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Abstract. Distributed parameter methods can offer unique advantages in combined structures-control optimization, parti- 
cularly in the preliminary design phase where at present complex computer programs based on large-dimension Finite Element 
Models are currently in vogue, replacing them by closed-form analytic expressions for performance criteria in terms of the 
structure/controls parameters. In this paper we present an explicit closed-form expression for a lattice-truss clamped at one 
end with co-located sensors and actuators at the other end, using an equivalent anisotropic Timoshenko beam model. Some 
generic controls/structures optimization problems are shown to be tractable analytically, exploiting this expression. 

1 Introduction 

In this paper our aim is to show that distributed parameter models offer unique advantages in 
combined structures-controls oprimization, particularly in preliminary designs where at the 
present time complex computer program based on large-dimension Finite Element models are in 
vogue. We shall develop closed-form analytic expressions for performance criteria in terms of 
structural parameters with the aid of which it is possible not only to reduce dramatically the 
computational complexity but also to obtain analytical solutions to the optimization problem 
thereby gaining valuable insight on the structures-controls interaction. 

For prior work on such optimization problems the reader is referred to [1] where the authors 
offer computer studies considering a deterministic LQG infinite horizon problem using finite- 
dimensional models. Additional references on work along similar lines can also be found therein. 

Here we consider a beam-like truss similar to the EPS (Earth Pointing Satellite) structure. To 
reduce the complexity, we specialize to the cantilever version with the beam clamped on one end 
and an offset antenna at the other end which also houses co-located force/moment actuators and 
rate sensors. The control performance criteria include 

(i) mean-square attitude error 
and 

(ii) sum of the absolute values of the real parts of the closed-loop eigenvalues. 
Structural performance criteria include structure mass and control mass (and moment of inertia). 

The continuum model we use is an anisotropic Timoshenko beam model. Our major result is 
the derivation of closed-form formulas for (i) and (ii) in terms of the mass and flexibility coefficients 
in the Timoshenko model which are then expressed in terms of the truss parameters following [2]. 

Section 2 begins with the anisotropic one-dimensional Timoshenko model dynamics. Using an 
infinite-dimensional "state-space" version of the dynamic equation (following [7]) we derive a 
formula for the minimal attainable mean square attitude error using only rate sensors, as well as 
for the sum of the absolute values of the real parts of the closed loop eigenvalues. 

Section 3 details the features of the EPS truss considered. We derive the equivalent Timoshenko 
beam elastic constants in terms of the truss geometry and material for the case where the longerons, 
battens and cross-bars have the same cross-sectional area. The mean-square pointing error 
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formulas are then expressed in terms of the truss parameters. This simplicity of formula is compared 
with the corresponding FEM version where a large dimension matrix version is required. For 
typical parameters the values obtained by both techniques are presented. They agree within one 
percent. 

Finally an illustrative combined structures-controls optimization problem is examined in 
Sect. 4, and is shown to have a simple analytical solution. 

2 The anisotropic Timoshenko continuum model equations 

We begin with the (one-dimensional) anisotropic Timoshenko model following [23, for a beam 
clamped at one end with an offset mas at the other end, where also the force/moment actuators 
and sensors are located. Let s denote the space variable along the beam axis, 0 < s < L. Let t denote 
time and let 

u(t, s) denote elongation along the beam axis--(X-component  of the displacement taken as 
X-axis) 

v(t, s) denote the Y-component of the displacement 
w(t, s) denote the Z-component of the displacement 
~ ( t ,  s) torsion angle about the X-axis 
~b2(t, s) torsion angle about the Y-axis 
~3(t, S) torsion angle about the Z-axis. 

Let superdots denote differentiation with respect to time and primes, differentiation with respect 
to the space variable s. Then the dynamic equations valid for the interior of the beam, 0 < s < L, are: 

m a j i -  C l l  u "  - c14/) " - C l 5 W t '  - Cl 5(/)~ --~ c 1 4 ~ ;  = 0 

m22/~ --  (?44/)" --  (?141g 't -q- (74,4.~); = O, m33fi) --  (755 W "  - -  c l  5/,/" --  (?15~b~ = O, 

m , , ~ l  - (766~7 - c ~ 6 ~  - c~6~g = 0 

mss~2  + m56~3  + c15u'  + (755 w '  - -  (736q~ + (755q~2 --  (733q~ --  c23q~ = 0 

m66~3 + m56~2  --  c l 4u '  - -  c 4 4 v '  - -  c26q~ ~ --  c23q~ ~ + c44~b 3 --  c22q~ = O. 

We specialize to the case where the truss is clamped at the end s = O, so that the end contains at 
s = 0 are: 

U(t, O) = v(t, 0) = W(t, 0) = (/)l(t, 0) = ~2( t ,  0) ~- ~3(t ,  0) = 0. 

The actuator dynamics at s = L are: 

0 = rn4fi(t, L) + c t tu'(t, L) + Cx4V'(t, L) + qsw'(t,  L) + c15~2(t, L) - q4~3(t, L) + F 1 

0 r,&(t,L) (?14.'(t,L)+ (?.(v'(t,L)- 
0 =m4 ~(t ,L)+rz~l( t ,L)  + qsu'(t,L)+(?55(w'(t,L)+dP2(t,L)) + 

0 f ~2(t, L) + C3 q~i(t, L) + Mc + m4 | f(t, L) 
~3(t,  t,) ~ ; ( t ,  L) 0 

where | denotes vector cross-product, 

C66 (?36 C26[ 

C3 ~- c36 c33 (?23[, 

C26 C23 C221 

E l  
F 2 ,-, (Actuator) Control forces, 

F3 
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Mc:(Applied) Control moment, 

i 2 2 0 _ Ozry 
rz + ry 

2 
[ = I + m 4 + m 4 0 ry . 

0 -r~r r r~ 

The co-ordinates of the antenna c.g. are (0, ry, r~). The antenna mass is rn 4 and the moment of 
intertia about the c.g.I. 

2.1 Abstract version 

We proceed immediately to the state space (or "abstract") formulation of these equations. Readers 
unfamiliar with the necessary background may skip this part and simply accept the abstract 
version because of the similarity to the finite-dimensional version as in standard texts such as [3]. 
The novelty in our formulation is the inclusion of the boundary values as part of the state. Thus 
let t t  denote the Hilbert space 

L2(O , L) 6 X R 6. 

Elements in H will be denoted I f  ] ,  f~L2(O,L)6, beR6. LetAdenotetheoperatorwithdomain 
in H defined by 

D(A) = I f  f,f'eL2(O,L)6, f(O)=O;b= f (L) ]  

and 

- A 2 f "  + A l f '  + Aof  ] 
Ax = L l f (L  ) + A2f '  (L) ] 

where 

O Cll Cid" C!5 0 C 2 

c14 c44 0 , A I =  _C~ 0 
C15 0 C55 

[Ax, x] = S H , 
o 

where 

C1 0 0 
0 C3 0 

H =  
0 0 

- C  2 
0 

Ao - Q  0 

where the elastic constants c u are constrained so that the matrix H is nonnegative definite. It is 
necessary in particular that the matrices C1, C3 be nonnegative definite and 

CiiCjj -- C 2 > O. 

h! -c15 -c2. 
C 2 ~-- 0 C44 A o = Diag. [0,0,0,0,css,c44] ,,L1 = 

0 
0 --C55 

With this definition, it is not difficult to see that A is self-adjoint, nonnegative definite with dense 
domain. In particular the potential energy is given by 
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It is further possible to prove that 

lAx, x] = 0 implies x -- 0 

under our (cantilever) conditions. In other words there are no rigid-body modes. In particular A -  1 
is well-defined and is compact, linear bounded. 

Let 

mr1 0 0 
0 m22 0 

Mo = 0 0 m33 
0 0 0 
0 0 0 
0 0 0 

where 

m66ms5 - -  m26 > 0 

and let 

0 0 0 
0 0 0 
0 0 0 

m44 0 0 

0 m55 m56 
0 m56 m66 

m4 0 0 0 0 0 

0 m 4 0 m4r r 0 0 

Mb = 0 0 m4 m4r ~ 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 m j r  m4r z 
0 0 0 

f 
0 0 0 

Then the abstract equivalent of the controlled Timoshenko beam equations becomes: 

M2(t) + Ax(t) + Bu(t) = 0 

where 

(2.1) 

where 

u(t, L) 

v(t,L) 
w(t, L) 

b(t)= c~l(t,L) 

q52(t, L) 
q53(t , L) 

IoL L B u =  , M x =  Mbb and u( t )= 

(2.2) 

Fl(t)  

F2(t) 
F3(t) 
Me(t) 

the suite of control forces and moments. The tensor model for a co-located rate sensor can then 
be expressed as: 

y(t) = [~(t) + No(t ) 

where No(') is white Gaussian noise with spectral density 

Do = doI 6 x 6. 
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To conclude our model we take actuator noise into account and thus we have finally have the 
stochastic equation: 

M2( t )  + Ax( t )  + Bu(t) + Bga( t )  = 0 (2.3) 

where N,(.) is white Gaussian noise with spectral density matrix 

Da = daI6 • 6" 

The mean square attitude error for any control is then defined by: 

lim 1 f T (u(t, L) 2 -t- v(t, L) 2 -t- w(t, L) 2 d- l r[ 24) 1 (t, L)2)dt. (2.4) 
r-, oo T 6 

We shall denote this by 
2 fla" 

In terms of the abstract formulation it is shown in [4, 5] that the minimal attainable mean square 
attitude error 

= d ~ a d  o (bll  -q'- b22 -t- b33 n t- ]r12b44) 

where 

{ b i j } = B * A - I B ,  l < i , j < 6 . =  = 

Now we can calculate the matrix 

B ' A -  1B 

in terms of the elastic constants. We have finally thus: 

Lc44c55 
bl l  - 

c11c44c5s - c~4c55 - c~5c44 

b22 -- - - ~ -  . . . .  2 -1- 3 \ d 3 C11C4.4C55 - -  C14C55 --  C 15C,1.4 

b33 = L(cl'e'~4-c21'*) _[_ L3 (C22C66 ~ C26) 
CllC44Css - c24c55 - c~5c,4 3 \ d 3 

= =L(C66C22_ ~ r  L(C66c33-c236)  b44 g ( c 2 2 U 3 3  -~ c23~ ,  b55 b66 : 
\ d3 ] \ d3 ' \ 

where 

d 3 = C66(C33C22 -- 1723) --  C36(C36C22 -- C23C26) "4- C26(C36C23 -- C33C26 ). 

And correspondingly, the Mean Square: 

Longitudinal extension 

= CllC44C55 --  C24C55 --  C2C44 

X Y-bending 

L(cl lc55 -- C 2 5 )  L3['c66c33 -- C26X~ 

J; ) 
XZ-being 

L(cllc4,  * -- C 1 2 4 )  L 3 / c 2 2 c 6 6  -- c26"~ ~ 

: dN/~sd~ 01104,055__C214C55__C25C4, ~- 3 ~' 23 ) ~ 
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YZ-displacement due to torsion 

(C22C33 - -  irl 2. 

For a "direct" feedback control of the form 

u(t) = 7y(t) 

where 7 is a scalar, the corresponding mean square pointing error: 

a2=(72do + da) 
/ (bl ,  + b22 + b33 + IrL2b4 ). \ 

The corresponding sum of the magnitudes of the real parts of closed-loop eigenvalues 

= 7 Tr.Mb -1 

2 is minimized by taking If there are no constrains on y, we note that a, 

with the corresponding minimum as already indicated. 

Compu ta t i ona l  Mechanics  8 (1991) 

3 The EPS truss model 

The specific truss we shall consider is patterned after the Earth Pointing Satellite structure, shown 
in Fig. 1. Each bay is single-laced with the geometry shown in Fig. 2, and the notation used is 
the Table 1. The elastic constants cij and the mass constants mij of the equivalent Timoshenko 
beam have been derived in [2]. Here to simplify the calculations we shall specialize to the case: 

A l -= A a = A b = Ao = A 1 

l = b ,  d=x/ /2 l ,  ~ l = ~ a = ~ b = ~ = p  

number of bays = n, L = nl, 

This yields: 

(40 + 24x/2)EA 
cll = 9 + 4x//- ~ , 

(2725 + 1476x/~)EAl z 
C22 = C33 = 

2628 + 1336,f2 

1 (16 + 33x/2)EAl  2 
C 2 6 =  --C36=2C66-- 296+ 130X//2 

m l  1 = m 2 2  = m 3 3  = (8 + 5x//-2)Ap 
(20 + 9 x/~)Al  2 p 

m44 = 2m55 = 2 m 6 6  = 6 

(Al2p) 
m 5 6  - -  6x//~ 

E = Young's modulus. 

C 1 4 =  - - C 1 5  = C 4 4 = C 5 5  - -  
2EA 

(Newton) 
1 + 2w/-2 

= _ ( ( 9 7  + 140x/2)EAI2)  
' C23 \ 2-628- + ~ J 

kg/m 

kg.m 

kg.m. 

(Newton)m 2 

(Newton)m 2 

1 Not  to be confused with the stiffness matr ix  A! 
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~7 .5m - - 15m 

Fig. 1. Earth Pointing Satelhte (EPS) 

~ Y 

X 
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y x~ 1 

5 

6' ", 
/ Fig. 2. Beam Geometry 

Correspondingly 

L (a  L2 a31r12"~ 
b i t  + b22 + b33 + [ r [ 2 b 4 4 = E ~  - x 1 + a 2 ~ - - t -  ~ F - )  

where a 1, a 2, a 3 and fixed numerical constants. Hence finally the mean square minimal pointing 
error (Table 1) 

1..2 a3lrl z'] 
= dx/~d~A a l+a2~-+ 12 j. 
The mean square pointing error for direct rate feedback with gain 7 

L a L2 a3lrl2) -(Td~ i + a 2 ~ -  
, ,727 + 

The sum of the magnitudes of the real parts of the closed-loop eigenvalues 

= 7 T r .  M b  - 1  . 
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Table 1. Table 2 

Computational Mechanics 8 (1991) 

Cross Coefficient Material FEM Continuum (Timoshenko) 
section of thermal volume x 10 - s x 10- 8 
area Length expansion density 

b 1 ~ (Axial) 9.913 9.913 
Longitudinal b22 (Bending) 1131.42 1156.293 

bar Al I ~l ~t b33 (Bending) 1131.42 1156.293 
Diagonal b44 (Torsion) 18.825 19.07 

bar A~ d % ~d bs5 (Bending) 4.376 4.406 
Battens A b b % ~b b66 (Bending) 4.376 4.406 
Cross bracing 

in battens A~ 6 = xf2b % ~ 

3.1 Comparison with FEM 

We note that for any control "step" input u(.), 

u(t)=u, t>O; B*A-XBu 

can be interpreted as the steady-state "output". 

lim b(t) 
t -~O9 

defined in (2.2). For given truss parameters this can be calculated by an FEM (where A is the 
"stiffness matrix"), and thus affords a means of comparison between the two techniques. For this 
purpose we consider the case where 

n = 9 ,  / = 3 m ,  p=3250 ,  E=2.759•  A = 2 . 4 6 8 •  2. 

The values for the diagonal terms bu computed by both methods are given in Table 2. For the 
FEM, 40 nodes, 122 three-D truss elements with 6 DOF were used with A being 108 • 108 which 
has to be inverted numerically as compared with the trivially simple formulas for the cotinuum 
model. The values are within 2% accuracy of each other. 

4 Combined optimization: an illustration 

In this section we shall examine an illustrative example of a combined optimization problem for 
the EPS truss. Let us begin with a canonical problem of minimizing the mass of the structure 
subject to a given pointing error requirement. 

For our model the mass is 

LAp 
and fixing L and p, we have the cross sectional area A as the variable. The minimal mean square 
pointing error formula reduces this to a trivial problem: viz. namely minimize A subject to 

E~( L2 a3'r[2 "] <= 6 al +a2V+ 12 j 

which then yields an explicit formula for A in terms of ~2. 
A variant on this problem (grossly simplifying [6]) is to minimize 

structure mass + control mass 

subject to 

(i) mean square pointing error < 6 2 
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and 

(ii) the stability requirement that sum of the absolute values of the real parts of the closed-loop 
eigenvalues > % 

The optimality of "direct" rate feedback is shown in [4]; we assume this here anyway, 7 denoting 
the gain. The attainable control amplitude is of course dependent on the control m a s s -  the 
stationary part of it. On the other hand we note that (see [6]) 

(sum of the absolute values of the real parts of closed-loop eigenvalues) = 7 Tr. M~- 1 

where M b contains the "moving" or "rotor" mass/inertia of the actuator. These are important 
details that must be taken into account. 

Nevertheless the following simplified problem is still of interest: 

minimize 

LAp + c2~ 

where c 2 is a given constant, subject to 

LEa i) \ ~2-~ ~ 1+a2-~-+  12 j =  

ii) 7 Tr. M~- 1 >__ as" 

This problem has again a clearly analytical solution. Given this enormous simplification, it is fair 
to conjecture that distributed parameter models can offer significant advantages over Finite 
Element models in combined Structures-Controls optimization. 
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