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On implementation of a nonlinear four node shell finite element 
for thin multilayered elastic shells 

B. Brank, D. Peril, F. B. Damjani~ 

Abstract A simple non-linear stress resultant four node shell 
finite element is presented. The underlying shell theory is 
developed from the three dimensional continuum theory via 
standard assumptions on the displacement field. A model for 
thin shells is obtained by approximating terms describing the 
shell geometry. In this work the rotation of the shell director is 
parameterized by the two Euler angles, although other 
approaches can be easily accomodated. A procedure is provided 
to extend the presented approach by including the 
through-thickness variable material properties. These may 
include a general non-linear elastic material with varied degree 
of orthotropy, which is typical for fibre reinforced composites. 
Thus a simple and efficient model suitable for analysis of 
multilayered composite shells is attained. Shell kinematics is 
consistently linearized, leading to the Newton-Raphson 
numerical procedure, which preserves quadratic rate of 
asymptotic convergence. A range of linear and non-linear tests 
is provided and compared with available solutions to illustrate 
the approach. 

1 
Introduction 
Lower order elements present the majority of finite elements 
that are currently employed in engineering practice. The four 
node shell elements based on isoparametric interpolation 
scheme have been commonly used for the finite element 
implementation of different shell theories of the Mindlin- 
Reissner type. In the recent works of Parisch (1991), Sansour 
and Buffer (1992), Simo et al. (1989a, b, 1990) and Wriggers and 
Gruttmann (1993) the four node elements take part in 
non-linear formulations capable to describe large displacements 
and large rotations of shells. 
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These finite element formulations arise from the shell 
theories based on the direct approach (Simo and Fox 198%) 
or, alternatively, they may be derived from the three 
dimensional continuum theory by employing either 
Green-Lagrange (Parisch 1991; Stander et al. 1989) or Biot 
(Sansour and Buffer 1992; Wriggers and Gruttmann 1993) strain 
measures. The strain measures are typically restricted to be 
small. 

A strong analogy of the formulations based on the 
degenerated continuum approach (e.g. Stander et al. 1989) and 
those based on shell theories can be noticed (see Bfichter and 
Ramm 1992), if a certain versions of an explicit integration 
or a numerical integration through the shell thickness are 
performed in the former. For instance, Btichter and Ramm 
(1992) showed, that the numerical integration across the 
thickness in the degenerated continuum model leads to the 
strain tensor, which is consistent with the so-called first 
approximation of a geometrically non-linear shell theory for 
small strains including transverse shear deformations (Basar 
and Ding 1990, Naghdi 1972). 

The displacement based formulations suffer from the 
so-called transverse shear locking, a phenomenawhich is closely 
connected with the underlying assumptions typical for the shell 
theories of the Mindlin-Reissner type. It is therefore essential 
that the solutions are based on mixed variational formulations. 
A current 'standard' to avoid transverse shear locking is 
the so-called ANS (Assumed Natural Strain) approach, first 
suggested by Dvorkin and Bathe (1984). Other interesting 
schemes, arising from mixed variational formulations, that 
improve the membrane and/or bending behaviour of the four 
node element (especially for a coarse meshes), can be found in 
the works ofSimo et al. (1989b, 1990), Pian and Sumihara (1984) 
and recently Andelfinger and Ramm (1993). Andelfinger 
and Ramm (1993) use the so-called EANS (Enhanced Assumed 
Natural Strain) approach. Another type of possible errors arise 
from the type of discretisation. In that sense an attempt to 
modify the four node elements to be capable to describe curved 
geometries was made by Gebhardt and Schweizerhof (1993). 

In many non-linear shell theories the description of the rigid 
motion of the shell normal is required. Large rotations therefore 
take an important part in the computational models. Moreover, 
they are treated as a critical part of the finite element 
implementation of the variational formulation. Large rotation 
formulations are mostlybased either on an elementary rotations 
(Stander et al. 1989, Wriggers and Gruttmann 1993) or on 
a rotational vector (Parisch 1991, Sansour and Buffer 1992, 
Simo and Fox 1989a). The elementary rotation is considered 
to be a rotation around a fixed axis. A sequence of elementary 
rotations then may be used to describe rotation in a three- 
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dimensional space. Unfortunately this approach suffers from 
singularities which depend on numerical implementation. In 
contrast, the rotational vector is an eigenvector of a rotation 
matrix and together with a rotation angle, it may describe any 
rotation without singularities. 

Our aim in this paper is to present a geometrically non-linear 
formulation for a simple four-node shell element, arising from 
the shell theory (initial version is presented by Brank et al. 
1993). The Green-Lagrange strain measures are used for that 
purpose coupled with suitable assumptions on the shell 
geometry. A formulation based on elementary rotations, i.e. 
rotations around fixed axes, is used, which, although less 
general, suffices for the present purpose. The formulation 
is based on two independent angles, first presented by 
Ramm in 1976 (see e.g. Biichter and Ramm (1992), Ramm 
and Matzenmiller (1986), Stander et al. (1989)). This 
parametrisation of large rotations enables five nodal degrees 
of freedom and restricts the accompanied finite element to 
smooth shells analysis. The transverse shear locking is avoided 
by 'standard' ANS approach (Bathe and Dvorkin 1985, Dvorkin 
and Bathe 1984). A variational background of the ANS approach 
is given by Simo and Hughes (1986). An important 
computational aspect of the isoparametric shell elements is also 
a treatment of membrane locking - a phenomena which is 
associated with a parasitic membrane strains under pure 
bending conditions. Since elements with bi-linear interpolation 
do not show a particular sensitivity to this defect, a displacement 
formulation is used for the membrane and bending parts of 
a variational formulation. Local Cartesian frames are defined 
at numerical integration points in order to simplify the 
expressions. 

A procedure is provided to extend the presented approach 
by including the through-thickness variable material properties. 
These may include a general non-linear elastic material with 
varied degree of orthotropy, which is typical for fibre reinforced 
composites. Thus a simple and efficient model suitable for 
analysis of multilayered composite shells is attained. 

From the computational point of view, a robust and efficient 
algorithm with high rate of convergence is required. Consistent 
linearisation of the shell kinematics leading to the Newton- 
Raphson numerical procedure is therefore performed. 

2 
Shell kinematics and strain measures 
Following a traditional approach outlined by Green and Zerna 
(1968), from the outset, the shell 6 e is treated as a body 
embedded in the three-dimensional Euclidean space ~3. Shell 
deformation is assumed to obey certain kinematic assumptions 
described in detail below. Furthermore, the shell reference 
(middle) surface is assumed to be smooth, continuous and 
differentiable. The shell thickness is assumed to be constant 
or only slightly varying. 

2.1 
Preliminaries 
Attention is restricted to the material description of the 
Lagrangian type. Material points of the shell body are identified 
by curvilinear (convected) coordinates 4:= {~1, ~2, ~}, attached 
to the body. Two coordinates, 4 ~ and 4 2, parametrize the 
mid-surface of the shell and the third one, 4, is a parameter 
which defines the shell thickness. The position vectors in the 

reference and deformed configuration, along with the 
displacement vector, are related to the fixed Euclidean frame 
with base vectors E r This is a practice which makes shell 
theories well suited for the numerical treatment, since quantities 
such as Cristoffel's symbols need not be computed. 

Two basic assumptions (classical for the shell theories that 
do not define a thickness stretch as an independent kinematic 
variable) define the displacement field: (i) a linear variation of 
the displacements across the shell thickness and (ii) an 
inextensibility of a shell director field. In this way the shell 
director becomes a unit vector normal to the shell mid-surface 
at the reference configuration, but not necessarily normal to 
the deformed mid-surface. This enables the presence of 
transverse shear strains and allows the use of C ~ shape functions 
within the finite element computations. 

Any configuration of the shell body in the Euclidian space 
can be completely described by the position of the mid-surface 
and the position of the shell director. Moreover, the kinematics 
of the shell director can be viewed as a rigid motion of 
a unit vector. A material point of the shell body at the deformed 
and reference configurations is defined by the mid-surface point 
and a distance along the shell director, with position vectors 
as follows 

r(~,~)=x(~)+~t(~), R(~,~)=X(~)+~T(~), (1) 

where 

_ ~ < ~ < h  
2' II t l l =  II TII 1. (2) 

Here, h is the shell thickness, X and x denote the mid-surface 
position vector at the reference and current configuration, 
respectively, while T and t denote the shell director at initial and 
deformed configuration, respectively. Greek indices are either 
1 or 2 and Latin indices run from 1 to 3. Cartesian structure 
of the ambient space allows for the following decomposition 

x(r  ~) = x ( ~  ~) + u (r (3) 

where u is the displacement vector of the mid-surface. From 
(1-3) the displacement field w(r ~, 3):= r(r ~, ~) - R(~ ~, ~) can 
be expressed as 

w ( G  ~) = u(~ ~) + ~(t(~ ~) - T(r (4) 

which indicates a linear variation of the displacement field 
across the shell thickness. Clearly, the mid-surface displacement 
u and the director displacement (t((~) - T(~')) are 
independent. This fact allows for a simple description of 
transverse shear strains and simplifies the finite element 
interpolation. 

2.2 
Metric tensors 
Following standard approach the covariant (convected) basis 
at any material point is obtained as 

~r ~r ~R ~R 
& = ~ ,  & = ~ ,  and G ~ = ~ ,  G3=~- ~. (5) 



Using the relationships (1-4) it further follows 

g ~ = x , , + ~ t ~ ,  g3=t ,  and G~=X~+~T~ ,  G~=T, 
(6) 

where (o),~ denotes partial differentiation with respect to r The 
dual basis g~ and g3 is defined conventionally by the inner 
product g~. g~ = ~ where 3~ is the Kronecker delta. The dual 
basis a ~ and G ~ is defined analogously. 

The covariant metric tensors are obtained by the scalar 
product of the base vectors. The components of the metric 
tensors in the spatial and reference configuration, respectively, 
are 

g~  = g~.g~ = x,~. x,~ + ~ (x,~. t~ + x s .  t , )  + (~)~(t~. t~), 

g~3 =g~" t=- x,~. t +  ~(t,~. t), (7) 

g33= t .  t, 

and 

G~ = G~.GI~ = X~.Xr + ~ (X~.T 3 + X f T~) + ( ~)2( T,~.T,~), 

G~3 = G~.T= X~.T  + ~(T .T),  (8) 

G33 : T. T. 

Setting ~ to zero in (8), the mid-surface metric at the reference 
and spatial configuration can be evaluated as A~ = X . X ~  and 
a~ = x.x.r  respectively. The contravariant part of the 
mid-surface metric is obtained by an inversion 

[A ~] = [ A j - '  (9) 

2.3 
Strain measures 
Owing to the use of convected coordinates, the deformation 
gradient F takes a simple form F = 6~g~| G j and the 
Cauchy-Green tensor becomes C = g~lG' | Gs" The 
Green-Lagrange strain E = E f i~ |  G j is then defined as 

E = I ( C - - G ) ,  thatis,  E,j=�89 (10) 

Using (7) and (8) in (10), the strain E may be expressed as 
a quadratic function of material coordinate in the thickness 
direction 

E~a = 1 ( X / u  s + Xa.u  ~ + u .u s) 

+ I r (x~.( t~ - r s) + xa .  (t,~ - T~) + u~. t~ + u~. t~) 

+ �89 3 - T,~.T~), (11) 

E~3 =I(X,  . ( t - -  T) + u~.t+ ~(t,~.t-- T ~.T)),  

E33 = 0. 

Observing (11), it can be seen that components of the 
Green-Lagrange strain tensor are expressed by relatively 

complicated expressions. They provide a quadratic 
representation for normal strains and linear representation of 
transverse shear strains through the thickness. At this point, 
we follow a traditional approach (see, e.g. Biichter and Ramm 
1992, Parisch 1991) and introduce the additional two 
assumptions which substantially simplify the expression for E. 
It is assumed that the quadratic terms of E~ and linear terms 
of E~ (underlined terms in (11)) can be neglected. The 
resulting strain measures are identical to those that may be 
obtained by direct (or Cosserat continuum) approach, as it was 
shown by Simo and Fox (1989a). Since the underlined terms 
of (11) are neglected, the presented approach is restricted to 
thin shells. The result is a linear distribution of the in-plane 
strains across the shell thickness and constant transverse shear 
strains. 

The simplified expression for the mid-surface strain 
tensor components may now be expressed as E~ = e~ + ~K~, 
where 8p and ~cB denote, respectively, the membrane and 
bending components of the midsurface strain tensor E~. The 
membrane, transverse shear and bending strain measures take 
the form 

e~ = �89 ( x ;  u~ + x~.u~ + . ~ . ~ / ,  

~ = 2E~3 = (X .( t  -- T) + u,~.t), (12) 

~. ~ : ~(x ~.(t , - r )  + x , . c t  - r~ /+  u,~.t , + u ~.t ~l. 

In conclusion, starting from the three dimensional shell-like 
body and introducing the kinematic assumptions expected to 
be valid for thin shells, Eqs. (12) are obtained, which describe 
the strain measures of the adopted shell model. In the 
following, they will provide a basis for construction of the 
principle of virtual work and the finite element formulation. 

2.4 
Rotation of the shell director 
In this section a parametrisation of the rotation of the shell 
director vector is described. For that purpose a single director 
is considered at a particular material point of the shell 
mid-surface. Since the director is assumed to be inextensible, 
all its possible configurations define a unit sphere $2:= 
{t~ ~3, II tit = 1}. Transformation between any two vectors t~S 2 
and t-ES 2 is given by rotation (orthogonal) matrix Q (with 
properties Q 1 = Qt and det[Q] = + 1), such that t = Q{. 
At this point, several options exist for the parametrisation 
of Q. 

A simplest approach which relies on the so-called elementary 
rotations is chosen for the parametrisation in this paper. In this 
approach the rotation matrix Q is expressed as a sequence of 
two rotations around fixed axes (the rotation around the 
shell director is not considered). This parametrisation was 
originally introduced by Ramm in 1976 (see Bfichter and Ramm 
(1992), Ramm and Matzenmiller (1986), Stander et al. (1989) 
and references therein for details) in the degenerated continuum 
approach. The main idea can be sketched out as follows: If 
one of the fixed base vectors of Euclidian frame (for instance 
E2) is identified with {, the rotational matrix Q can be completely 
described by two independent angles. These angles are denoted 
as ~ and X2, and 6 and o9, in the reference and spatial 
configuration, respectively. The shell director at the deformed 
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and reference configuration can then be expressed as 

t=Q(~ ,c~)E~=QI(~ / )Q ~ ag-- E 2, 

Q( ~r/, ~Q)E2 = QI(~I~)Q3(ff2-~z~E 2. T =  
\ z /  

Finally, for chosen parametrisation, the explicit form of t reads 
as 

cos (co) ] 

(13) t = lcos (0) sin (co)l. (17) 
tsin (g,) sin (co)) 

The orthogonal matrices q (if, co) and Q ( h TM,/2) rotate E 2 to t and 
T, respectively. Here Q, (if)(Q~ (~))  and Q3 (co) (Q3(/2)) define 
(3 • 3) orthogonal matrices. For the current placement of the 
shell, for instance, they rotate Euclidean basis, along with 
vectors defined in that basis, around the fixed axes, defined by 
the base vectors E~ and E3, for the angles ff and co 

[i ~ ~ Ol(q) = cos (6) - sin (~) , 

sin (~0) cos (~b) J 
(14) 

V COS (r~) - sin (co) i l  

Q3(~o) = ]sin(co) COS(O) �9 

Lo 0 

Description of the motion is as follows: rotation of E2 around 
E ~ is followed by the rotation around the new position ofE 3. This 
procedure is equivalent to the sequence of rotations around 
fiixed axes as given in (13). This description and Fig. 1 help to 
understand that angles at the deformed configuration can be 
evaluated by a simple summation of initial angles, h v,/2, and 
the shell director 'rotations', ~, fl, around axes f~ and f~ 

f ~ = E  v f # = E ,  x t .  (15) 

In Fig. 1 it can be seen, that qJ and ~ are coplanar, as well as 
and fl, so that the following relationships are valid 

~ =  ~ + ~ ,  co=g2+f i .  (16) 

Note, that the axis of rotation, f~, cannot be defined when 
o~ approaches to co = (k - 1)n, k~Z. 

3 
The principle of virtual work 
Having defined strain measures, we proceed with the expression 
for the principle of virtual work. It is set in the reference 
configuration in accordance with the chosen stress and strain 
measures. 

3.1 
The principle of virtual work in stress resultants 
A stress tensor energy conjugate to the Green-Lagrange strain 
tensor is the second Piola-Kirchhoff stress tensor. In the 
convected basis it may be expressed as S -- S'JG, | G:. The three 
dimensional expression for the principle of virtual work then 
reads as 

I/ + h/2 t G(r, fir) = ~ { ~ ( S ~ ( & ~  + ~ G ~ )  + S~3bGI#d~ dSo 
So \ - -  h/2 

-- G~,~t(3r) = O, (18) 

where S o denotes the shell mid-surface area ,  Gex t being the work 
of external forces and the volume element is dVo = #d~dSo 
(Naghdi 1972) with # = x / ~ ,  where G = det [G j] and 
A = det [ A j .  Integration across the shell thickness gives 

G(r, ~r) = ~ (n~'6G~ + r n ~ K ~  + q~6G)dS o - Gr = O, 
S O 

(19) 

�9 3' 
/,-// 

3 // /  
.~!3, (J, 

\, E , ~ ,  l ~ , ; r  / /  
\ ,  \ ,  \, / 

\ .  \ .  ] / "  

Fig. 1. Shell director at initial and deformed configuration 

where n ~, m ~ and q~ represent the components of the so-called 
'effective part' of the stress resultants. They are symmetric, 
(opposite to their physical counterparts, cf. Simo and Fox 
1989a), and expressed as 

+ h/2 + h/2 + h/2 

n ~B= ~ S~#d~, m ~ =  ~ S~'#~d~, q~= y S~3#d~. 
-h/2 -M2 -11/2 

(20) 

Equation (19) is a non-linear function in kinematic variables. 
In computations an iterative solution procedure is performed, 
which usually employs a linearisation of (19). In this paper, 
the linearisation is performed after the finite element 
discretisation. 

3.2 
Variation of the strain measures 
Strain measure variations are obtained by taking the directional 
derivative in the direction of the virtual displacements, cSu, and 
virtual 'rotations', 6t, given by (6u, fit):= (d/d0 I~=0 (x: t,). This 



results in 

6G~:= D(Ga)[3u,  fit] = �89 (x,~.3u,~ + x, f 6u,~), 

~G:=  ]3(G) [6u, 6t] = (x,~.& + ~u.~. t), 

&G~:= D (G~)[6u, ~t] 

= �89 + x.~.~t~ + ~u,~.t~ + 6 u , f G ) .  

Details of this procedure are provided below in Section 6. 

(21) 

4 
Constitutive equations 
At the outset existence of a hyperelastic stored energy function 
is assumed. The stress components can then be obtained as 
derivatives of the strain energy function by the corresponding 
strain components. Here a simple hyperelastic isotropic 
constitutive law will be employed given by the St. 
Venant-Kirchhoff strain energy function. For the strain 
measures defined in (12), the thickness stretch ~33 does not 
appear as a kinematic variable. Hence, the stretch in 4 direction 
is obtained in a standard way by employing an assumption of 
zero stress in that direction. This is simply performed by 
the condensation of a material law. Written in the curvilinear 
coordinates, the constitutive relations for the thin shells take the 
standard form, which is obtained from an integration of stresses 
across the thickness, (20). If the variation of the metric 
across the thickness is ignored, i.e. G ~ ~ A ~p is assumed (in that 
case # equals to 1), the following relations are obtained 

E 
S*# - 1 - v 2 H~#~ (~6 + ~G6)' S=3 = ~:GA=a7/~' 

which result in 

= Eh3 
n~  1 Ehv2- H~r6G~' m~  - 12(1 - v 2) H~r6G6' 

q~= xGhA~P?~, 

where 

(22) 

H ~&~ = vACUA ~ + ~(1 -- v) (A~TA ~ + A~A&).  (23) 

Here, E, G, v and tc are the elastic (Young's) modulus, shear 
modulus, Poisson's ratio and shear correction factor, 
respectively. Note, that in (23) the contravariant mid-surface 
metric, A ~, is used instead of G ~, since the assumption of 
constant through-thickness metric was adopted. The 
consequence is that membrane-bending coupling vanishes. In 
this case membrane,  bending and transverse shear stress 
resultants are related only to their conjugate strain measures 
G~, tG~, ?p, which leads to the block-diagonal constitutive matrix 
(see Appendix). 

Alternatively, if an integration across the thickness in (20) 
is carried out numerically, then the variation of metric with 
respect to 4, (8), can be easily taken into account. When material 
characteristics vary across the thickness, as in the case of 
materially non-linear behaviour, then numerical integration 

across the thickness presents a natural choice. As a result 
coupled membrane-bending action is achieved. 

In Appendix B, details are provided for a procedure that 
extends the above described approach to the multilayered elastic 
composite shells by including the through-thickness variable 
material properties. The resulting model then becomes suitable 
for analysis of laminated shell structures that may be composed 
of perfectly bonded layers of elastic materials with variable 
degree of orthotropy, typically encountered with fibre 
reinforced composites. 

5 
Finite element discretization 
The displacement vector and rotational parameters are 
approximated using the isoparametric approach. 

5.1 
Mid-surface interpolation 
The geometry of the shell and the kinematic variables are 
interpolated with standard bilinear functions NZ(r *, 42) = 
�88 + ~1r (1 + ~Y:;~2~,, where ( I =  1,2, 3,4), (4~ = - l, + 1, + 1, 
- 1) and ( ~  = - 1, - 1, + 1, + 1). When convenient the 
coordinates, r and r/, will be used to denote the curvilinear 
coordinates, 41 and 42, respectively. The mid-surface quantities 
are interpolated as 

4 4 

x - -  Y' N ' ( G  r T = y, N ' ( G  ~2) T,, 
I = 1  I = 1  

4 4 

u ~ N I ( ~ ' , ~ 2 ) u I ,  t = ~ N I ( ~ , ~ E ) t v  
I = I  I = I  

(24) 

In view of (4), the interpolation of shell director can be 
considered as an interpolation of displacement w. Of course, 
rotational variables itself can be interpolated instead of the shell 
director components (Biichter and Ramm 1992). However, such 
an approximation complicates the derivation of the tangent 
matrix. Although the full assessement requires further research, 
it appears that the interpolation of rotation variables leads to 
better results for coarse meshes (Biichter and Ramm 1992). 

5.2 
Reference nodal director 
Description of element geometry requires the shell director 
position at each nodal point. Specifying its data as an input or 
using the normals to the exact shell geometry is impractical. 
In the present formulation the reference nodal director, T I, is 
obtained by averaging the nodal normals of adjoining elements, 
as suggested Parisch (1991) and Stander et al. (1989). 

The element nodal normal is given by the vector product of 
the corresponding element edge vectors 

T; = (x~ - x , )  • (x~ - x , ) ,  (25) 

where I, ] and K are given in the following order: (I = 1, 2, 3, 4), 
(]  ~ 2, 3,4, 1) and ( K =  4, 1, 2, 3). The averaged nodal normal 
is evaluated as 

1 N~0~ T1  i=GeZlr;' r,=Ll /I, (26) 
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where Nz~ l is a number of adjoining elements at node I. The 
angles ~r and Oz are easily obtained with Tz defined. 

Remark 5.1 Note, that the averaging ofelement normals causes 
the loss of normality of the interpolated shell director (242) to 
the finite element approximation of the shell mid-surface. 
Thus, the interpolated shell director is not normal to the 
mid-surface base vectors, X ,  at the integration points. However, 
it seems that no simple approach to reduce this defect exists 
for the 5 parameter shell theory and for the four node element 
with 20 degrees of freedom. A procedure described by Gebhradt 
and Schweizerhof (1993) leads to severe membrane locking. 
When 6 degrees of freedom per node are defined, e.g. Parisch 
(1991), the element nodal normals can be used for the 
interpolation over the element. This gives significantly better 
approximation of the shell director. However it produces 
singular stiffness matrix for coplanar elements and requires 
a special care. 

5.3 
Mid-surface derivatives 
The derivatives of shape functions due to cz and ~2 are 

4 4 

I = 1  I = 1  

4 4 

1=1  1=1  

(27) 

In the computational process the explicit evaluation of 
transverse strain at the points A, B, C and D is not necessary 
(see Appendix A). 

6 
Linearization aspects 
Using interpolation functions, given in Sect. 5, a discrete 
formulation of the first variation of a mixed functional can be 
constructed. This equation is a non-linear function in kinematic 
variables (nodal displacements and 'rotations'). Therefore the 
linearisation of this equation is required within the iterative 
Newton-Raphson solution procedure. It should be observed that 
the linearisation is performed after the finite element 
discretisation. 

6.1 
Linearisation of kinematic variables 
Linearisation of kinematic variables at a given configuration 
r = (x, t) is performed by a systematic application of the 
directional derivative to a one-parameter family of 
configurations described by r~ = (x o O .  The incremental 
quantities are then obtained by an ordinary differentiation with 
respect to r as 

(Ax, At) := d =o (xa t~). (29) 

Linear structure of ~3 provides a simple expression for the curve 
x~ 

We remark again, that in (24) and (27) the components of the 
shell director T~ and t I are interpolated rather than the rotational 
variables ~z,/21 and ~i, fli. 

x~ = x + eAu,  

while the one-parameter curve t, is obtained as 

(30) 

5.4 
Transverse shear interpolation 
The transverse shear strain field is given by an interpolation 
originally proposed by Dvorkin and Bathe (1984). Such an 
interpolation has become a 'standard' for the four node shell 
elements, in order to avoid the transverse shear locking 
phenomenon. Transverse strain measures are evaluated, using 
(12), only at the points A, B, C and D (Fig. 2). Their interpolation 
across the element is given by 

7, = �89 -- ~2)y~ -I- 2(1 + ~z)yc, 

~ = ~(1 - ~ )  ," + ~" " ~2+�89 -)72. 
(2s) 

t~ = t(O + ~A~, ~o + ~Afi). (31) 

It then follows, trivially, that 

d 
Ax = ~ ~=0x~ = AU. (32) 

By employing (31) and the expression (17) for t the 
differentiation of the one-parameter curve t, results in 

t o = a  A3 , 

where the matrix A(3 • 2) is given by 

D C 
4 C 3 ~ 1 4 3 

t �9 t 
1 2 E 1/~/~E2 X2 

Fig. 2. Four node element 

0 - sin (o)) 1 

A = - sin (~) sin (co) cos (~) cos (~o)[ . (34) 
[ 

[ cos (if) sin (09) sin (if) cos (co)J(3~2) 

It can easily be checked that At. t = 0 as is required. 
One should also note that the second derivative of the above 

expressions required within the Newton-Raphson iterative 
process may be obtained as 

~=0 d f s a )  D(6t)[At] = d (6t)~=:A(St) =~--~e ~=0A~{63~. (35) 



Details of the above differentiation procedure are provided in 
the Appendix A. In contrast, D(6u)[Au, At] is clearly zero. 

6.2 
Newton-Raphson method 
The definition of the displacement based problem is: Find 
a configuration r, such that G(r, fir) = 0 for any fir. Since the 
solution of the above nonlinear problem is pursued by 
employing the Newton-Raphson method a linearisation of 
G(r, fir) is required. The Newton-Raphson procedure at the 
configuration r = ~ may be expressed in the form 

D G (fr fir) [Ar ~>] = - G (r fir), (36) 

where the left hand side of (36) supplies the tangent stiffness 
operator while the right side has a standard interpretation as the 
unbalanced (residual) forces. 

6.3 
Linearisation of the virtual work functional 
Assuming the conservative loading, the tangent stiffness 
operator can be obtained by the directional derivative of the 
'internal virtual work' in the direction Ar e = ( A u  e, Ate)  1 of 
incremental displacements and incremental 'rotations' at the 
discrete (nodal) points. The tangent stiffness operator may be 
conventionally split into a material and geometric part 

6.5 
Material stiffness operator 
The material stiffness operator arises from linearisation of the 
constitutive equations at the fixed geometry. For hyperelastic 
isotropic material it is recovered from the first integral in 
(38) by the following relations 

D n ~a [hu, At] 6%fl = H :r A~va&~Z , 

Dm ~fl [Au, At] &ca = H;r162 (40) 

Dr At] fT~ = H~AY~fY~, 

where H~ r~, H~ ~'a and H~ ~ are membrane, bending and 
transverse shear parts of symmetric constitutive tensor defined 
by Eqs. (22) and (23). Note that fie~, 6x~ and 6?~ are given by 
(21). Similar expressions are valid for Ae~, A ~  and A~,. 

The stiffness operator for multilayered composite shells is 
provided in the Appendix B. 

6.6 
Geometric stiffness operator 
The geometric stiffness operator arises from the linearisation 
of the geometric part, when holding the material part fixed. It is 
recovered from the second integral in (38) by employing the 
following relationships 
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DG(r, fr) [Ar] = DMG(r, fir) [Ar] + DGG(r, fr) [Ar], 

where 

(37) 4 4 

n'~D(fe~)[Au, A t ] = ~  ~ ~ ~ ~ z au,.Au~(~ (NW,~ + N~Ng), 
l = l  K = I  

DMG (r, fr) [Ar] 

= ~ (Dn ~ [Ar] &~B + D m ~ [Ar] 6x,~ + D q~ [Ar] 67~) dSo, 
8o 

(38) 
DGG(r, &) [Ar] 

4 4 

m~D(&c.a)iAu, At]=y_ --~[ , ~ K i K I 6t,.Au~(fm (N~N~ + N~N~)) 
I = I K = I  

4 4 

+ ~, ~ au .At Orn~PrN r~rx" ~r~ ~rKs~ 
I = I K = I  

= ~ (n~D (&~)[Ar] + rn~PD (fK~,)[Ar] + q~D (6~)[ar])dS o. 
So 

are, respectively, the material and geometric stiffness operators, 
and So is a mid-surface area of the finite element. 

6.4 
Derivatives of strain measure variations 
The directional derivative of strain measure variations 
(6g, 6~,, fix) in the direction of Ar = (Au, At) may be expressed 
a s  

D (c5%r [Au, At] = �89 + A(u,:).fu3) , 

4 

+ ~ A(&,)'(�89 + x~Nl,~)), 
I = 1  

(41) 

4 4 

q~D(@~) [Au, At] = ~ ~ btcAu~(q~Nr, flq ') 
I = I K = I  

4 4 

+ Z Z fu~'AtK(q~N~ NK) 
, = I K = I  

4 

+ y~/~(at,).(r 
I = 1  

D(f~)  [Au, At] = (A(u,~).ft + fu,~.At + xsD(bt  ) [At]), 

D (&%~) [Au, At] = �89 + A(u3).ft~ + 6u,~.A(t3) 

+ 6u,~.A(t ~) + x ~.D(ft,~) [At] 

+ x, fl.D (fit,,)[At]). (39) 

~To simplify notation in the following the superscript (o)' denoting 
element quantities is omitted. 

7 
Remarks on finite element implementation 
In this section a Cartesian coordinate system is introduced at 
the mid-surface integration points, and vectors and matrices are 
defined that will be required in the finite element 
implementation. Since all quantities are derived in curvilinear 
coordinates, the construction of the local Cartesian frame is not 
necessary. However the expressions in such a system take 
a simple form, and they will provide a basis for future inelastic 
material description within the present shell formulation. 



Let ~z define unit base vectors of a local Cartesian coordinate 8 
system 2 ~, (2 ~ - 2, 22 =)), 23 - ~), such that Numerical examples 
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X,1 X X,2 
~1 ~ e2 = O, ~3 = ~1 X ~2 IX,1 x X,2 [" (42) 

Note, that ~ and ~2 can be any orthogonal set of vectors, which 
satisfy the condition (42). The introduced change of coordinates 
requires transformations for partial differentiation, which take 
the standard form: Using the chain rule we get (in matrix form) 

The expression c~'/32 B can be obtained by employing the 
following relationship (X ~ defines coordinates in Euclidean 
frame E~) 

~2z a ~  0X I 
(3~ - ~X ~ ~r = ~ p . X .  

so that 

a2 J LaCJ 

8.1 
Linear analysis results 
In this section some standard linear tests are presented in order 
to compare behaviour of the present finite element with some 
other four node elements recently reported in the literature. 

Example  1 Shearing of the twisted beam. This often described 
problem is a benchmark test for the effect of warping. Finite 
element simulations result in significant errors if strain (43) 
measures do not include coupling of curvatures with 
displacements (this is very often true for the resultant stress 
elements derived by degenerated continuum approach). The 
geometry and material characteristics are specified as following: 
The beam has a length o fL  = 12, width w = 1.1, thickness 
t = 0.05, while the Young's modulus is E = 29.0 • 106, and the 

(44) Poisson's ratio is v = 0.22. In its initial configuration the beam 
has a 90 ~ twist (Fig. 3). Typically, two load cases are considered 
(see Fig. 3): (a) unit load at the beam end in the width 
direction and (b) unit load at the beam end in the thickness 
direction. From Fig. 4(a)-  (b), which presents the test results, 
it may be observed that the overall accuracy of the element is in (45) 
agreement with accuracy of test results presented by Parisch 
(1991) and by Simo et al. (1989b). 

j ls a (2 x 3) matrix of unit base vectors ~ (it is a part  of  

orthogonal rotation matrix), while is (3 x 2) matrix of 

the mid-surface components of base vectors X e (8). The 
shape functions derivatives can be derived with respect to the 
local Cartesian coordinates as 

{ N ; ' } = L ~ - ~  j ( - ~ - ~ j = L ~ - ~ ; j  [ ~ r  
(46) 

{.;.}=?: x,, 
N~ Lel.X, ~,.x.,J (N,'J" 

In (46) (and in Appendix A, where finite element matrices are 
explicitly given) (o),~ denotes the differentiation with respect 
to coordinate 2 ~. As 21 and 22 are orthogonal, the mid-surface 
part  of metric tensor now becomes an identity tensor 
[%] = [ ~ j .  

The strain components are collected in the following strain 
vectors 

while the corresponding stress resultant vectors are Im'l 
(n"J  m"J 

Example 2 Pinched cylinder with end diaphragms. This 
problem is regarded as a challenging linear test for shell 
elements, since both the inextensional deformations and 
complex state of membrane stresses, significantly influence the 
shell behaviour under loading. The geometry and material 
characteristics for this problem are specified as following: The 
length of the cylinder is L = 600, radius is R = 300 and thickness 
is t = 3 (Fig. 5), while the Young's modulus is E = 3.0 x 106 and 
the Poisson's ratio is v = 0.3. A force F = 1.0/4 is applied on one 
octant of the shell while the appropriate symmetry conditions 
(geometry and loading) are imposed. The results are shown 
in Fig. 6 and are normalised against the analytically obtained 
value of 1.82488 x 10 -5 given by Simo et al. (1989b). The results 
for some representative shell elements are also presented. In 
Fig. 6 '4-DKQ' stands for a discrete Kirchhoff quadrilateral (its 
results are taken from Simo et al. 1989b). It can be observed 
that all elements, except 4-DKQ, behave almost identically with 
results falling within 93%-95% (for mesh 16 x 16) of the 

(47) 

(48) 

o 

The finite element matrices are provided in Appendix A. Fig. 3. Twisted beam: Geometry and loading 
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Fig. 5. Pinched cylinder: Geometry and loading 

analytical value. This observation applies also for the mixed four 
node element proposed by Simo et al. (1989b) (denoted by -M 
in Fig. 6), which usually shows a superior performance when 
compared to displacement based elements in membrane 
dominated problems. 

To illustrate the accuracy of solution, the stress resultants 
(i.e. normal components of membrane force and bending 
moment) distribution along the curves AB and AC of the 
cylinder (see Fig. 5) are compared in Fig. 7 with the analytical 
solutions obtained by Lindberg et al. (1969) using the Fourier 
series expansion. The correspondence between the finite 
element results and the analytical solution is excellent even in 

E 
G) 

O .  
t J )  

'10  
"10 
O) 
.N 

E 
0 
z 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

/ / / / / /  
/ //r o Simo et al.-M 

/ / - - -  X - -  8imo et al.-D Z , ~ /  
S - -  -~ --  4-DKQ 

..... X - -  Parisch 

I I I I I I 

4 6 8 10 12 14 16 18 

Number of nodes per side 

Fig. 6. Pinched cylinder: Displacement under the force 

the vicinity of the point load. 

Example 3 Pinched hemispherical shell. The shell with radius 
R = 10, thickness t = 0.04 (Fig. 8), and elastic material 
properties E = 6.825 x 107 and v = 0.3, is fixed at the pole, X = R, 
and pinched by four forces of F = 2P -- 2.0. By employing 
symmetry conditions only one quadrant is considered in the 
finite element simulations. The results, normalised to the 
analytically obtained value of 0.0924 (Simo et al. 1989b) are 
presented in Fig. 9 and compared to some other published 
solutions. In Fig. 9 'RSDS' stands for the four node resultant 
stress degenerated shell element with reduced integration 
and stabilisation (the results are taken from Simo et al. 1989b). 
It can be seen that the present element behaves slightly stiffer 
when compared to the mixed formulation based element 
(Simo et al. 1989b) and provides similar response to Parisch 
(1991). 

Example 4.1 Mesh distortion - Simply supported square plate 
under centralpoint load. To test sensitivity of the mesh 
distortion on quality of finite element results two standard tests 
have been performed. In the first test, a quarter of the simply 
supported plate under central point load is gradually distorted 
by moving the middle node of the mesh, as shown in Fig. 10. 
In Table 1 results of the finite element calculation are expressed 
in terms of the ratio to the analytical solution (Timoshenko 
and Woinowsky-Krieger, 1959) for plate thicknesses t = 0.02 
and t = 0.004. The performance of the present shell element is 
very good even in situations when element becomes highly 
distorted and exhibits a negative Jacobian. 

Example 4.2 Mesh distortion - Bending of  a clamped beam. 
In the second mesh distortion test a clamped beam is, at its free 
end, loaded by three different loading conditions. The length 
of the beam is L = 10 m, width is b = 1 m while height is 
h = 1 m. The Young's modulus and Poisson's ratio are chosen 
as E = 107 and v = 0.3, respectively. The regular and distorted 
mesh are shown in Fig. 11 together with loading conditions. 
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In Table 2 the results obtained by finite element calculations 
are compared with analytical solutions based on the beam 
theory. Clearly, results confirm a very good performance of the 
present element with a small degree of mesh sensitivity in the 
case of complex torsional loading condition. 

8.2 
Non-linear analysis results 
In this section non-linear numerical examples are considered 
to illustrate the performance of  the presented element on a range 

Fig. 9. Hemispherical shell: Displacements under the forces 

Symm. ,;~ 

~ ', 

E 

Simply supported 

Fig. 10. Mesh distortion - Simply supported plate under central point 
load: Geometry and material characteristics 

F= 1/4 
~, L=4.0 

E = 1.0'107 

v=0.3 

of nonlinear tests. A comparison is provided with the results 
reported in the literature. 

In all examples the full Newton-Raphson method is used, 
with a tangent stiffness arising from the consistent linearisation 
of the adopted shell model. Convergence of the finite element 
solution is established on the basis of the standard Euclidian 
norm of the out-of-balance forces. The use of consistent tangent 



Table 1. Mesh distortion-Simply supported square 
plate under central point load: Effect of the degree of 
mesh distortion on accuracy of results for variable plate 
thickness. FE results are expressed in terms of the ratio 
to the analytical solution 

a t = 0.02 t = 0.004 

0.0 0.991 0.992 
0.1 0.986 0.987 
0.2 0.976 0.977 
0.3 0.961 0.961 
0.4 0.939 0.938 
0.4999 0.907 0.905 
0.6 0.855 0.851 
analytical 0.025334 3.166800 

~ mped 

Fig. 12. Clamped cylinder: Geometry and loading 
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Load case 2 ~ M=1/2 

M = 1 / 2  
Load case 3 ~ F= I  

F = I  

Fig. 11. Mesh distortion - Bending of a clamped beam: Undistorted 
and distorted meshes with three loading conditions 

Table 2. Mesh distortion - Bending of a clamped beam: Effect of mesh 
distortion on accuracy of results for three loading conditions. FE results 
are expressed in terms of the ratio to the analytical solution 

load case 1 load case 2 load case 3 

mesh 1 0.996 0.994 0.937 
mesh 2 0.995 0.994 0.875 
analytical w = 0.4 • 10 -3 w = 0.6 X 10 -4 0 = 0.18489 • 10 -+ 

operator has proved to be of utmost importance for preserving 
the quadratic rate of convergence typical for the 
Newton-Raphson method. 

Example 5 Pinching of a clamped cylinder. The cylindrical shell 
is fully clamped at one end and subjected to point loads at the 
other (free) end acting in opposite directions. The problem 
geometry is shown in Fig. 12, and is specified as follows: The 
length of the cylinder is L = 3.048, thickness is t = 0.03 and 
radius is R = 1.016. The elastic material properties are 
E =2.0685 x 107 and v = 0.3. This example was considered by 
Stander et al. (1989) and recently by Parisch (1991), who both 
used a 16 x 16 mesh of four node degenerated and stress 

resultants degenerated elements to describe one quarter of the 
shell. The same mesh is used in the present analysis. Initial 
values of applied loads are set to Fo = 2.0. Twenty equal load 
steps were required to arrive at the configuration corresponding 
to Fro t = 1600.0. The convergence tolerance for residual forces 
is set to 1.0 • 10 -7 and 4 to 12 iterations are required at 
each load step, leading to the total number of 150 iterations. 
Displacement at the point under the load is equal to 1.608 at 
F = Fto c Very good agreement with the considered published 
solutions, especially with those from (Stander et al. 1989), is 
observed (Fig. 13). An element descibed by Parisch (1991) 
produces slightly stiffer solution. Note, that the largest 
physically possible displacements of the points under the loads 
equals the radius of the shell. Deformed equilibrium 
configurations at different load stages are depicted in Fig. 14. 

Example 6. Stretching of a cylinder with free ends. The 
cylindrical shell is subjected to two point loads. The geometry 
and loading conditions are shown in Fig. 15. The radius of the 
cylinder is R = 4.953, length is L = 10.35 and thickness is 
t = 0.094. The elastic material properties are E = 10.5 x 103and 
v = 0.3125. The initial value of the force is set to Fo = 50.0. The 
symmetry of the geometry and loading enables the analysis of 
one quarter of the structure. This example was considered 
by Wriggers and Gruttmann (1993), Peri~ and Owen (1991) 
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a 16 x 16 Parisch y 
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Fig. 13. Clamped cylinder: Load versus displacement curves forpoints 
under the forces 
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Fig. 15. Cylinder with free ends: Geometry and loading 

and Sansour and Buffer (1992). Using different finite elements 
and different meshes they arrived to the solutions that slightly 
distinguish from each other. Three different meshes 8 x 8, 
16 x 16 and 32 x 32 are considered in the present analysis. 
Computation is performed by load control and the size of the 
increments is set to be very small at the region where 
snap-through is observed Peri~ and Owen (1991). The standard 
check of the residual forces is performed with convergence 
tolerance set to 1.0 x 10 -7. 

The response of the shell can be divided into two regions: 
the first one is characterised by large displacements and low 
(bending) stiffness and the second one is characterised by very 
stiff response of the shell. Force F versus displacement curves 
of points A and B are presented in Figs. 16 and 17. Solutions 
obtained with 16 x 16 and 32 x 32 meshes (which practicaUy 
coincide) are in very good agreement with the solutions 
obtained by Sansour and Buffer (1992) who used 9 node element 
(denoted as 9-NE). It is interesting to note that constant 
strain - constant curvature triangular Morley element (see Peri~ 
and Owen 1991) gives more flexible results. In Fig. 18 four 
different equilibrium configurations are depicted. 

Fig. 16. Cylinder with free ends: Load versus displacement curves for 

0.9 
..... 8 x 8  

i 0.8 
16 x 16 
32 x 32 0.7 

4 x 8 9-NE 0.6 --. ~ k k  

0.5 
o 

0.4 -~ 
O 

0.3 "~ 

0.2 

0.1 

I I I 1 I , 0 
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 

Displacement 

Fig. 17. Cylinder with free ends: Load versus displacement curves for 
point B 

Results for the Euclidian norm of residuals H G U given in 
Table 3 clearly illustrate quadratic rate of asymptotic 
convergence typical for the Newton-Raphson based iterative 
procedure. 

Example 7 Ring plate loaded at the free edge. The ring plate 
is clamped at one end and subjected to a line dead load 
p = 0 . 1 , f  at the other end. The geometry and loading 
conditions are shown in Fig. 19. The thickness of the plate is 
t - -  0.03. The elastic material properties are E = 2.1 • 108 and 
v = 0.0. This example was considered by Bfichter and Ramm 
(1992) and Wriggers and Gruttmann (1993), among others. In 
present simulation the plate is discretised with 8 • 48 and 4 • 32 
four node elements. The 'cylindrical' arc-length method 
(Crisffeld 1991) is used to follow the equilibrium path. The 
standard check of the residual forces was performed with 
convergence tolerance set to 1.0 • 10 s. The load versus 
displacement curves for three characteristic points are depicted 
in Fig. 20. The maximum load factor for the coarsest mesh is 
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Fig. 18a -d .  Cylinder with free ends: Deformed  finite e lement  m e s h  
(16 • 16) at var ious  stages of  loading: a F / F  o = 0.04, b F / F  o = 0.33, 
c F / F  o = 0.60, d F / F  o = 1.0 

P 

Fig. 19. Ring plate: Geometry  and  loading 
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Fig. 20. Ring plate: Load versus  d isplacement  curves for points  A, B 
and  C 

se t  to 60 ( t h i n  l ine) .  W i t h  t h e  f i ne r  m e s h  t h e  a n a l y s i s  is 

p e r f o r m e d  u p  to  f = 202.53 ( t h i ck  l ine) .  A l t h o u g h  n o t  d r a w n  

in  t h e  f igure ,  t h e  a g r e e m e n t  w i t h  t h e  s o l u t i o n s  b y  B i i ch t e r  a n d  

R a m m  (1992) a n d  b y  W r i g g e r s  a n d  G r u t t m a n n  (1993) is v e r y  

g o o d  for  t h e  f ine r  m e s h ,  wh i l e  t h e  c o a r s e r  m e s h  t e n d s  to 

353 

Iterat ion F / F  o = 0.0 -- 0.0774 F / F  o = 0.0774 -- 0.3089 F / F  o ~ 0.3089 -- 0.7358 

1 0.1919 x 103 0.7255 X 1 0  2 0.6747 x 102 
2 0.9511 x 10 z 0.5368 x 101 0.4860 x 101 
3 0.2827 x 102 0.3523 x 102 0.1665 x 102 
4 0.9491 x 101 0.2499 x 101 0.6554 x 10 ~ 
5 0.6952 x 101 0.4093 x 101 0.5261 x 10 o 
6 0.5919 x 100 0.1346 x 10 o 0.2835 x 10 2 
7 0.2733 x 10 o 0.5483 x 10 1 0.1403 x 10 -3 
8 0.8981 x 10 3 0.2249 x 10 -2 0.1766 x 10 -9 
9 0.1224 x 10 -5 0.9416 x 10 5 

10 0.1379 x 10 -1~ 0.1004 x 10 -9 

Table 3. Stretching of  a cylinder 
with free ends: Euclidian n o r m s  of  
residuals for three typical load steps 
for 16 x 16 m e s h  

a b c d 

Fig. 2 1 a - d .  Ring plate: Deformed  finite e lement  m e s h  (8 x 48) at different loading stages: a f = 11.726, b f = 53.786, c f = 105.55, d f =  202.53 



354 

T a b l e  4. Ring plate loaded at the free edge: Euclidian 
norms of residuals for two typical load steps for 4 • 32 
mesh 

Iteration f =  7.152 - 7.580 f =  20.535 -- 21.360 

1 0.1222 x 10 s 0.3816 • 105 

2 0.2016 • 10 ~ 0.7391 • 10 ~ 

3 0.2708 x 10 ~ 0.1394 x 10 ~ 

4 0.1226 x 10 -~ 0.8570 x 10 -3 
5 0.4453 x 10 -z 0.3804 • 10 -5 

6 0.1590 • 10 -6 

behave slightly stiffer. In Fig. 21 four deformed configurations 
of ring plate are presented. 

Results for the Euclidian norm of residuals I[ G H provided 
in Table 4 for mesh 4 • 32 again illustrate quadratic rate of 
asymptotic convergence. 

v~2 = 0.25. Additionaly, the values of  the transverse shear moduli 
are taken as G~3 --- G23 = 0.66 kN/mm 2, while the transverse shear 
factor is evaluated with accordance to the procedure provided 
by Figueiras and Owen (1984). 

In the present analysis, due to symmetry of the problem only 
quarter of the panel is considered, with appropriate boundary 
conditions imposed. A finite element simulation is performed 
with a mesh containing 32 • 32 four-node elements. A 
'cylindrical' arc-length method is used to follow the path of 
equilibrium configurations. 

The central point load versus vertical displacement diagram 
are shown in Figs. 23 and 24 for the panels A and B, respectively. 
In the case of thicker panel A results exhibit standard limit load 
instability type behaviour and compare well with previously 
published results (Laschet and leusette 1990, Saigal et al. 1986). 
As expected, the second lay-up [04/90~/04] shows a significantly 
stiffer response to the prescribed loading conditions. Results 
for the thinner panel B, however, show some interesting 

Example  8. Composite shallow cylindrical shell with a central 
point load. Saigal et al. (1986) performed numerical tests on 
composite shallow cylindrical shell with a point load at its 3.0 
centre. The same shallow shell was later considered by Laschet 
and Jeusette (1990). A similar geometry is often used to study 2.5- 
performance of finite element models and solution techniques 
in the nonlinear range. Geometry and loading conditions of  2 .0  
the shell are shown in Fig. 22. The shell is simply supported 
along its straight edges (all translational displacements are fixed ~ 1.5- 
while both rotations are allowed) and free and its curved edges, n. 

O 

The geometric data used in the analysis is as follows (Saigal et al. ~ 1.0- 
1986): The legth of the panel is L = 508 mm, radius is " 
R = 2540 mm, while the curved edge is defined by the angle 0.5- 
0 = 0.2 rad which gives the arc-length of its curved edges 
S = 508 mm. Following standard practice two panel thicknesses 0 
are chosen: tA = 12.6 m m  and tB =6.3 mm. The panel is built 
up by a lay-up of 12 plies with a ply thickness equal to tAll2 = 
1.05 m m  and tB/12 = 0.525 m m  for the panel A and B, 
respectively. To investigate the effects of lay-up on performance 
two choices for the ply lay-up have been considered: (i) 
[90~/04/902] and (ii) [0~/904/0~]. The angle, describing ply fibre 
orientations, is measured between the fibre direction and 
projection of the axis X 2 to the shell surface. The material 

E i E I I 
Laschet  and Jeusette:  Signal:  : / 

0 (90/0/90) - - -  (90/0/90) f / 
A (o/9o/o) I ~ / : / /  

- - - Present  analysis:  
- -  (9olo/9o) 

(o/90/0) 
] . . ~ " ~ '  

~,f ~ ' ~  ~ 
. . . . . .  2 

i 

-0 .5  . . . .  i ,  , ' , ,  

0 5 10  

C e n t r a l  d is 

J 
5 2 0  2 5  3 0  3 5  

flacement U3 (mm) 

Fig. 23. Composite cylindrical shell: Central point load versus 
displacement diagram for the panel A with thickness t A = 12.6 mm 

characteristics of the carbon-epoxy layers are as follows 1.00 ~ i ] ] 
(Laschet and Jeusette 1990): the elastic moduli are ] Present analysis: 
E 1 = 3.3 kN/mm 2, E 2 = E 3 • 1.1 kN/mm 2, while the in-plane 0 75 q J , (90/0/90) L] l l  
shear modulus is G12 = 0.66 kN/mm 2 and Poisson's ratio is " ] . . . . .  (0/9o/0) I .- ' : /  

q : l  

00 l 
g ..... �9 .... L 

025 - / 7  
o .-" :" - 
o - "  ,." L " I ( 3 ' v  I . . /  

- 0 . 5 0  I t , . ,1 . . . .  t . . . . . . . . . . . .  
0 5 10  15  2 0  2 5  3 0  3 5  

Central displacement U3 (mm) 
Fig. 24. Composite cylindrical shell: Central point load versus 

Fig. 22. Composite cylindrical shell: Geometry and loading displacement diagram for the panel B with thickness t~ = 6.3 mm 
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Conclusion 

Some computational aspects of thin elastic shells undergoing 
large rotations are presented and applied in finite element 
formulation of a simple four node isoparametric stress resultant 
shell element. Variable material properties are incorporated in 
a model, by performing an analytical integration across the 
thickness. The resulting model allows for simulation of a general 
elastic material with varied degree of orthotropy, which is 
typical for fibre reinforced composites. Thus a simple and 
efficient model suitable for analysis of multilayered composite 
shells is attained. 

Large rotations are parameterized with two Euler angles 

Fig. 25. Composite cylindrical shell: Deformed finite element meshes 

features. While for the second lay-up a loading-displacement 
curve have been obtained which is typical for this problem, with 
a clear snap-back behaviour, the first lay-up [90~/0~/90~] 
produces unexpected and very rich equilibrium path structure. 
The equilibrium path exhibits several limit points before 
reaching its stable stiff equilibrium branch corresponding to 
a simple configuration with a dominant tensile action. Although 
of some interest for this example, issues related to bifurcation 
analysis, branch-switching techniques and determination of the 
singular points, are not the objective of this work and will 
not be further detailed in this paper (for recent discussion on 
computational aspects of bifurcation analysis we refer to 
Wriggers and Simo (1990)). 

Figure 25 depicts the deformed finite element meshes of the 
panel A for the second ply lay-up at central point load of 
P = 1.75 kN and P = 10.1 kN. The corresponding central point 
displacements are U3 = 13.79 mm under maximum limit load 
and U 3 = 42.64 mm on the stable equilibrium branch. 

In agreement with all previous examples presented in this 
section, the consistent linearisation of the shell kinematics, 
results in the Newton-Raphson based iterative numerical 
procedure, which preserves quadratic rate of asymptotic 
convergence. As an illustration, results for the Euclidian norm 
of residuals [[ G ][ are provided in Table 5 for three typical load 
steps for the panel with thickness t a = 12.6 mm and lay-up 
[02/90~/02]. 

Table 5. Composite shallow cylindrical shell with a central point load: 
Euclidian norms of residuals for three typical load steps for the panel 

o 90 ~ 0 ~ with thickness t a = 12.6mm and lay-up [04/ 4 / 4] 

Iteration P = 1.318 -- 1.606 P = 1.644 -- 1.465 P = 1.746 -- 2.825 

1 0.5714 x 10 -I 0.2772 x 10 -1 0.7329 x 10 -1 
2 0.8655 X 10 -3  0.2277 x 10 -2 0.5909 x 10 3 
3 0.4359 X 10 -6  0.1485 x 10 -s 0.1453 x 10 -s 
4 0.2692 x 10 -1~ 0.2884 x 10 -1~ 

which has proved robust and efficient for the present 
applications. Consistent linearisation of the adopted shell model 
is performed, leading to an effective numerical algorithm, which 
exhibits a quadratic rate of asymptotic convergence. Local 
Cartesian frames are defined at numerical integration points 
in order to simplify the governing expressions and prepare the 
formulation to include inelastic material models. 

Throughout the formulation the elastic strains are restricted 
to be small. The small strain elasto-plastic shell model, along 
with the formulation for the large rotations which does not 
posses singularities, will be considered in the subsequent report. 

Using the formulation presented, some linear and nonlinear 
tests have been performed. The results are in close agreement 
with those reported in recent publications. 

Finally, it should be emphasised that the presented approach 
may be applicable to laminated composite shells within the 
elastic regime for ply stiffnesses and orientations whcih are not 
too dissimilar. However, the complete treatment of laminated 
composites under inelastic deformation, incorporating damage 
and/or elasto-plastic material behaviour, and more importantly 
including delamination effects, necessitates the consideration 
of higher order or local theories in which the variation of 
in-plane deformation through the laminate thickness is taken 
into account. 

Appendix A 

A.1 
Isotropic constitutive equations 
The standard constitutive relations in the local Cartesian frame 
are obtained from (22) and (23). The membrane, bending and 
transverse shear parts are given as follows 

v 

E h  1 

H,~ - I - -  v 2 1 v_ ' 

0 2 J(3 x3) 

i1 v 0; 
Hb--12(1 v 2~ v 1 0 

1 - - v  
0 0 2 (3 

x 3) 

(hl)  
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The complete constitutive matrix H then may be represented 
in the block-diagonal matrix form as 

H = d i a g [ H  m, H~, Hs](8~8), (A2) 

Clearly, the matrix H relates (47) and (48) as 

- - H  (A3) 

A.2 
Discrete strain-displacement operator matrix 
Starting from (21), and using (24), (27), (28) and (46), the 
following discrete strain-displacement operator matrix relative 
to the local Cartesian frame is obtained 

61r = B; B~ B~ Bb4 6r~ ' 

L~: B2 B~ B~(s• J(Z0• 

where 6rz are virtual displacements and 'rotations' at the node 
'I' (I = 1, 2, 3, 4). The membrane part of the discrete 
strain-displacement operator related to the node 'I', B ~ may m' 
be expressed as 

[ %(x~)' o[ 
/ o 
LN~(x,;y+N~(x# o (~• 

while the bending part of the discrete strain-displacement 
operator related to the node 'I', B~, takes the form 

N f~ ( t,~) t 

NZ.(t A t 
,y . , y .  

N~(t,~) + N~(t,~) t 

N~(x,~)'A~ ] 

Nr ] " 

(n'~(x ~) + % ( x  # )  a,l(3• 

B 1 - - �88  s~ 

:1(1 

a~ =~(1 

- -  q ) [ -  (tA)tl (XA,r • 

- -  r / )  [ ( t A ) t l  (XA,r215 5 ) ,  

+ ~) [(tc)'l (xc.r • 

+ ~ ) [ -  (tcYI (Xc,r xs) '  

while in 

a~= 

B:, = �88 

B), = �88 

the direction of the coordinate t/ 

�88 -- ~)[ -- ( t J I  (XD.,)tA~](~ • 

+ ~)[ -  ( t# l  (xz,,)tAzl(l• 

X t + ~)[(tBYI(,,,) A3]o• ), 

-- [(tD) I(XD,,) A4](1xs). 

(A9) 

(AI0) 

The r and t/derivatives of the mid-surface position vector at 
the deformed configuration, x,r and x ,  which appear in 
expressions (A9) and (A10), are easily evaluated at the points 

(A4) A, B, C, D (Fig. 2) 

x~,~ = �89 (x~ - xl) ,  

xc,r = l(x~ - x,) ,  
(All) 

x~,~ = �89 - xg, 

x~,~ = �89 (x,  - x ,) ,  

Similarly the position of the shell director at the deformed 
(A5) configuration t may be obtained at the transverse shear points 

A, B, C, D as 

(A6) 

According to the ANS approach, and using (27) and (46), the 
transverse shear part of (A4), in the local Cartesian frame, may 
be expressed as, 

BI 2 B3 B,e] sk B s~ s~ 4 

4 

where the following transformation is implied 

=b7 + 

(A7) 

(A8) 

The transformation parameters follows from (45). In (A8) the 
transverse shear part of the discrete strain-displacement 
operator is evaluated in the direction of the coordinate 

ta = �89 + tl), 

tc = �89 + t4), 
(A12) 

t B = �89 3 + t2), 

t D = �89 4 + tl). 

The transverse shear part of strain-displacement matrix, related 
to the local Cartesian frame, is thus evaluated through (A8- A12) 
and the evaluation of the variation of transverse strains at the 
points A, B, C, D is avoided. 

A.3 
Material stiffness matrix 
From (38) and (40) the material part of the stiffness matrix for 
isotropic material is recovered 

MK~I= j (BI)tHBIdSo, (A13) 
sg 

B follows from (A5-A7) where 

L JA 

(A14) 

and H is given in (A1-2). 



A.4 
Geometrical stiffness matrix 
From (38) and (41) the geometrical stiffness matrix may be 
conveniently expressed as a sum of membrane, bending and 
shear contributions, 

~ K " =  ]" K;~ 0~3• 

So ~ 0(2• 0(2• 

[0(3• agqq  J~  " ' ~ l  [ 0(3*3) aKUq] ~ 
+ IOr#l  GKV I + o IJ G q dSo' 

1._ " 'b2 b 3 /  LK22 Kj3 
(A15) 

A . 4 . 1  

M e m b r a n e  p a r t  

From (38) and (41) the sub-matrix related to the membrane 
contribution has a simple diagonal form 

G /] K~ =- fiuI(3 • (A16) 

where the following notation has been introduced 

~~I ~y: ~ 1 ;,y I 1 n e ) ( N ~ N I y +  , , n = n N~N2 + n NyNy + , , N~/q~). (A17) 

A.4.2 
Bending part 
The sub-matrices related to the bending contribution take the 
following forms 

aI(U = rhII A p  ~bl  

~Icu = t h ' ( A i ) t ,  **b2 

I - 2 I  'I -911~ I = l ,  ~r m Y~ + m if 

" 'b3 ~-  k 0(2 X 2) if I =# J, 

(A19) 

2 sin (oJ) cos (6 I) x d 
- -  2,~ sin (03') sin (6 z) 

SYMM 

- ~ cos (03*) sin (6~)" 

+ x~, cos (o.;) cos (6 ' )  

-4cos(d) 
- -  x 2 sin ( d )  cos (6 I) 

3 sin (03i) sin (6 I) - -  X d (2x2) 

(A22) 

In (A21) and (A22) the notation 

x ~  = ( x L ,  x ~ x ~ v = ( x ~ ,  x ~ x 3 v , , ,~, ,yej, X,p , ,), ,pj .  

is used. 

(A23) 

A.4.3 
Transverse shear part 
The sub-matrices related to the transverse shear effects have 
the following forms 

~ g q =  ~ qUA x i f  I = l ,  

* 's l  ( - -  0"AI if I # I. 

G~(I]..s2 = q" ( Ar) ~, 
(A25) 

The components qu are explicitly given as 

11 - -  1 - -  _ _  - 5 ( -  ( 1 - t / ) q  ~ (1 {)q'), 

0 '2 = �89 -- t/)q ~, 

13 ~ O) 

0 a4 =�89 (1 -- ~)q", 
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where 

fftu ~ i , m ~ Y N i N  , + m ~ Y ( N ~ N ~ + N ~ N J , ~ ) ,  = m  N ~ N ~ +  ,~ ,~ . . . .  

0 = = 1 ( 0  - ~)q~ - (1 + 0 q ' ) ,  

0 23 =~(1 + {)q~, 
(A26) 

rh .~ = m ~ N  I,~ + m~YN~ (A20) 0 24 = O, 

033 = ~((1 + t/)q r + (1 + ~)q~), 

In the third sub-matrix GK~ the second directional derivative 
of the shell director, D 3t [At], is multiplied by base vectors at the 
deformed configuration (expressed in the Cartesian frame) 
defined by x,~ and x,y The result may be expressed in the matrix 
form as 

x 2 sin (03i) cos (O r) 

- -  23e sin (03i) sin (0 I) 

~= 

SYMM 

- x2, cos (03I) sin (6I)" 

~- 4 COS (03I )  COS ( 6  1) 

- G c o s  ( J )  

-- x2~ sin (03*) cos (6 I) 

- x 3 sin (03i) sin (6 I) ,2 (2 x 2) 

034 = _ ~(1 + ~), 

044 - -  1 - r  + q ) q ~ +  (1 ~) q"). 

The diagonal sub-matrices GK~ take the following form 

" 0 2 3  sin (031) cos (01) -- g/2 D cos (031) sin (61) ' 

- -  c~ v sin (091) sin (0 1) + C~A3D COS (031) COS (6 1) 

~KJ) = - 01,, c o s  (co') 
SYMM _ g/2 sin (03~) cos (61) 

- q~o sin (031) sin (6 l) x2) 

(A21) (A27) 
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~ =  

G K ~  = 

~]~ sin (co ~) cos (~2) 

- ~ sin (co 2) sin (~2) 

SYMM 

g/~ sin (co 3) c o s  (~13) 

- ~ sin (co 3) sin (1~/3) 

SYMM 

�9 ~2 
- q c o  sin (~o ") cos (4, ~) 

- ~ .  sin (co 4) sin (q?) 

SYMM 

- ~ cos (0~ 2) sin (~2)" 

+ ~ cos (~0 2) cos (~2) 

- ~ L  cos (~0 2) 

- ~a2~ sin (~02) cos (~2) 

- -  c~a~ sin (co 2) sin (~2) 

_ q2  cos (02) s i n  (~/3)"  

+ ~ .  cos (~o ~) cos (g,~) 

- ~ .  cos(co ~) 
~2 - qc~ sin (co 3) cos (~b 3) 

- g/~ sin (co 3) sin ( ~ )  

- ~ cos (~ ' )  sin (~')" 

+ ~ cos (o~') cos (~' )  

- ~ cos (~') 
- ~ o  sin (co') cos (~') 

-- g/~v sin (co 4) sin (r 

',2 x 2) 

(A28) 

consists of several laminae with varying (anisotropic) material 
properties it is called a laminated composite shell. It is common 
practice to represent mechanical behaviour of the laminated 
shell on the macroscopic level as a layer-wise homogeneous and 
anisotropic continuum. At small strains the behavior of 
a composite at a particular layer can be assumed as purely elastic 
and described with a simple hyperelastic orthotropic material 
law. By assuming that layers are perfectly bonded together, 
the matrix H, (A3), takes a form 

H= Ab 

SYMM A, (s• 

The submatrices may be obtained from 

:2 • 2) Nlayr h~ Ntay r h + 

(A29) Hrn = ~ 5 C K d { ,  Hrnb = E ~ C r ~ d ~ '  
K=I  h K K=I  h K 

(2x2) 

(A30) 

and 

~ if Iv~l.  (A31) 

The vectors t~A ~, t~c B, t~c o and qaD' in (A27-30) are defined as 

qAO = �88 -- tl)XA.r r + (1 -- ()xo.nqn), 

g/a~ = �88 -- rt)xa.e_q ~ + (1 + {)xB.,q"), 
(A32) 

gIcs = �88 + rl)Xc.r ~ + (1 + ~)xn.,~q'~), 

glcD = �88 + ~?)xc,r162 (1 -- ~)XD,,q"). 

Remark A.1 Note, that the stress resukants in curvilinear 
coordinate system (qr and q") take part in the transverse shear 
part of the geometric stiffness matrix (A24-32) and not the 
stress resultants in the local Cartesian system, q~ and q~, as one 
would expect. Therefore, the following transformation 

~r 0r &/q~ & / , t  (A33) q =~-~ + ~ q * ,  q ' = ~  + O y ~ ,  

is required. 

Appendix B 

(B1) 

B.1 
Constitutive equatiojns for multilayered shell 
Fibre-reinforced composites are composed of oriented fibers 
embedded in a matrix. The basic characteristic of composite 
with oriented fibers in its anisotropic behaviour. When shell 

Nlay r h~ Nlay r h + 

l ib=  Z I CK~ 2d{, ] i , =  Z I C,K d{" 
K=I h K K=I  h K 

(B2) 

In (B2) Nl~y r is a number of layers of the composite shell, while 
h~ and hK + (with h~ > h~7) are values of ~ parameter as the edges 
of K-th layer. Clearly l h ;  - h ;  1 is the thickness of K-th layer. 

With the assumption that throught the thickness metrics is 
constant, i.e. G e ~ A e, the integrals in (B2) can be easily 
evaluated. In that case the matrices 0 K and C K (which consist 

c i j k l  of the components of the fourth order symmetric tensor - K ,  
/j v ~ 33, kl :/= 33) 

I C l l l l  ['~ 1122 0 ~ 1 2 1  

OK= L 02/22 --KC22121/ , c,K= LSYMM-K r=32q"' ' 
S Y M M  C 1212l ~ K  _1(2 x 2) 

g J(3x3) 

(B3) 

are considered to be constant throughout the layer K. 
To define the components of CK and CsK a local Cartesian 

frame with axes (2~, 9K*, ~K*) (which coincide with the axes of 
material orthotropy) and unit base vectors (~ ,  ~2", ~3"), must be 
specified at layer K at the integration point. Since ~ and e3, (48), 
coincide, the transformation between two local Cartesian frames 
is uniquely defined by an angle OK, which is measured 
counterclockwise from ~* to ~1. 

The components of the fourth order tensor transform as 
c,akl = T mTjC~m,OPTkoTtp, where Tm, = e.m'~*~. The following K 
relations are obtained (details are provided in any textbook on 
the mechanics of composite laminates, e.g. Matthews and 
Rawlings (1994), Chapter 7) 

+ 2C K ) + s C K , C 1111 ~ C40K~'1111 -~- zC"S~ 2 t t'~1122~.,K X-1212 4 ~r 

Cl112 r.2 2/~_~-1111 ~.:~2222 - -  A~_~'1212~ 4 ~-I122 
K ~- ~ S  ~'--K ~- - -K ----K J "~- (04 -}- S ) C K , 

1112 2 e ~ - l l l l  2r~ ~-2222 2 :4-1122 ~-1212xl r =cs[c ~ :  - -s  v, r - ( c 2 - s ) ( C  K +2C~ )1 

2222 4r~:+l l l l  - -  --~ 2 2tt '~-1122 ~-1212 4~:+2222 r =S ~'x t Z C S  t~K + 2 0  K ) + c ~ r  , 

2212 2 X-lID C K = CS [S C K C2r":q2222k.,K _[_ (C 2 2\ ,r~-1122 - -  ,70~-1212~] 
-- --S )[k., K t ~  K ] j ,  

(B4) 



2 2 Yr ~_.2222 - -  -')~.X-1122'] .2X2r162 C1212 = C  S (CK + ~K ----K , + ( c 2 -  ~ ) ~K ' - - K  

C 1313 2r'x-1313 2 r ~ 2 3 2 3  
K ~ C  k.,, K -'~-S L, K 

~_1323 , 'r*~1313 ~ ~-2323~ 
C S [ L ,  K - -  ~ K  ~ K  / '  

C ~  23 = c 2 C  x-2323 _[_ $2CX-1313 

with c -- cos (0K) and s = sin (0K). The componen t s  of  the 
mater ial  tensor  along the mater ial  axes of  o r tho t ropy  are 

obta ined by a condensa t ion  of  the three d imens ional  
or thot ropic  (Green) mode l  for small  strains 

C *IAl l  E1  C , 1 1 2 2  _ v 1 2 E 2  C.2222 -- E2 
K - -  - - -  ~ ~ K  ' - - K  - -  

.,2 E2 .2 E2 ,2 E2' 

(BS) 
C ;  1212 ~ G:2' ~K1~':4-1313 = K1G13, CK.2323 ~-. K2G23. 

where x: and  x2 are the shear correction factors for laminated  
composi te  shell. 

R e m a r k  B.1 We emphasise that Appendix  B contains  all 
required changes that make the present  computa t ional  shell 
model  suitable for s imula t ion  of mult i layered composite shells. 
In this case, matr ix  from expressions (A3) and  (A13) can still 
be used, with the matr ix  H defined as in (B1). 
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