ] ,  and just outside (P+), k is in the region [0, ki]. Actually, the shock can occur at any stress level 
between Zm, n and Zm~" The jump such that [0, k 1] ~ [ k 1, k 2 ] or [ k 1, k z ] ~-~ [ k 2, o~ ] is excluded since they are 
unstable. Abeyaratne proved that if the shock occurs with the characteristic stress z~, which is the stress 
level such that the shaded areas I, II in Fig. 12b are equal, the potential energy becomes a minimum. 
(This path e~+fis called the Maxwell path.) However, this does not necessarily mean other states are 
unstable. If the torque T increases quasistatically from zero, the shock occurs at the stress Zma x (d--* b in 
Fig. 12b). And if we once make the torque T higher than 2 n (r~)2 rmax and reduce it quasistatically, the shock 
occurs at the stress z (h ~ g in Fig. lzb). If we switch loading/unloading while a shockline exists, we 
will have a state with a shock on which the stress is between Zm~ and Zm, n. 

NOW, we present the results of the finite element analysis. In this example, the simple load incremental 
method is used to find stable configurations. The global response (Twist qb 0, Torque T) curve by finite 
element analysis (FEM) is shown in Fig. 13 overlapped with the analytical solution (dashed lines). 
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Starting from the undeformed state ' O ' ( T = 0 ) ,  no shockline is observed up to the point  
'C '(T = 2 n (r 0)2 Zn, a~) in Fig. 13. The deformed configuration at 'C' is shown in Fig. 14. After passing point 
'C', a shockline emerges at the inner  surface and gradually moves outward (the path 'C'- 'D'- 'E' in Fig. 13). 
At point  'D', the shockline reaches the midpoint  of inner  and outer surfaces of the tube as shown in 
Fig. ~5. At point  'E' (T = 2 n (r 1)2 Zmax)' the shockline reaches the outer surface retaining a smooth 
configuration, such as the state 'F', as shown in the Fig. 16. The shear strain distr ibution along r-direction 
between [r 0, rl] at states 'C', 'D', and 'F' is shown in Fig. 17. It can be seen that at state 'D', there is a gap 
(kl+--~k3) in shear strain distr ibution corresponding to the shear stress zm~ on the shockline. 
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Then, we switch loading/unloading at the point 'F'. While unloading, we observe the process basically 
in reverse, whereas the shear stress on the shock is now ~m,n" Hence, the solution does not take the same 
path after passing point 'E', and until point 'H', we observe smooth configurations. After passing 
'H' (T--- 27z (r~)2 zm,i ,), a shockline emerges at the outer surface and moves inward until it is absorbed 
by the inner surface at the point 'A' (T = 2 ~z (r 0)2 Zm,n). Thus, we have a hysteresis loop A-B-C-D-E-F- 
G-H-A as shown in Fig. 15, and the area surrounded by the loop corresponds to the amount of the energy 
lost in one loading/unloading cycle. Therefore, the tube behaves as if it is composed of an elastic-plastic 
material when a shockline emerges. 

5 
Concluding remarks 
In this paper, the formulation of the assumed stress hybrid elements for incompressible finite elasticity 
are presented. The formulations are derived directly from the discretized multi-field mixed variational 
principles involving complementary energy, with and without volume constraints. The variational 
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principles are modified by the regularization terms which enforce the angular momentum balance in 
the formulation. The suggested regularization forms are valid for not only linear but also nonlinear 
problems including finite rotation and stretching. 

Two types of element formulation are presented. The first one has displacement (velocity), rotation 
(spin), and unsymmetric (Biot) stress as independent fields. In the second one, the hydrostatic pressure 
field is added as an independent field to account for volume constraints. In either formulation, each 
field is discretized using shape functions to construct four noded quadrilateral plane stress and plane 
strain elements which have C o continuous field, with displacement as nodal variables and the others as 
internal element variables. While assembling the mixed stiffness equation, stress parameters are eliminated 
at element level and only kinematic variables (for 'compressible' elements) or kinematic variables plus 
hydrostatic pressure (for 'incompressible' elements) remain in the mixed stiffness equation. 

With minimum numbers of parameters, the elements pass the basic requirements such as desiable 
eigenvalues, patch tests and other benchmark tests in either linear or nonlinear cases. The performance of 
the elements is also checked by solving materially nonlinear problems, especially strain softening 
incompressible materials in which the ellipticity of the constitutive relation fails and discontinuous 
deformation gradient may occur. 

As the first example of such a case, a block compression problem is analyzed. We observe the advent 
of shocklines between elliptic/hyperbolic materials and the formation of a shear band. The numerical 
results are compared with the semi-analytical methods and are in good agreement. The shear band 
thickness captured by the elements is reasonably small. 

In the second example, the twisting of a tube, we observe a shockline of a different type between an 
elliptic material area and another elliptic area with a significant gap in shear strain but without shear 
band formation. We also observe that the solution path or shear stress on the shockline depends 
not only on the level of the load but also its path. In either case, the advent of the shocklines is confirmed 
by rapid changes or gaps in shear strain distribution by finite element analysis. 

It is also found that the arclength method, in conjunction with the Newton-Raphson procedure, 
plays a crucial role analyzing these types of problems. As shown in the examples, the solution path may 
have snap-through problems and/or bifurcations, and in such a case, the simple load or displacement 
control method is no longer valid. 

Appendix-I 
Matrix forms of the discretized variational principles 
We present the matrix form of the discretized principle in terms of (/~, co m, c~ ~) for a single element 
(m-th element)�9 

�9 "m m 1 "m 1 G m Fz.,.(/3 ,co ,4")=~t/~ J[H;p] {/~} +~L~omJ[ ~o~] { ~o~} +[~ (c) ~ } 

�9 m rn m +t/3 ] [G,q] {c) ~ } + [/gml[G,~] {co ~ } - [ @ ]  {4 ~ } (A.1) 

where 
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[ / - / ~ ]  = - -  y [Asymm]T[C] [Asymm ] dv 
VN., 

[ ~o] j" [.Qlr rtl [-(2] dv 
vN~, \ 

vN,. 

I G o r ] =  j" [A] T[B]dv 
VN,m 

G m [ ,o~] = -  y [&kew]~[~2] dv 
vu., 

IdOl= Y pN[6][B]dv+ y [{][B]dv 
vN.m v~zj~Gu 

(A.2) 
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where [C]; the tangent compliance matrix defined by (93) or (94), [~] is a (4 x 4) matrix given by: 

1{~ t [%] = 2  1 [ - -  z12 Zl l  - -  "c22"c21 ] (A.3) 

0 

and % are Cartesian components of r N. 
The discretized regularization term (67) can be written by the following matrix forms as well: 

1 
27 ~ [skew(t*"* --Wm. rN+ ( V N v m ) N ' r N ) [  2 dv 

vu 

1 "* 1 "* 
= I[/}~J[H~']2 {/}"*} +~tco lEG2; ~1 {co"*} +~[O ][G~'] {0"*} 

""* G "*~ o3"* + t3  l[ ;o ]{ }+Lo"*I[G;"q'I{O~}+tB"*I[G'~[]{4 "*} (A.4) 

where 

[H~'~,q = - 7 - '  j" " [a~k,w] [a,k~w] dv 

(:;)2 
m,y - -  7 1 "q2 [~ ]  dv [G,~,]= j" In] ~ ~,~ 

VN,m 

[G~dT]- - - '~ -1  ; [Blr[~lr[elIB]dv 
V~,m 

vN,~ 2 

[ G ~ q , y ] = - 7  -1 y [A~kew]T['cl[BI dv 
VN,m 

[Gm~] = 7-1 ; [~Q]N('Cn-+"c22)['~][B]dv. 
v~ 2 

O " " m  m " m  The stationary condition f Fz~,m ( f l  , (.0 , q ) leads to the following system of equations: 

~"**~ m, G : ; ]  O, m ~ G~ 

G;? 'T G~g '~ G'TJ 0"* 

{o} 
= 0 

oF 

where 

(A.5) 

(A.6) 

[H~7] = [H~' e] + [H~#] 

[G~ *] = [G;~-] 

[G~q*] = [G~q] + [G~; y ] 

m. G m [Go,~,] = [ ~o1 + [G;g] 

[G~21 = [Ge%] + [G~21 

"* Yr G TM [G,,~ ] = [ ~,,~] + [Gm~?] �9 (A.7) 
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Likewise, for the four field formulation, we have the discretized form of a single element as follows: 

d 2,m(~rn,/)m,(Dm,q m ) = ~ [fi~j [HTJ {tim} +[flm][H;]f)m + 21 f)m [Hp;]/5 m 

where 

1 G m 0 m Gm m +~t~'nll ~,o] {~m} +t J[ ,oq] {4 m} +t~q[Gpq] {'F} 

�9 m m "m G m + p  [Gpq]{gtm}+[fi J[ zol{COm}--[(~q]{O ~} (A.8) 
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[ H ~ f l ] = -  5 [<ymm]T[Crr][Asymm]dY 
Ytcm 

[H~p] = -- 5 [/Tl~rmmlr[C~] [ P l d v  
VN, m 

[H~p] = -- j [plr(Cep) [ P l d v  
Vy, m 

09COJ 
VN, m \ / 

a m  [ o,q]= j [ .Q]T[ .~][B]dv 
VN, m 

[G~q] = ~ [.,~.]T [/~] dv 
vN~ 

[Gvmq ] = 5 [p]T[B~]dv 
VNm 

G m  [ p~] = -- j [A~k~.] r [-(21 dv 
VN, m 

[Q~] = ~ p~ibl  [B]dv  + j [TI [ B l d v  (A.9) 

where [C~r ], [C~p], (Cpp) are the coefficient matrices in the following rate constitutive relations: 

W~(symm/'*' ,p) = 1 1 ~[symmt~'J[C.] {symmf~ } + [ symmf~  l [C,p]p +-~pCppp. (AAo) 

The form (A.4) can also be used for the regularization of the four field formulation since the same shape 
function is used for r* and r% Likewise, we have a equation system: 

G ]f m }m {0} / H ~  H,o,, 0 G~,q = 0 
I G m*,T 0 G m* ms- (~om L pro wro Groq 0 

Gm.,r m, gl m Qq G ~  "r ap~�9 oq G qq 

(A,n) 

re)l- m~  where [Hpp ], [Gp,o], [G~q*], [G~],  [G~q*] are given by (A.7) since the common shape function is used 
for r* and r * . 
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Appendix-II 
Stiffness matrices by eliminating p 
By eliminating fi, the single element stiffness equation for the three field formulation is reduced to: 

[ Kmo,o Kr~q (I) m 0 

where 

m~ H m ~ l r [ H m ~ l - 1  [~mxq 

m~r [~m,el T - 1  
[ /~q]  = [Go) q ] - -  L~flO)] [H~ ; ]  [G~; ]  

[K~qq] = [Gqq*] - [G~IT[H~]]- -1  [G~:] (A.13) 

and fi can be found by solving (A.12): 

{1~} = -- [H~*]--1 ([G;2 ] {(D m} + [G;;l{q} ). (A.14) 

For the four field formulation: 

m('mt(~ t Kpo ~ Kpq 

K m K m COrn = 0 (2)0 O) q 
Umq T K qqm dim Qq 

(A.15) 

[K~] = [H~] -- [G~'~IT[H~'~] -~ [G~'~I 

= m __[G~p] [ H ~ ]  [g t~]  [ ~ o , ]  [ G o , ]  m.~" m.  , m* 

[K~pq] = [Gpq] - [ G ; ; ] T [ H T ; ] - 1  [g~] (A.16) 

/C~o,/C~q, and K~qq are given by the same form as (Aa3). 

Appendix-Ill 
Newton-Raphson method 
Denote A t as the time difference between CN and C~r We impose boundary conditions (including 
body forces) so that 0q in (A.2) is constant during A t. By solving (A.6) for (fi, co, q) or (A.n) for (fl, p, co, q), 
we find the rates using the shape functions: 

{Vi.j} = [B] {qm}, { W u }  = [ ~ ]  {o)m}, {/~j} = [A] {tim} 

or in the four field formulation, 

{i~'} = [A] {tim}, D : [P] {qm} �9 (A.z7) 

The field variables at CN+ 1 state are updated as: 

U N+I = u N + A t v  

R N§ = R N + AtW 

r *N+I = r * i  + Atl~* 

or in the four field formulation, 

r*'N + 1 = r*'N + A t~*', pS§ 1 = pN + A t•. (A.18) 
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The first Piola-Kirchhoff stress can be found from (A.18): 

tN+l= r N + A t [ t *  - rN.W]. (A.19) 

Note that since UL description is adopted, we have u N = 0, R N = I, r *N = r N. 

Since a finite value is taken for A t, there are mismatches that need to be corrected in the above numerical 
procedure. In three field formulation, the residuals in the constitutive relation, AMB, and LMB are denoted 
by [/{aJ {/}}, ti~o] {co}, and L/~q] {0]: 

[Alrf'(C~Wc(symmr*>) N< t f ~ m l  ( a t )  -~ 
j" , ~ ( \  3 ( r * )  r 

I " f l  , = - - ( R N + I ) T ' ( I - } -  V N u N + I )  T d v  

vN m )c~ 

e m  1 { o } = ( A t )  ~ [K2IT{skew[(RX+I)T'(I+VNuN+~)T'r*N+~I}a~dv 
Vlv, m 

{/{~} = ( A t )  -1 j" [B]T{r*N+I'(RN+I)T--vN},/~dv (A.2o) 
vN,~ 

where { }~a m e a n s  [( )2,2 ( )1,2 ( )2,i ()2,2 IT 
Then, we have a system of equations for correction terms. 

n,7 c7~ aF 
G m*'r am~ G;* 

fir~ q 

Gm:~.T m:,l- Gn~q *'r coq G qq t~ a ~ o  = o - R;. 
Ac) m Qq Rq 

For simplicity, we denote the variables collectively as: 

[K] = ,,c,G,, t0t (;'mx-,Tflo Gmxo,~o G~,*/, {Ax} = Am , {Q} , {R} = Ro ~m . 

G ~*'r G~q* 

Then, the standard Newton-Raphson procedure is written as: 

{ x k + * } _ { x  k } = '  , - ~ (  _ ~Axj = [K k] {Qk} t*'fz)k~) 

(A.21) 

(A.2z) 

(A.23) 

where k denotes the k-th iteration. After each iteration, we correct parameters (fi +--fi + A/) . . . .  ) and 
go back to (A.17), (A.18) to update field variables and recalculate the residual terms. The process is 
repeated until certain convergence conditions (IAxl = Ix k +2 _ xkl < tolerance and/or 
I 0) -Rkl< tolerance) are satisfied. 

For the four field formulation, we have the following residual terms: 

[ v.r f / OW;(symmr*,P) ) N+I ~7N N+l,r,-U+a,--~,3 ~ 
A] ~ ~ ( r ~ 7 ~  - - ( R N + I ) T ' ( I + v  U ) [ 'u .R  ) ;, dv 

[P]r{(  8W:(symmr*''p)~N+~ } 
#p } --f(luNa *a) dv 

tj 

~Rp} = (At)  ~ 
vN., 

,~; = ( A t )  -1 
vN~ 

VN, m 

~;~,~ = ( a t )  1 

VN, m 

1 
_ _  [rX- 'N+l 

3 

[ f2 ]T { skew[ ( RN+ I )T'( I + VNuN+ I )r'r *'N+ I ] }~ dv 

[BIT{ r*'N+I'(RN+I~T(IN+I~" ",-'u,R ,' 1/3 

:((I+VNuN+I)'RN+I)(IN+I)-I/3](Wu.R I + V N u  N+2) r 

+p~g+lf'(TN+2~rN+~(I+VNuN+I)--r r N} ",lu. R / lu .  R - -  dv 

where l},j means [()1,1 ()1,2 ()2,1 ()2,2 ()3,3] r. 

(A.24) 
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Thus, the equations for the correction terms are: 

1-17/ G; 0 
Gm~-,T m~- ~o, 0 G o o  

t {o, ~;I ~/}m 0 ~__~i~n 
G m ; ]  A(D m = 0 / / ~mm " 

G; J A0 Qq ) ~, Rq 

(A.25) 

The Newton-Raphson procedure is the same as (A.23). 
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