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Abstract. The isolation of structures from ground transmitted waves by open and infilled trenches in a three-dimensional 
context is numerically studied. The soil medium is assumed to be elastic or viscoelastic, homogeneous and isotropic. Waves 
generated by the harmonic motion of a surface rigid machine foundation are considered in this work. The formulation and 
solution of the problem is accomplished by the boundary element method in the frequency domain. The infinite space 
fundamental solution is used requiring discretization of the trench surface, the soil-foundation interface and some portion 
of the free soil surface. The proposed methodology is first tested for accuracy by solving three characteristic wave propagation 
problems with known solutions and then applied to several vibration isolation problems involving open and concrete infilted 
trenches. Three-dimensional graphic displays of the surface displacement pattern around the trenches are also presented. 

1 Introduction 

Screening of waves generated by a surface disturbance for structural vibration isolation is usually 
achieved by constructing a barrier, e.g., an open or infilled trench, which through diffraction of 
elastic waves results in vibration amplitude reduction (Richart et al. 1970). 

A comprehensive account of the literature on the experimental, analytical and numerical 
analysis of vibration isolation and associated wave diffraction problems can be found in a recent 
publication by Beskos et al. (1986). That publication as well as another one by the same authors 
(Beskos et al. 1985), presented a numerical treatment of these problems by the Boundary Element 
Method (BEM) under two-dimensional (2-D) conditions (plane strain). The present work 
represents an extension of the methodology of Beskos et al. (1985, 1986) to three-dimensional (3-D) 
vibration isolation problems and provides numerical results for a number of practical cases. 
Among the few published analytical works on three-dimensional elastic wave diffraction problems 
one can mention those of Knopoff (1959a, b), Pao and Mow (1963, 1971) and Jain and Kanwal 
(1978) who studied diffraction of P and S waves by spherical cavities and inclusions and Lee 
(1982), and Lee and Trifunac (1982) who analysed diffraction of plane waves (P, SV and SH) by 
a hemispherical canyon and rigid foundation, respectively, in the elastic half space for an arbitrary 
angle of wave incidence. It is apparent that analytic treatment of 3-D elastic wave diffraction 
problems is confined to very simple geometries and that realistic problems involving complex 
geometry, such as vibration isolation ones, can only be solved numerically. 

The BEM is ideally suited for elastic wave diffraction problems involving infinite or semi- 
infinite 3-D domains and, as it has been demonstrated in various places and especially in a recent 
review article by Beskos (1987) and the very recent book of Manolis and Beskos (1988), it is more 
advantageous than either the Finite Element Method (FEM) or the Finite Difference Method 
(FDM). Quite a number of accurate and efficient algorithms for 3-D elastodynamic analysis by 
the direct BEM in the frequency or time domain has recently appeared in the literature. One can 
mention, for example, those of Dominguez (1978a, b), Dominguez and Alarc6n (1981), Ottenstreuer 
and Schmid (1981), Ottenstreuer (1982), Huh and Schmid (1984), Rizzo et al. (1985a-c), Rezayat 
et al. (1986), Niwa and Hirose (1985, 1986), Kobayashi and Mori (1986), Kobayashi et al. (1986), 
Kitahara and Nakagawa (1985), Nakagawa and Kitahara (1986), Kitahara et al. (1987), Karabalis 
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and Mohammadi (1986), Gaitanaros and Karabalis (1986) and Ahmad and Manolis (1987), in 
the frequency domain and Karabalis and Beskos (1984, 1985, 1986), Manolis (1984), Banerjee et 
al. (1986) and Ahmad and Banerjee (1988) in the time domain. General and special review type 
of articles dealing with both the frequency and the time domain direct BEM and its applications 
emphasizing 3-D aspects have also appeared very recently in the literature. One can mention 
here, e.g., those of Banerjee and Ahmad (1985), Banerjee et al. (1987), Kobayashi (1987), Karabalis 
and Beskos (1987a, b), Dominguez and Abascal (1987), Tassoulas (1989) and especially Beskos 
(1987). A comparison study between frequency and time domain BEM approaches in 3-D 
soil-structure interaction has been recently reported by Mohammadi and Karabalis (1986). 

The present work employs the frequency domain direct BEM for the solution of both passive 
and active vibration isolation problems in a 3-D context. The general harmonic motion of a 
rigid foundation generates waves which are reduced in amplitude by means of open or infilled 
trenches protecting nearby structures. The geometry of the foundation or the trench can be 
arbitrary but the applications are restricted here to rectangular foundations and rectangular 
trenches which are usually preferred in practice. The soil medium is assumed to be a linear elastic 
or viscoelastic, homogeneous and isotropic half-space. The methodology employed in this work 
is just an extension to 3-D of the methodology utilized by Beskos et al. (1985, 1986) for the same 
problem under conditions of plane strain. Thus, constant quadrilateral boundary elements and 
the infinite space fundamental elastodynamic solution are employed in this work. Constant 
elements have been chosen because of their simplicity and their low memory requirements for 
such a large order problem which involves a foundation, a half-space and a trench treated all 
together in a 3-D context. It is apparent that constant elements are, in general, not as accurate 
as higher order ones, e.g., quadratic elements for 3-D wave diffraction problems, especially when 
detailed information is needed nearfield and/or there are stress concentrations (e.g., Rizzo et al. 
1985a; Banerjee et al. 1987). However, in the special case of vibration isolation problems, the free 
surface response away from the trench is of more interest than the deformation of the trench 
itself or the stress concentrations around it and thus, constant elements can produce results of 
acceptable accuracy for this type of problems. This was verified by solving three representative 
wave propagation problems with known solutions. The infinite space fundamental solution, on 
the other hand, was also chosen because of its simplicity over the very complicated half-space 
fundamental solution (e.g., Kobayashi and Nishimura 1980; Luco and Apsel 1983; Apsel and 
Luco 1983). Use of the former solution requires a discretization of a finite portion of the free 
half-space surface, which is not required by the latter solution. However, in vibration isolation 
problems, information is needed on the free half-space surface and hence a discretization of this 
surface is anyhow required. 

The work presented in this paper, is part of the doctoral dissertation of the first author 
(Dasgupta 1987) which can be consulted for more details. Some preliminary results of this work 
have also been reported in Dasgupta et al. (1986). Following a presentation of the formulation 
and solution procedure, a number of characteristic vibration isolation cases are treated in 
subsequent sections by the proposed methodology and their results are presented both in 
conventional two-dimensional plots and in colored three-dimensional graphics, which provide 
an impressive picture of the wave diffraction phenomenon associated with vibration isolation. 

2 General BEM formulation of 3-D elastodynamics 

The present formulation of 3-D linear elastodynamic problems by the direct frequency domain 
BEM is just a 3-D extension of the 2-D formulation in Beskos et al. (1986). Thus the frequency 
domain equations of motion for a 3-D homogeneous, isotropic and linear elastic body B with 
boundary S and zero body forces are of the form (Eringen and Suhubi 1975) 

(c21 - c~)O,,~j + c2~. i i  + co2zij = 0; i, j = 1, 2, 3, (1) 

where ~i i = lii(x, m) are the displacement amplitudes, the point x has Cartesian coordinates x 1, xz 
and x 3, co is the circular frequency, commas indicate spatial differentiation and summation over 



B. Dasgupta et al.: Vibration isolation using open or filled trenches. Part 2 131 

repeated indices is assumed. The cl and c2 in (1) are propagation velocities of compressional (P) 
and shear (S) waves, respectively, which are given in terms of Lam6's elastic constants ), and # 
and the mass density p of the material by 

c 2 = (2 + 2#)/p, c 2 = ~/p (2) 

The constitutive equation is of the form 

ffij = p[(c~ - 2C2)~k,kb,j + C2Z(t~id + ~j.,)], (3) 

where 6ij = 6ij(x, ~o) are the stress amplitudes and 6ij is Kronecker's delta. Initial conditions are 
assumed to be zero, while the mixed type boundary conditions take the form 

~ijnj = fi0(~,  (.0), x GS~, (4) 

~ = ~0(x,o~); x~S,, (5) 

where nj stands for the outward unit normal vector component at the boundary S = S~ + Su, 
and ~o and t~o represent prescribed boundary values for the traction and displacement vectors, 
respectively. 

In order to solve the system of Eqs. (1-5) by the BEM, use is made of the boundary integral 
equation (Eringen and Suhubi 1975) 

�89 = -- S (li(Q) ~FJi(Q, P)dS(Q) + ~ fi(Q)U j~(Q, P)dS(Q). (6) 
s s 

In Eq. (6) Uij and ~j  are the singular influence tensors (fundamental solution or Green's functions) 
for the infinite space which are given explicitly by (Eringen and Suhubi 1975) 

1 
Uij -- 4~zpco2r3 {6ij[(k2r)2e2 + D] + Cr ir j} ,  (7) 

Or + r, inj)  ~'iJ- l {2el(klr)2Flr, jni  + 

[( )  rl} 
+ 2 #  C 6~j-~n + r dn,i + r in j + Fr lr i-  ~ , (8) 

where 

k~=m/c~,  e~=e 'k~', a =  1,2, 

l ) =  F2e  2 -  F t e l ;  F ~ =  - l + ik~r, 
= -- -- k, r , (9) C = . Q 2 e 2 - . Q ~ e l ;  .Q, 3 3ik,  r 2 2 

F = H i e  1 - H2e2; H, = 15 - 15ik~r - 6k2r 2 + ik3r 3. 

In the above, r is the distance between two boundary points P and Q and i =  x/Z- 1 (when not 
subscripted). 

The solution of Eq. (6) is accomplished numerically. For this purpose the boundary S of the 
body B is discretized into a number of N, in general unequal in size, boundary elements (flat 
triangular or quadrilateral) over which the stress and displacement vectors are assumed to be 
constant. Equation (6) can thus reduce in its discretized form to the matrix equation 

[GT] {fi} - [GU] {i} = 0, (10) 

where {fi} and {I} are the displacement and traction vectors, respectively, in the frequency domain 
and [GT] and [GU]  are square influence matrices consisting of elemental surface integrals with 
integrands the tensors ~j  and Uij, respectively. When Q # P, i.e., r # 0, these integrals are regular 
and integration is accomplished by using standard Gauss quadrature. When Q--, P, i.e., r--, 0, 
these integrals become singular due to the 0(l/r) and 0(1/r 2) singularities of the tensors Uij and 
T~/, respectively, and they have to be computed analytically. Explicit analytic expressions for 
these singular integrations can be found in Dasgupta (1987). The presence of the terms e '~' in 
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the fundamental tensors make the integrands increasingly oscillatory for high frequencies ~. 
Thus, for high values of o~, the numerical integration scheme over a given boundary element 
must account for these oscillations. A 3 x 3 Gauss quadrature scheme was found to be adequate 
for the chosen frequency of oscillation and the adopted size of the elements. For more information 
on this subject one can consult Rizzo et al. (1985a) and Rezayat et al. (1986). 

The above formulation assumes linear elastic material behavior. However, it is also valid for 
linear viscoelastic material behavior provided that the elastic moduli )~ and # are replaced by 
the complex moduli 

2* = 2(1 + ifl), #* = #(1 + ifl), (11) 

where the damping factor/~ is usually taken to be independent of frequency (hysteretic material). 
Use of damping in the formulation, as it is the case with the present paper, makes the problem 
of the fictitious eigenfrequencies (Rizzo et al. 1985a, b) to disappear. 

3 Matrix formulation of 3-I) wave diffraction problems 

This section deals with the development of the BEM matrix formulation of various 3-D wave 
diffraction problems including vibration isolation ones. In the following, bars over harmonic 
amplitudes are omitted for simplicity. 

3.1 Scattering of incident waves 

Consider an incident time harmonic plane wave propagating in the half-space which is diffracted 
by surface irregularities such as trenches of arbitrary shape. Figure 1 shows a rectangular trench 
on the surface of the half-space. The total boundary S consists of the free soil surface Sr and the 
trench surface St. Formulation of the wave scattering problem in terms of the scattered field is 
accomplished by writing the boundary integral Eq. (10) in the form 

[ [GT]~, [GT]~21f{ul}y~ F[GU]], [GU]]2I{{tl}g~, (12) 
[GT]~ [GT]~2]].{u },J=[_EGU]~, }tJ 

where the superscripts g and s stand for "ground" and "scattered", respectively, and the subscripts 
f and t correspond to quantifies on S s and St. The total field of displacements {u} and tractions 
{t} can be written as 
{u} = {u i} + {uS}; {t} = {t I} + {t s} on S = Sy + S, (13, 14) 

The boundary conditions of the problem read 

{t} = {0} on S =  S s +  S, (15) 

Substitution of Eq. (15) in (14) and partitioning yield 

{{ti}/-~ f{ts}~ {0} 

{(}tJ + ~ {ts}, J = { {0} } 
(16) 

For the incident field, the free surface of the half-space is stress-•e, i.e., 

{ti}f = {0}. (17) 

Combination of Eqs. (16) and (17) results in 

{ts}y={0} onSf; {ts}t---{ti}, onSt (18,19) 

Thus, the problem consists of solving Eq. (12) for {uS}y and {uS}, subject to the boundary conditions 
(18) and (19). Knowledge of the vectors {u i} and {u s} allows one to determine {u} from (13) along 
the boundary S. 
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3.2 Vibration isolation of foundation 

In this section, vibration isolation of rigid, massive, rectangular, machine foundations in perfect 
bonding with the soil subjected to time harmonic forces, as shown in Fig. 1, are studied with the 
aid of the proposed methodology. The amplitude reduction of the waves generated by the motion 
of the foundation is accomplished by open or infilled trenches. This method takes into account 
all the waves generated by the vibrating footing, not just Rayleigh waves, and it treats the 
foundation-trench system as a whole. Furthermore, it is not restricted to rigid foundations and 
after some modifications can be applied to flexible, embedded foundations with or without mass 
under relaxed or nonrelaxed boundary conditions. In the following, the case of the foundation- 
infilled trench isolation system is considered. The simpler case of the foundation-open trench 
isolation system can be obtained as a special case. 

Consider the foundation-infilled trench isolation system of Fig. 1, which consists of three 
parts, the soil half-space, the infilled trench and the rigid foundation. These are related to each 
other through the compatibility and equilibrium equations at their interfaces. Use of the boundary 
integral Eq. (10) for the half-space and the infill medium results in the matrix equations 

I 
[GT]~, [GT]~2 [GT]~3" [ { u } , ]  F[GU]~, [GU]~2 [GU]~31({t}, ] 
[GT]~ t [GT]~ 2 [GT]~.3 ~ {u } I~= I [GU]~  t [GU]~.2 [GU]~all{t}y~, (20) 
EGT]   eCtl   ECTI 3 t EGUI   EcuJ d[{t},J 

[ ect? , -eGul , (21) 
[GT]~x [GT]~2J[{Uc}oj = [GU]~I [GU]&2j[{tc}oj 

respectively, where the scripts 9, f, r, t, c and 0 refer to quantities for the ground (soil), the free 
soil surface, the soil-foundation interface, the trench surface, the infill (concrete) and the top 
surface of the infill, respectively. 

The compatibility of displacements at the interface of the rigid foundation with the soil can 
be expressed in matrix form as 

{u}, = [S3 {e}, (22) 
where IS] is a 3N x 3 matrix connecting the displacements of the N interface elements with those 
of the vector 

{e} = {A1, A2,A3} , (23) 

with Ai (i = 1, 2, 3) being the displacement of the foundation center along the xi axis. The rigid 
foundation is subjected to the externally applied load 

{P} = [Px P2 P3] (24) 

xl 

Rigid f~176 t~ 1 

~5f 'x 't SWTre~ ? / 

Fig. 1. Vibration isolation of machine foundation by infitled 
trench 
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which can be expressed in terms of the contact stresses using equilibrium of forces and take the form 

N 
Pi = - moo2 Ai + Y', Akak3i, (25) 

k=l 
where m is the mass of the foundation, A k represents the area of the k-th foundation element 
and a~ = ~ are the interface tractions of the k-th foundation element. Equation (25) can be 
written for all the N contact area elements as 

{p} = [a] {e} + [H] {t}, (26) 

where [J] and [H] are 3 x 3 and 3 x 3N matrices. 
The compatibility and equilibirum conditions at the soil-infill interface read 

{to}, = - {t},; {uc}, = {u}t, (27) 

respectively. The soil free surface S j- and the top infill surface So are free of tractions, i.e., 

{t}f----- {0}, {tc}o = {0} (28) 

Rewriting Eqs. (20) and (21) in compact form as 

{t} = [G] {u}, {to} = [F] {u~}, (29) 

with 

[G] = [GU ~  [GT"], [F] = [GU~] - t[GT~], (30) 

enables one to expand Eqs. (20) and (21) as 

{t},= [G,,]  {u}, + [G~2] {u}f + [G,~] {u},, 
{t}f = [G2,] {u}, + [G22] {u} f + [G=3] {u},, 

{t}, = [G3,] {u}, + [G32] {u}f + [G33] {u},, 
{t~},=[Vx,]{Uc}, + [V,~]{Uc}o, 
{tc}o = IF / , ]  {u~}, + [Fzz ] {U~}o (31) 
Combining Eqs. (31) with Eqs. (22), (26), (27) and (28) one finally receives the matrix equation 

I {p}] F[ 1,1 ) 

{o}J L[G ,I [ 32] [G.]AUu},J 
where 

[1~11] = [H] [G11] [S] - [J], [CJ1/] = [H][G12], 

[c-,3] = [HI [G13], [C-21] = [G~I] [S], 

[CJ31] = [Vz2] [G31] IS], [G32] = [FEz] [G32], 

[G331 ~-- [F22] [G33] At- [V221 IF  11] - [F121rF21] �9 

Equation (32) can now be easily solved for the displacement vectors {e}, {u}j- and {u}, 

(32) 

(33) 

4 Numerical examples 

In this section two groups of numerical examples are presented. The first group serves to check the 
accuracy and effectiveness of the proposed constant BEM. The second group deals with several 
practical vibration isolation problems where the wave barrier effectiveness is the main object of 
study. 
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4.t Validation of the formulation 

Example 1: Consider a spherical cavity of radius a in the infinite elastic space, radiating waves into 
the elastic medium due to a uniform harmonic pressure of unit amplitude applied on its surface. 
The proposed BEM is used to determine the radial displacement u on the surface of the cavity. The 
employed discretization combining triangular and quadrilateral flat boundary elements covers 
only the 1/8th of the cavity surface due to the spherical symmetry of the problem. The numerical 
solution for the normalized frequency nl = a~/zcl = 0.2 exhibits a 9.14~o error with 49 and a 6.6~o 
error with 81 elements relative to the analytic solution u = - (1 / a  2) + (i~o/c ~a) (Achenbach 1973). 

Example 2: Consider the vertical vibration of a rigid, masstess square foundation perfectly bonded 
to the surface of an elastic half-space caused by a harmonic, vertical point force applied at its center. 
The force-displacement relationship is described by the vertical compliance Cvv = Gbu3/P3 (Wong 
and Luco 1976), where G is the shear modulus, b is the half side of the foundation and Ua and P3 
are the amplitudes of the vertical displacement and load, respectively. Figure 2 depicts Cv~ versus 
ao = o9b/c2 for an elastic half-space with Poisson's ratio v = 1/3 and material damping fl = 0.01 ~ .  
The proposed BEM results, using 49 constant elements, compare very well with the numerical 
solutions of Wong and Luco (1976) using 64 constant elements and Rizzo et al. (1985a) using 16 
quadratic elements. Table 1 provides the compliance error of the proposed BEM relative to the 
most accurate one of Rizzo et al. (1985a) for ao = 0.5768 and three different discretizations. It is 
apparent that a 25-element discretization with a maximum error of only 1.5~o is an acceptable one 
and for this reason this discretization is adopted in the vibration isolation problems of this section. 

Example 3: The surface displacements resulting from the diffraction of a vertically incident plane 
P-wave by a semi-spherical cavity on the surface of the half-space are determined by the proposed 
BEM. One quarter of this symmetric problem was analysed by using triangular and quadrilateral 
flat boundary elements covering the cavity as well as a portion of the half-space free surface around 
the cavity. The normalized amplitudes of vertical and horizontal displacements on the surface of 
the half-space for nl = coR/rcct = 0.25, with R being the canyon radius, are shown in Fig. 3. A 
Poisson's ratio v = 0.25 and a 144 element discretization were used in the computations. In the 
same figure the results obtained by the boundary collocation method of S~mchez-Sesma with 50 to 
70 points are also plotted for comparison. The results obtained by the two methods show a 
satisfactory agreement only for points away from the canyon. 

In the above three examples, the basic aspects of wave propagation analysis have been 
addressed using a constant boundary element methodology. Good results were obtained in the first 
example, where the harmonic pressure applied on the surface of the cavity was uniform. Excellent 
results were obtained for the rigid foundation compliance problem in the second example, where 
the stress is applied on the half-space in an average sense. In the diffraction of the P-wave problem, 
better results were obtained on the surface of the half-space than on the surface of the canyon. In 
conclusion, constant boundary elements, characterized by simplicity and low computational cost, 
can be satisfactorily applied to the present vibration isolation problems where, the external load is 
applied through the foundation, the discretized surfaces are flat and the surface displacements 
are of more interest than the deformation of the trench wall. 

Table 1. Compliance of rigid foundation for different discretizations 

C~v (Real) C.v (Imaginary) 

Number Present Rizzo et al. Error Present Rizzo et al. Error 
of elements method (1985a) % method (1985a) ~o 

3 • 3 0.1278 7.48 0.0654 0.879 
5 • 5 0.1207 0.1189 1.5 0.0645 0.0648 --0.509 
7 • 7 0.1176 -- 1.09 0.0641 - 1.126 



136 Computational Mechanics 6 (1990) 

0.2 

TO.1 
o o o Present method 

 IIZ, ~ 

I I I I I I I 

0 1 2 3 
C/0 

/,og/~Rl~dng ~//~pp(p0e,~/i ~. Open trench / " ~  

z..O. 

3 . 0  �84 

--~ 2.0 

1.0 

0 
0 

o o o Present method 
- -  S6nchez-Sesmo 

(1983) 

verticat 

o o o o o o o o o o 

0 
o 

o 

o o 
o o horizontot 

o o o o o o o o 0 o 

I I 

1 2 
x/R 

3 3 

Figs. 2-4. 2 Vertical compliance for a perfectly bonded 
square rigid foundation. 3 Surface amplitude of vertical 
and horizontal displacements for normalized frequency 
nl = 0.25. 4 Schematic diagram for the vibration isola- 
tion system with rigid foundation and open trench 

4.2 Vibration isolation problems 

The effectiveness of an open or an infilled trench as a barrier to ground-transmitted waves 
produced by the vertical motion of a rigid foundation is studied in the following examples. Both 
passive and active vibration isolation cases are considered. Figure 4 shows a schematic diagram of 
a representative foundation-trench dynamic system and its geometry. 

A 3-D analysis provides a more realistic picture of the wave isolation problem than a 2-D plane 
strain analysis. In the latter case where the foundation and the trench are infinitely long in the x 2 
direction, the wave energy is restricted to propagate in the Xl and x 3 directions and waves are 
diffracted by the depth of the trench (Beskos et al. 1986). In the former case, however, the foundation 
and the trench are of finite size and the wave energy can radiate in all three orthogonal directions. 
In this case, the waves are diffracted by the depth of the trench and also the trench wall along the x 2 
direction. Thus one can nicely observe the regions of reduction and amplification of waves on the 
surface of the half-space. The screening effectiveness of the trench is determined by evaluation of 
the amplitude reduction factor ARO defined as the average normalized vertical surface amplitude 
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behind the trench and given as 

1 
ARD = X I A(6)dJ, (3) 

where A is the area of the region behind the trench enclosed by the semicircular area with a radius 
t/2 (one-half of the length of the trench) and A(6) is the ratio of the vertical amplitude with the trench 
to that without it. It should be noted that ARo is different from A R, the amplitude reduction factor 
used in the 2-D case and calculated over a line behind the trench (Beskos et al. 1986). 

In the following examples, certain dimensions of the problem are kept the same for the purpose 
of comparison. All dimensions are normalized with respect to LR (5 m), the wave length of the 
Rayleigh wave. The material properties of the soil medium are given in Table 2. The magnitude of 
the applied force P0 in 1 KN and its operational frequency is 50 HZ. The mass of the foundation is 
neglected, following a 2-D study in Dasgupta (1987) where it was found that the mass of the 
foundation does not significantly affect isolation of surface waves. 

Example 1: Consider the single open trench case described by Fig. 4 with T =  t/LR=0.5, 
B = b/L R = 0.1, W = w/L R = 0.5, L = l/Le = 2.0, R 1 = ri lL R = 0.2, R 2 = r2/L R = 1.0, R 3 = r3/L R = 
1.05, and $1 --s~/LR = 1.7. This is a passive vibration isolation case. Due to the symmetry of the 
problem about the x~ axis, only one-half of the surface was taken into consideration for the 
analysis. For this problem and all subsequent problems, the surface was descretized into square 
elements of size LR/IO and rectangular elements were used along the trench width, with the longest 
side not greater than LR/10. The surface of the half-space and the surface of the trench were 
discretized into 588 elements, as shown in Fig. 5, which also depicts the vertical displacement 
amplitude pattern of the surface of the half-space caused by the diffraction of waves by the trench. 
The maximum displacement is under the foundation. A natural color spectrum for displacements 
ranging from high values in red to low values in blue is used in this figure. 

Displacement amplification and reduction in various regions are well understood from the 
normalized vertical displacement, F', i.e., the ratio of the displacement in the presence of the trench 
over that without the trench. The normalized displacement pattern can be represented by the 
2-D colored contour diagram shown in Fig. 6. In this figure, the color fringes have been designed 
with fewer colors, to highlight the regions of low and high displacement density behind and in front 
of the trench, respectively. The area in light red before the trench is the region where Vis higher than 
2.0. The light blue area represents values of ~" less than 0.5, while the dark blue area represents 
values between 0.5 and 2.0. The green area is the transition zone from the dark blue to the light red, 
and signifies values lower than 2.0. The open trench creates a magnification of amplitude in front 
and near the end of the trench and reduction behind the trench, a phenomenon also observed 

5 6 

Figs. 5 and 6. 5 Vertical displacement amplitude of the surface of half-space; open trench. 6 Contour diagram of the normalized 
vertical surface amplitude; open trench 
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Figs. 7 and 8. 7 Normalized surface displacement along the line of symmetry for single open trench. 8 Contour diagram of 
the normalized vertical surface amplitude, infilled trench 

Table 2. Materml properties of the half-space medium Table 3. Material properties of the infill medium 

Shear modulus G~ = 132 M Pa Shear modulus Gc = 34.29 G~ 
Poisson's ratio v s = 0.25 Poisson's ratio vc = v~ 
Specific weight p~ = 17.5 kN/m 3 Specific weight p~ = 1.37p~ 
Damping coefficient fl~ = 6% Damping coelficient #c = 5.0fl~ 
Rayleigh wave velocity c R = 250 m/see Velocity of Rayleigh wave c~ = 5.0c~ 

experimentally by Richart et al. (1970). Figure 7 shows the normalized amplitude of the vertical 
displacement ~" along the line of symmetry, ~ = xl /L R. This figure shows magnification in front of 
the trench and maximum reduction at some distance behind the trench. A similar observation is 
reported by Richart et al. (1970) on the basis of experimental studies. The amplitude reduction 
factor AR calculated along the xl axis on the basis of Fig. 7 is 0.26. This compares well with 
A R = 0.29 for the 2-D analysis, obtained from Fig. 12 of Beskos et al. (1986). This comparison also 
proves that the 2-D analysis gives a good estimate of vibration isolation effect along the center line 
of the symmetrical 3-D problem. But when it comes to understanding the screening efficiency of the 
trench over a region, one should perform a 3-D study. ARD for the open trench is 0.312. The 
computational time on the Cray 2 computer of the University of Minnesota for this open trench 
case was about 24 mins. 

Example 2: Consider the previous case with the trench being filled with concrete. The material 
properties of the concrete wall are given in Table 2. Figure 8 depicts the contour diagram of 
normalized vertical displacements V, with the light blue color representing values of V less than 0.3; 
the dark blue color, values between 0.9 and 1.0; the light red color, values between 0.9 and 1.0; and 
the dark red color, values greater than 1.0. The green is the transition color between dark blue 
and light red. ARD for this problem is 0.258, i.e., ARO for the infilled trench has a much lower value 
than the one for the open trench. Figure 9 shows the normalized vertical displacement pattern 
along the line of symmetry, which exhibits considerable differences from the open trench case 
pattern of Fig. 7. The computational time for this problem was about 31 mins. 

Example 3: Consider the active vibration case of Fig. 10 where the open trench surrounds 
the rigid foundation. The depth of the trench is T = t/L R = 0.5, while the rest of the dimensions 
are shown in Fig. 10. The foundation load is the same as before and, because of symmetry, one 
quarter of the region is included in the analysis. The surface of the half-space and the open trench 
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Figs. 10 and 11. 10 Dimensions of the vibration isolation problem with open trench enclosing the foundation, i1 Contour 
diagram of the normalized vertical surface amplitude; enclosed open trench 

is discretized into 620 elements. The colored contours of the normalized vertical displacement 
are shown in Fig. 11 where the light blue color represents values of ~" less than 0.6; the dark 
blue, values between 0.6 and 3.0; and the red, values greater than 3.0. The maximum ~" on the 
surface near the edge of the trench is 5.33, much higher than the one for the open trench having 
a value of 3.5. This increase is caused by reflections from side trenches which are absent in the 
single open trench problem. The displacements in the region outside the trench have been reduced 
effectively, as can be seen from the light blue region. The computational time for this problem 
was about 33 mins. 

Example 4: Consider the passive vibration isolation accomplished by three open trenches as 
shown in Fig. 12. Sometimes it may be desirable to build several small trenches instead of one 
long trench, because of several site or geological restrictions. Two trenches of length 0.4 LR are 
symmetrically placed on either end of a long trench which has a length of 1.3 LR, as shown in 
Fig. 12. All the trenches have a depth of T =  t/LR = 0.5 LR. The foundation is vibrating under 
an oscillating vertical load with the same characteristics as before. The discretization of one-half 
of the surface for this symmetric problem involves 608 elements. The displacement pattern, with 
red to blue color fringes, is shown in Fig. 13. All three open trenches reflect waves, as indicated 
by the displacement on the edge of the trenches. The ARD for this problem, over the same area 
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Figs. 12 and 13. 12 Dimensions of the vibration isolation problem with three open trenches. 13 Vertical displacement amplitude 
of the surface of half-space; multiple open trench 

as for the single open trench, is 0.415. The ARt ) is higher than for the single open trench because 
of the refraction of waves through the region between the trenches. The computational time 
required was about 26 mins. 

5 Conclusions 

A numerical method has been developed to solve vibration isolation problems in three dimensions, 
using the direct BEM in the frequency domain. Thus isolation of waves generated by a vertically 
oscillating rigid foundation can be successfully studied for various configurations of open and 
infilled trenches acting as wave barriers in a passive or active fashion. Three-dimensional colored 
graphics have been used to enhance the visual effects of the surface deformation for a number 
of selected representative examples. 

In this work constant boundary elements have been used for simplicity and low computational 
cost in view of the very large size of the problem. However, constant elements are not characterized 
by high accuracy and quadratic elements would be a better choice for more accurate results. 

The proposed methodology, possibly improved with the employment of quadratic elements, 
can be used to perform parametric studies by varying the depth, length and width of the trench 
and by increasing the distance between the source and the trench to obtain effective amplitude 
reduction. One can also study the screening efficiency of multiple trenches. Thus useful design 
guidelines can be established for the benefit of the practicing engineer. In addition, the present 
methodology can be used to validate various experimental studies. These aspects will be the 
subject of a future publication. 
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