
Originals 

Multiple-cracked fatigue crack growth 
A. M. Yah, H. Nguyen-Dang 

Computational Mechanics 16 (1995) 273-280 �9 Springer-Verlag I995 

by BEM 

Abstract The dual boundary element method is applied for 
the two-dimensional linear elastic analysis of fatigue problem 
of multiple-cracked body. The traction integral equation is 
applied on ones of surfaces of cracks while the usual 
displacement integral equation simultaneously on the others. 
General multiple crack growth problem is solved in 
a single-region formulation. All crack surfaces are discretized 
with discontinuous quadratic boundary elements. ]-integral 
technique is used to evaluate stress intensity factors. The real 
extension path of cracks is simulated by a linear incremental 
crack extension, based on the maximum principal stress 
criterion. For each increment analysis of the cracks, crack 
extension is conveniently modelled with new boundary 
elements. Remeshing is no longer necessary. Fatigue life analysis 
is carried out with Paris' formulae. Several numerical examples 
show high efficiency of present method. 

1 
Introduction 
Investigation and description of fatigue crack growth are 
essential if the reliability of structures under cyclic loading is 
to be ensured. Cracks, as a result of manufacturing fabrication 
defects or localised damage in service, may extend under the 
condition of service leading to a decrease of the structure 
strength and finally fracture failure of the structure. In linear 
elastic fracture mechanics, one uses the stress intensity factors 
as a fundamental parameter, which determine solely the stress 
field in the neighbourhood of crack-tip and control the 
propagation of cracks. For each increment of the crack 
extension, a stress analysis is carried out and the stress intensity 
factors are evaluated. Because of the irregulation and complexity 
of boundary geometry of realistic problems, efficient numerical 
techniques become necessary. 

The boundary element method (BEM) has been successfully 
applied to the analysis of cracked bodies. However, because the 
coincidence of the crack surfaces rises to a singular system of 
algebraic equations, the solution of general crack problems 
cannot be achieved with the direct application of the BEM in 
a single region analysis. Some special techniques have been 
devised to overcome this difficulty. Among them, the dual 
boundary element method (DBEM) drew recently great 
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intention: Bueckner (1973), Watson (1986), Hong and Chen 
(1988). Its effective implement is realised by Portela, Aliabadi 
and Rooke (1991). Recently, a development of application of the 
DBEM to a multiple-cracked body has been achieved by Yan 
and Nguyen-Dang (1994 a, b). Simulation of fatigue growth of 
cracks by classical finite element method (FEM) is generally in 
high cost, because the finite element mesh has to be recreated 
after each extension of crack. To overcome this difficulty, 
the FEAM (Finite Element Alternating Method) has been 
proposed, Park, I. H. et al. (1993, 1994), where FEM is only used 
for a uncracked structure to obtain the traction in position of 
crack while an analytical method is used for the solution of 
fracture parameters and no remeshing is needed in simulating 
the crack growth phenomena. The present dual boundary 
element method may be considered as alternative. In fact, crack 
extension is conveniently modelled with new boundary 
elements for each increment analysis of the cracks and again 
remeshing is also not necessary. 

In this paper, the dual boundary element method is applied 
to study fatigue crack propagation and life evaluation. The 
principal objective of this research concerns on the multiple- 
cracked body. In fact, the multiple crack fatigue problems, 
especially the interaction and propagation tendency of multiple 
cracks catch the attention of scientists. The real extension path 
of cracks is simulated by an incremental crack-extension, that 
is to assume a piece-wise linear discretization of crack extension 
path. The maximum principle stress criterion is applied to 
predict the direction of crack extension. Fatigue life evaluation 
is based on Paris' law. Numerical examples are illustrated to 
point out the efficiency of the present method. 

2 
Dual boundary element method 
Dual boundary element method is based on the displacement 
and traction boundary integral equations. In the absence of 
body force, the boundary integral representation of the 
displacement components % at an internal pointy for a domain 
S with a boundary Fis: 

uz(y)=S u,j(y,x)tj(x)dF(x)-~ T,j(y,x) u,(x)dr(x) yes 
F F 

(1) 

where i and j denote Cartesian components; Uj and Tj represent 
the Flamant displacement and traction fundamental solutions, 
respectively, at a boundary point x. If r, denoting the distance 
between the points y and x, is not zero, the integrals in Eq. (1) 
are regular. As the internal point (also called point of resource) 
approaches the boundary, that is, as y ~ x', the distance 
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r tends to zero and, in the limit, the Flamant fundamental 
solution exhibits singularities. They are a strong singularity 
of order 1/r in T and a weak singularity of order In (1/r) in U a. 
Assuming continuity of the displacement at the point of 
boundary x', the limitation of integral equation as y ~ x' exists 
and can be written as: 

%(x')u~(x')  = ~ G ( x ' , x ) t / x )  - ~ T&', x) 
F F 

u j ( x ) d F ( x )  x ' e F  

where the second integral stands for the Cauchy principal-value 
integral; for a smooth boundary at the point x', the coefficient 
c(x ' )  is given by 3,;/2 (6j is the Kronecker delta)�9 The stress 
boundary integral equation was first derived by Cruse (1977). 
In the absence of body forces, the stress components can be 
obtained by differentiation of Eq. (1): 

u,,(y) = ~ u,~,(y,x) t,(x) dF(x)  - S r,;~(y,x) u,(x) d r  y e S  
F F 

(3) 

where U,; k (y) = 8 U (y, x)/@;, T,; k (y, x) = 8 T (y, x)/Oy; 

Using Hooke's law, we obtain the stress components: 

a,j (y) = y D~; k (Y, X) tg (X) d F  (x) -- y S,; k (Y, x) u k (x) d_F'(x) 
F F 

where 

D,jk(y,x) = .W,k~. + ;(U, jk + Gk) 

Sok(y,x ) = 2 Tzlk~,; + #(T,j k + T;,k) (5) 

2, ft are constant of Hooke's law. 
The integrals in Eq. (4) are regular, provided r ~ 0. As the 

resource point y approaches the boundary, that is when y ~ x', 
the distance r tends to zero, S k exhibits a hypersingularity of 
the order 1/r 2, while D j k exhibits a strong singularity of the 
order 1/r. As above, if the continuity of both strains and traction 
at x', or continuity of derivative of displacement at x' is assumed, 
the limit of Eq. (4) exists when y--+ x'. For a smooth boundary, 
Eq. (4) can now be written as: 

1 
% (x') = ~ D,;, (x', x) t~ (x) dF(x)  

F 

- - ySuk(x ' , x )uk (x )dF(x  ) x '~F (6) 
1" 

where the first and second integrals stand for the Cauchy and 
Hadamand principal-value integral respectively. The traction 
components, tj are given out by: 

1 
t; (x') = n, (x') ~ D,j k (x', x) t k (x) d F ( x )  - n,(x')  ~ S,; k (x', x) 

F F 

�9 uk(x)d_F(x ) x ' ~ F  (7) 

where n, denotes the ith component of the unit outward normal 
to the boundary, at x'. For a plane problem, i can be 1, 2. 
Equations (2), (7) constitute the basis of the DBEM. 

The numerical implementation of the principal-value 
integrals that arise in above dual boundary integral equations 
can be carried out by the classical method of singularity 
subtraction. The original improper integral is transformed into 
the sum of a regular integral and an integral of the singular 
function. The former can be easily evaluated by method of 
Gauss, while the latter then evaluated analytically. We use 
different method in the implementation of the improper 
integrals. To the outside boundary integral equations, normal 

(2) rigid body condition is used to calculate the strong singular 
intergrals related to T~; and coefficent %; singularity subtraction 
and analytic integration used to the weak singular integrals 
related to U .  To the boundaries of cracks, usual rigid body 
condition cannot be used due to the degeneracy of lips of cracks. 
Fortunately, when the curved cracks are usually modelled in 
piece-wise flat cracks, the improper integrals can be carried out 
effectively by direct analytic integration. Their description and 
the formulas can be found in Ref. of Portela, Aliabadi and Rooke 
(1991). 

To satisfy continuity conditions of displacement and its 
derivative on all nodes for the existence of principal-value 
integrals, the discontinue quadratic elements are used as a crack 
modelling strategy, see Fig. 1. Strictly, it is not necessary to use 
discontinue elements on the surfaces A of cracks. But it is 
evidently convenient to use same elements on two surfaces of 

y e S  cracks for data processing. At corner point and the sudden 
change points of applied traction, the double node technique is 

(4) used. 
By means of nodal collocation and integration over the 

boundary elements, the boundary integral equations are 
transformed into the linear algebraic equations. As the 
collocation point passes through all the nodal points, the 
following system of linear algebraic equations is obtained: 

Hu = Gt (8) 

where the matrices H and G contain integrals of the fundamental 
solution T and U) respectively in case of Eq. (2) or integrals 
of S k and Dvk respectively in case of Eq. (7); t and u contain 
boundary traction components and displacement components 
respectively. Separating the boundary unknowns t,, u, in z, and 
the boundary condition and in s the Eq. (8) are then 
rearranged: 

A z  = B~, (9) 

Tip 

P 

�9 Element end point e Element node 
A Displacement equation B Traction equation 

Fig. l. Crack modelling with discontinue quadratic boundary elements 



From the system of Eq. (9), a unique solution of boundary can 
be obtained. 

3 
Stress intensity factor evaluation 
The J-integral is an effective method for the determination of 
the stress intensity factors in present method, because the 
interior elastic field can be accurately determined, by using the 
boundary element formulae of Eqs. (1) and (4) after having 
obtained the solution of boundary. To each crack tip, consider 
a Cartesian reference system, with the origin at the tip of 
traction-free crack. In the absence of body forces, the 
path-independent l-integral is recalled here: 

] = ~(Wn I -- t, ua) dF  (10) 
F 

where F is an arbitrary contour surrounding the crack tip; W is 
the strain energy density given out by l/2av%, where ~7j and 
% are respectively stress and strain tensors; tj are the traction 
components, presented by % n, where n, are the components of 
the unit outward normal to the contour path. The usual 
relationship between the J-integral and stress intensity factors is: 

1= K~ q-K2 (11) 
~E 

where the constant E is the elasticity modulus; r/is equal to 1 for 
plane stress condition and to 1/(1 - v 2) for the plane strain 
condition, v is Poison's ratio. A simple procedure based on the 
decomposition of the elastic field into its respective symmetric 
and antisymmetric mode components, can be used to split the 
stress intensity factors of a mixed-mode problem, see Kitagawa, 
Okamura and Ishikawa (1978). The J integral is represented 
by the sum of the two integrals as follows: 

1 = I * + I "  (12) 

where subscript I, II is corresponding respectively to mode I and 
mode II of crack. Now, consider in Fig. 2 two points V(x, x2) 
and P' (x 1, -x2) symmetric to the crack line relative to the 
tip. The representation of (12) requires the introduction of the 
following decomposition in the elastic fields: 

fa~x) i f  a l l+a~ l )  fain1] ; a l l - - a ! l  1 
a' = -  1'~a22--0-:2/'' 1 (13) 

(O-~2) t(712 -- O';2) ~0-1I~) ( '12--O'12) 

U/l'( 1{/21-}-U'I" ( fUllI'( 1 ~U 1 --"'1; (14) 
uZ2J = 2 /,l 2 -[- U'2J' [ U ~ J  = 2 ~U 2 + /,/23 

It is noted that r = a~ + a~ and u, = u~ + u~'. Using Eqs. (13, 14) 
in Eq. (10), the ]-integral is decomposed into two components: 

J m = ~ ( W r e n ,  - -  t~G)dV (15) 
F 

with m ~ [I, II]. Finally, the relation (11) may have the alternative 
forms following: 

]z= __/(2 ] n =--G (16) 
fiE' qE 

$ 

Crack tip 
�9 Internal points 
o Crack nodes 

Fig. 2. Co-ordinate reference system and contour path for J-integral 

In present work, the circular paths centred at the crack tip and 
containing a pair of crack nodes are used for each crack tip, 
see Fig. 2. The integration along the contour path is 
accomplished by means of the trapezoidal rule. The calculation 
with different paths shows high stability of stress intensity 
factors, see Yan and Nguyen-Dang (1994). 

Another general and simple method for the evaluation of 
stress intensity factors is the near-tip displacement 
extrapolation. In the neighbourhood of the crack tip, the elastic 
field is defined by an infinite series expansion that can be 
decoupled into mode I and II components. Let r, 0 be a polar 
co-ordinate system, centred at the crack tip, such that 0 = _+ n 
defines the crack surfaces. Considering only the first term of 
the Willians' expansion, the displacement field on the crack 
surfaces can be written as: 

u2(O=n)-u2(O=-n)= 

u,(O=n)-Ul(O=-n)= 

+ 1 Kz / r  (17) ,J2  # 

~+IG~~ (18) 

where # is the shear modulus and ~ = 3 - 4t/; for plane strain 
t/= v and for plane stress t /= v/(1 + v), v is the Poison's ratio. 
Using the solution of boundary at the surfaces of crack it is 
easy to calculate the stress intensity factors K r and K~z from (17) 
and (18). The results of numerical tests show that this method 
is not very precise due to the use of discontinuous elements. 
But it is still useful to determine the sign of K~ (positive or 
negative) and going a step further to determine the direction 
of extension of crack. 

4 
Fatigue crack growth analysis 
In present work, the analysis of fatigue crack growth is 
introduced as a post-processing procedure. That is, for each 
increment of the crack extension, the dual boundary element 
method is applied to carry out a stress analysis of the cracked 
structure and ]-integral technique is used for the evaluation 
of the stress intensity factors while formulae (18) is used 
to determine the sign of K,z. Then, we compute the direction 
of the crack growth and extend at each crack tip one increment 
along the direction obtained by the computation. This basic 
computational cycle is repeatedly executed until the instability 
of cracked body happens (Kie q > Ktc ) or a specified number 
of crack-extension increment is reached. As the results 
of each computational step, the crack growth path, the residual 
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strength and fatigue-life diagrams of the cracked body can 
be obtained. In following discussion, a structure with multiple 
edge or centre cracks is considered. 

In general, the path of crack growth is curved path. In the 
present approach it is simulated by an incremental crack 
extension, that is to assume a piece-wise linear discretization 
of crack path. For each increment analysis, crack extension 
is conveniently modelled with new boundary elements. 
In such a way, remeshing is no longer necessary. There exist 
already several criteria for the specification of the direction of 
crack growth under in-phase mixed-mode loading. The most 
important are: (a) maximum principal stress criterion, 
Erdogan and Sih (1973) (b) maximum energy release rate 
criterion, Hussain, Pu and Underwood (1974); and (c) strain 
energy density criterion, Sih (1973). Nevertheless, these criteria 
predict kink angles of almost the same size, especially in the 
case of small or medium mixed mode ratio (K~I/K~). 
Experimental results have verified their effectiveness in most 
cases. In present work, the maximum principal stress criterion 
is applied, which postulates that the growth of the crack will 
occur in a direction perpendicular to the maximum principal 
stress. Thus, at each crack tip the local direction of crack 
growth 0, is determined by the condition that the local shear 
stress is zero, that is: 

K~, sin 0 i + Krr , (3 cos 0, -- 1 ) = 0 (19) 

where 0, is the crack growth angle co-ordinate centred at i-th 
crack tip. The equivalent mode I stress intensity factor is defined 
at i-th crack tip: 

301 2 0, 0, 
Kleq~ = K~, cos ~- -- 3Kn, cos --2 sin--2 (20) 

The fracture condition then follows from K,e q >~ K~r in which 
K~,q is the maximum value of K, eq, (i~[1, n], n is number of crack 
tips), Kzr is the fracture toughness of the material. As 
a continuous criterion, crack growth angles defined by this 
method do not take account of the discreteness of the extension. 
The incremental extension of a crack in a general mixed-mode 
deformation field, computed by Eq. (19), is always defined 
locally in the same direction, whatever length of crack extension 
Aa is considered. As a consequence, uniqueness of the crack 
path cannot be assured with different sizes of the 
crack-extension increment. Fortunately, the computational 
and experimental experience shows that the crack initially grows 
always in such direction that mode II stress intensity factors 
tend to vanish. Then, the direction of crack growth may 
change slightly. In this case, influence of Aa is not very 
important. On the other hand, if the selected size of Aa is very 
small, some difficulties may arise in calculating the stress 
intensity factors after the extension. Basing on these 
considerations, this problem is simply dealt with in general 
case. First, one crack-tip having maximum value of Kx~q is 
selected as principal crack tip. And first crack extension ka  at 
principal crack tip is chosen smaller (e.g. two times the length 
of the initial crack-tip element) than later increment (e.g. 
three time of length of the initial crack-tip element). The relative 
extensions at other crack tips, A G can be simply evaluated 
by following proportional relation: 

A G = Aa(d~Kr m (21) 

This relation is derived from the later Eq. (22), here m is 
constant of Paris' law. Then the number of boundary element 
increment at each crack tip is determined according to the 
size of Aa,. It is obvious that the first crack extension Aa is 
always determined according to initial element pattern of 
cracks. For instance, an appropriate choice of this mesh can be 
determined by the relative size and geometry of cracks. In 
general, this simple method predicts a satisfactory result of 
crack growth path. For a more complex case where the direction 
of the service loading changes continually, or where the local 
symmetry at the crack tip is always upset during crack 
growth by the geometry of the component, the size of ha 
becomes sensitive and a correcting procedure proposed by 
Portela, Aliabadi and Rooke (1992) should be applied to obtain 
more precise results. 

The analysis of fatigue crack life envisages the problem of 
showing the relation between the number of cycles of loading 
and the increments of cracks to obtain the final life of the 
cracked structure. As the first step of the present work, the 
simplest loading case is considered, in which the loading cycles 
have a constant amplitude and may be described by a constant 
maximum/minimum stress ratio. For a multiple crack-tip 
system, one needs to carry out the life-calculation only at 
a principal crack tip which can be selected according to values 
of initial effective stress intensity factor of the crack tips. In 
order to show the variation in the number of loading 
cycles as a function of crack length, we take a generalised 
Paris mode defined as: 

da 
= C(AKou)  m (22) 

dN ~ d J  

where a is the crack length at principal crack tip selected, 
Nis the number of load cycles, C and rn are material dependent 
constants and AK4 is the range of the effective stress intensity 
factor. Here, Tanaka's model, see Tanaka (1974), is applied 
in mixed-mode analysis as following, since it has been 
verified experimentally. 

(23) 

where the stress intensity factor range of the individual modes 
is given by AK = K -- K~m = Kma x (1 -- R), in which 
R = K / K  = amox/amm is the load ratio of the loading cycle. 
Thus, although the maximum principal stress criterion is 
used for fracture criterion and for the prediction of crack 
growth direction, Tanaka's model is applied in fatigue-life 
analysis. The number of loading cycles required to extend 
the crack a given increment is evaluated by integration of 
Eq. (22) with the trapezoidal rule. 

The computational steps are illustrated by the flowchart 
shown in Fig. 3. A new program of dual boundary element 
method BECOME has been developed in our LTAS (Laboratory 
of Aerospace Technique). This programme can be used to 
analyse fatigue crack propagation of tow-dimension multiple- 
cracked body. In order to obtain the appropriate initial 
boundary elements, a parameter of ratio q is used. If q = 1, 
all elements of a line have same size; if q is greater than 1, the 
dimension of elements is not divided equally and on the surfaces 
of cracks, the ratio of discretization will be more and more 
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5.1 
The two collinear edge cracks in fatigue growth 
A rectangular plate, with a pair of collinear edge cracks of  
length a, is subjected to uniform cyclic traction (Ap = 100) 
at the two ends. The height 2H is 400 and width 2 W is 200. Initial 
length of each crack is 30. The 38 quadratic elements are used 
on external boundary, and 4 initial discontinuous elements 
on each surface of cracks. Figure 4 shows initial boundary 
element mesh and crack increment extensions. 

Figure 5 presents the results in terms of crack extension 
and normalised stress intensity factor diagram. The comparison 
of present results with accurate results of Keer and Freedman 
(1973) shows good accuracy of present method (A is less 
than 0.6%). Figure 6 presents the extension of cracks 
corresponding to number  of cyclic loading, as a fatigue-life 
diagram. The fracture-life of structure is evaluated as 6884 cycles 
when the cracks grow to the length of 67.2. It is justified that 
the II mode stress intensity factor remains zero and 
cracks growth in the original direction due to the symmetry 
of loading and geometry. 

5.2 
Mixed-mode cracks in fatigue growth 
Now, we study the mixed mode crack problem. First, we 
consider a rectangular plate (200 x 100) with a slant edged 
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Fig. 3. Flowchart for DBEM program 

small towards the tips. If the fracture toughness and Paris' 
constant of material is known, fatigue-life evaluation can be 
carried out. Otherwise, crack-extension analysis can be done 
with a selected crack-increment number. 

5 
Numerical examples 
The DBEM program has been proved in various two-dimension 
numerical examples, see Yan and Nguyen-Dang (1994a, b). 
Here, all numerical examples are concerned on the problem 
of crack extension and fatigue life. Loading cycle is limited as 
a simple process of  loading and unloading, that is, the minimum 
/maximum loading ratio R = 0. But, in the case of R ~ 0, 
the analyis is completely similar. As a example, a kind 
of aeroplane material, aluminium alloy A12024-T3, is studied 
when the fatigue-life analysis is included. This material has 
the characteristic parameter as following: 

E = 74000 N / m m  2 (elastic modulus)  

v = 0.3 (Poison's  ratio) 

Kic = 1897.36 N / m m  3/2 (fracture toughness) 

m = 3.32 (Paris '  exponent)  

- . . . . . .  I f  . . . . .  
__ ~ Aa __ 

Fig. 4. Boundary element mesh and crack growth path for collinear 
edge cracks problem 
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Fig. 5. Normalised stress intensity factors vary with crack growth 
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278 Fig. 6. Fatigue-life diagram for a pair of collinear edged crack problem 
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Fig. 9. Fatigue-life diagram for inclined edged crack problem 

crack (a 0 = 20) in the angle of - 40 ~ under cycle loading 
Ap = 40 at two ends. The 24 quadratic elements are used on 
externalboundary, and 4 initial discontinuous elements on each 
surface of crack (Fig. 7). The results in term of extension of 
crack growth and stress intensity factors, as well as fatigue 
life are presented in Figs. 8 and 9 respectively. The fracture 
life of structure is evaluated as 144885 cycles when the crack 
extends to the length of 61.2, while Andre (1990), using finite 
element method, gives out the results corresponding as 
141235 cycles for a final crack length of 61.4. These results 
are in good agreement. 

It is noted that due to the disappearance of the initially 
II-mode stress intensity factor K~r, a sudden change of the 
direction of crack growth happens to form a kink angle. The 
reality is that the value of K~, tends rapidly to null and 
subsequent crack path is either straight or slightly curved, which 

is nearly perpendicular to applied load. The results of central 
slant crack problem (Fig. 10) is completely similar. 

Now let us consider a more practical structure shown by 
Fig. 11. This is one fourth part of a symmetric structure with two 
holes. A crack is appeared on the small hole and the bigger 
hole sustains cyclic loading. It is interesting to point out 
that the crack located at boundary of small hole tends to 
propagate to big hole by a direct way. This situation is due to the 
evolution of stress field. In fact, in the radial direction of the 
big hole, stress field has tendency to become symmetric 
that leads to annul K~. 

5.3 
Two internal no-collinear cracks in fatigue growth 
As a last example, we consider a more complicated problem: 
a pair of no-collinear cracks having same length (2ao = 10) in 

• 

Fig. 7. Boundary element mesh and crack growth path for inclined 
edge crack problem 

Fig. 10. Boundary element mesh and crack growth path for inclined 
central crack problem 
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Fig. 8. Stress intensity factors vary with crack growth 
Fig. 11. Boundary element mesh and crack growth path for cracked 
plate with holes 



interior of a rectangle (180 x 90) under fatigue loading 
Ap = 160 at two end (Fig. 12). The cracks are located at vertical 
distance of 5. The inital horizontal distance between two internal 
cracks tips (A) is 15. The results of Fig. 13 are given out in 
case of  initial 44 quadratic elements in outside boundary and 
6 elements at each surface of cracks. 

Figure 13 shows that the intensity factors at crack tips 
internal (A) and external (B) are initially about same. Then, 
the stress intensity factors at crack tips-A, (where there are 
greater interaction of two cracks), increase more rapidly than at 
crack tips-B. But when crack tips-A are overlapped, the 
stress intensity factors tend afterward to decrease because of 
stress relaxation, while stress intensity factors increase 
continuously at crack tips-B. Correspondingly, crack grow more 
rapidly first at internal crack tip-A, finally at external crack 
tips-B, see Fig. 14. The prediction of crack growth path 
by present method is in good agreement with a experimental 
result in a similar structure, see Fig. 12(b), which is a real 
path of crack growth recorded through the surface replica of 
the cracks on the specimen by Tu and Cai (1993). 

2ao 
Aa --,I I ,-Aa 

Aa-*l I~- Aa 
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- - 5  

fi__2• 
p 

Fig. 12a, b. a Boundary element mesh and crack growth path for 
no-collinear central crack problem b experimental result of crack 
growth path through the surface replica of the cracks on the specimen 
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Fig. 14. Crack extension-Number of cyclic loading diagram for a pair 
of no-collinear central crack problem 

Although the direction of service loading remains same, 
the cracks grow still in a curved manner because the local 
symmetry at the crack tips-A is upset during crack growth 
by the geometry of the cracked component. 

6 
Conclusions 
Dual boundary element method is applied to the fatigue analysis 
of multiple-cracked body for the simple case of constant 
amplitude loading cycles. For each increment of the cracks, 
a stress analysis is carried out using DBEM and the stress 
intensity factors are evaluated by means of the ]-integral 
technique. This basic computational step is repeated for every 
time crack extension at each crack tip. The direction of crack 
growth is predicted by the maximum principal stress criterion. 
The real curved path of crack growth is simulated by the 
piece-wise linear crack increments. The extension of cracks 
at each tip are modelled conveniently as new boundary 
elements. Numerical examples of various cracked geometry 
show high efficiency of present method. It is noted that for 
general fatigue crack growth under mixed mode, the cracks 
change abruptly their direction of growth that results in 
the tendency of annulling of the stress intensity factor of mode 
II. Kinked and subsequently straight or slightly curved cracks 
are taken place. However, the cracks grow in a continuously 
curved manner when the direction of the service loading 
is continually changing, or when the local symmetry at the 
crack tips is upset during crack growth by the geometry factor 
of  component. 
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