
Computational Mechanics I5 (1995) 473-484 �9 Springer-Verlag 1995 

A local coordinate system for assumed strain shell 
element formulation 

H. C. Park, S. W. Lee 

Abstract A new local coordinate system is introduced for the assumed strain formulation so that the 
resulting shell element can pass both the patch test and the locking test. The coordinate system is tested 
by implementing it in two nine-node assumed strain shell elements. The elements adopting the new 
local coordinate system not only pass various patch tests successfully but also perform well in locking tests. 

1 
Introduction 
Various forms of assumed strain formulations have been widely used to construct plate and shell element 
models that are free of locking while kinematically stable. Lee and Nan (1978) introduced the assumed 
strain hybrid formulation based on the Hellinger-Reissner principle to construct finite element models 
for plates and shells. In this method, an independent strain field is assumed for each element in addition 
to an assumed displacement field. Subsequently, kinematically stable and locking free shell elements 
have been developed (Rhiu and Lee 1987; Yeom and Lee 1989; Yeom and Lee 1991; Chang et al. 
1989; Bergmann and Mukherjee 199o). Other researchers (Jang and Pinsky 1987; Belytschko and Wong 
1989; Huang and Hinton 1986; Park and Stanley 1986) used the displacement-dependent strain sampled at 
selected points for strain interpolation. 

In the assumed strain formulation, a set of displacement-independent strains must be selected as 
simply as possible to alleviate locking. However, excessively simple assumed strain field may trigger 
spurious kinematic modes. These spurious modes must be suppressed because they may render a finite 
element model kinematically unstable. An assumed strain field to construct a locking free and 
kinematically stable element often becomes incomplete and non-symmetric in parent coordinates. 
Therefore, a local coordinate system must be defined such that the resulting element stiffness matrix 
can be invariant regardless of element node numbering. Different methods have been proposed to 
determine a local coordinate system which can result in a unique element stiffness matrix (Rhiu and Lee 
1987; Yeom and Lee 1989; Yeom and Lee 1991 ). Previously, an analytical treatment of the kinematic stability 
and invariance of the finite element models based on the Hellinger-Reissner principle has been presented 
by Atluri and his associates (Rubenstein et al. 1982; Punch and Atluri 1984; Xue et al. 1985). 

The assumed strain shell elements developed by Rhiu and Lee (1987) and Yeom and Lee (1989) are 
free of locking and kinematically stable. However, the local coordinate system proposed by Rhiu and Lee 
(1987) does not always result in a unique element stiffness matrix. In addition, the shell element produced 
cannot represent a constant stress or moment state for meshes of distorted elements. A local 
coordinate system which yields a unique element stiffness matrix was introduced by Yeom and Lee 
(1989); however, the element does not pass the patch tests. Subsequently, an alternate formulation was 
introduced by Yeom and Lee (1991), in which the independent strain field is assumed with respect to 
a local coordinate system defined at the centroid of the element. The resulting element passes the patch test 
successfully. However, this approach reintroduces locking. 

In this paper, a new local coordinate system is introduced to obtain an invariant element that can 
pass both the patch and locking tests. The new local coordinate system is implemented in the two types of 
nine-node assumed strain shell elements (Yeom and Lee 1989; Park and Lee 1994). The effectiveness of 
the new approach is validated by conducting numerical tests on a set of example problems. 
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2 
Assumed strain formulation 
An assumed strain finite element model can be constructed from the Hellinger-Reissner principle with 
an independent strain field as a variable in addition to a displacement field. Alternately, an equivalent 
element model can be constructed from the concept of strain substitution based on the principle of 
virtual work in combination with the least squares approximation for the assumed strain field. The 
equivalency of the two approaches can be demonstrated symbolically as follows. 

For solids, the equilibrium equation is expressed in integral form as follows: 

S b~:radV-- 6W = 0 (z) 
v 

where ~ ~ is the virtual strain vector, a is the stress vector, bW is the virtual work due to applied load 
and V is the volume. Introducing the displacement-independent strain e in addition to the 
displacement-dependent strain ~ and the virtual stress 6 a, the compatibility condition in integral form 
is given as follows: 

j ~ r e) ,;Iv = 0 (2) 
V 

The stress-strain relationship for elastic materials is given as follows: 

a =  c ( e -  d h) (3) 

where C is the matrix of elastic constants and e th represents the thermally-induced strain. From Eq. (3), 
the virtual independent strain fie is introduced as follows: 

Substituting Eq. (3) in Eq. (1) and placing Eq. (4) into Eq. (2) lead to 

y 8~Tc (~_ gth) dV-- 3W = 0 (5) 
v 

y & ~ c ( ~ -  e) dv = 0 (6) 
v 

Within an element, the assumed displacement vector u can be symbolically expressed by the element 
nodal degrees of freedom qe as follows: 

u = Nqe (7) 

where N is the shape function matrix. The displacement-dependent strain vector ~ can be written as 

= Bqe (8) 

where B is a matrix of derivatives of the shape functions that relates the strain to the element nodal 
degrees of freedom. Similarly, the virtual displacement-dependent strain vector ~s can be expressed as 

6 g = B ~ q e  (9) 

where 3qe is the virtual element degrees of freedom. 
In the formulation, an assumed strain field independent of the assumed displacment field is introduced 

for the construction of the element stiffness matrix. The independent strain vector ~ is not required to 
be continuous across the element boundaries. Accordingly, it can be assumed within an element to be 
a combination of polynomial functions with unknown coefficients such that 

= P ~ Oo)  



where P is a matrix of assumed strain shape functions and r is the vector of unknown coefficients. The 
virtual independent strain vector can then be expressed as follows: 

~ e = P ~ r  (11) 

Introducing Eqs. (8) and (10-11)  into Eq. (6) leads to 

~ b$~T(Gqe -- H~r = 0 (12) 
i 

where 

G = ~ p r C B d V  
Vi 

H = ~ pTCPdV 
Vi 

(13) 
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Since • or in Eq. (12) is an arbitrary quantity, ~t is expressed as follows: 

or H 1Gqe 04) 

Substituting Eq. (14) into Eq. (lo) leads to 

g = pH-1Gqe 
(15) 

Substituting Eqs. (9) and (15) into Eq. (5) leads to 

~qr(Keqe -- Qth - Qex) = 0 
i 

where 

Ke = GrH-~G 

(16) 

Qth = ~ BT ceth dV (17) 
v 

T 
c~qeQex = bW 

In the above equation K e is the element stiffness matrix, Qth is the element nodal load vector due to the 
thermally-induced strain, and Q~x is the element nodal load vector due to applied loads. The ~r 
has been eliminated at the element level, and the resulting element stiffness matrix is defined with 
respect to the nodal degrees of freedom. 

Alternately, the same finite element model can be obtained by replacing the displacement-dependent 
strain with a "substitute" strain based on the least squares approximation. With a substitute strain g, 
a weighted least squares scalar function L can be constructed as follows: 

L = S ( e - -  ~ ) r c ( e - -  ~) dV (18) 
V 

The substitute strain can be assumed to be in a form as in equation (lO). Introducing the assumed substitute 
strain and displacement-dependent strain, i.e. Eqs. (8) and (lO) into Eq. (18) yields 

L = S (P~t-- B q e ) r C ( p a  - Bqe ) d V  (19) 
V 

Minimizing Eq. (19) with respect to or leads to 

~ = H  1Gqe (20) 
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which is the same as Eq. (14). Substituting Eq. (20) into Eq. (lO) yields 

~'= PH ~Gqe (21) 

In terms of the substitute strain, the equilibrium Eq. (1) can be expressed as follows: 

~c5 grC(e - e th) d V  - 6 W  = 0 (22) 
V 

which is identical to Eq. (5), Introducing Eqs. (9) and (21) into Eq. (22) and carrying out the integration 
yield 

bq~r(Keqe - -  Qth - -  Qex) = 0 ( 2 3 )  
i 

where 

K e = GrH-1G (24) 

The vectors Qth and Qex are defined in Eq. (17). Note that the element stiffness matrix K e is the same as 
that in Eq. (17). 

Assembling all elements, Eq. (23) becomes 

cSqr(Kq -- Q) = 0 (25) 

where K is the global stiffness matrix, q is the vector of the global nodal degrees of freedom, and Q is 
the global load vector. Since bq is an arbitrary quantity in Eq. (25), 

K q = Q  (26) 

For the applied load, the vector q can be obtained by solving Eq. (26). 

3 
Assumed strain for shell elements 
For such locking sensitive cases as plate and shell formulations that include the effect of transverse 
shear deformation, the assumed strain field is chosen to avoid transverse shear or membrane locking 
while kinematic stability is maintained. To avoid locking, the assumed strain field must be chosen as simply 
as possible. However, spurious kinematic modes are triggered when an excessively simple form of the 
assumed strain field is assumed in the element. In this case, higher-order terms are added in the 
assumed strain field to suppress the spurious modes. Often this results in an assumed strain field which 
is incomplete and non-symmetric. 

For example, consider a nine-node shell element with the mid-surface as shown in Fig. 1. the figure 
shows a shell mid-surface (~ = 0) with the global coordinates, X, Y, Z, local coordinate x, y, z, parent 
coordinates 4, ~/, ~. Unit vectors a 1 and a 2 along x and y, respectively, are tangential to the shell mid- 
surface while unit vector a 3, along z, is normal to the surface. 

In the degenerated solid shell concept, a line vector originally normal to the mid-surface is assumed 
to remain a line vector with no change in magnitude. Accordingly, the kinematics of deformation is 

) 
X,U 

= o surface rl=l 

Z, w ~ =-I z'a3 , { F,= 1 

i"1--1 
~ Y , v  

Fig. 1. The mid-surface of nine node shell element 



described by five variables including three translational degrees of freedom and two angles representing 
the rotation of a~ vector. On the other hand, when the above assumption is abandoned, the rotation of 
a3 vector can be described by one vector. Three components of the vector are regarded as three 
degrees of freedom. This leads to an element with six degrees of freedom per node. (See Park and Lee ~994). 

For the nine-node shell element with five degrees of freedom per node based on the degenerated 
solid concept, the following assumed strain field with 38 terms (380(version) has been found to be effective. 
(See Yeom and Lee 1991. ) 

q- ff(~5 ~- ~6~ q- 0(7 ~] q- 0(8~) 

Gyy = ~9 ~- 0(i0~ q- (X11] ~ ~- 0(12 ~1~ 

+f(% + 0(id + ~i~ + 0(~) 

qy = 0(17 + %r + 0(19~ + 0(20~ 

+ f(% + 0(~r + 0(~n + %~) 

+ ~34 ~b/ 

+ ~ ~ ~tl 

(27) 
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~z = 0(25 -]- 0(26 ~ -~ 0(27~ -F- ~X28~ ] + 0(~s ~/__~ 

G = 0(29 + %o~ + %~r/+ %2r "q- 0(36 ~F]2 

When the underlined terms are excluded, the assumed strain field in Eq. (27) is bilinear and symmetric 
in ~ and ~. However, the underlined terms are included to suppress the compatible kinematic modes 
without reintroducing element locking. Because of these underlined terms, the assumed strain field is 
incomplete and non-symetric. Consequently, the resulting element stiffness will not be invariant under the 
coordinate transformation unless special care is teken. 

For the nine-node shell element with six degrees of freedom per node developed by Park and Lee 
(1994), the following assumed strain field with 52 terms (520(version) are used: 

~XX = 0(1 q- 0(2~ -[- 0(3 ~] q- 0(4~/~ 

+ ~(0(2~ + a~d + 0(27~/+ ~2d~) 

ev = 0(5 + 0(6 ~ + 0(7~/+ 0(s ~ 

+ ((0(2~ + a30r + ~ 1 '  + a ~ )  

-]- ~45 ~ 2  

+ % ~2___5~ 

r = 0(9 + 0(10~ + 0(~1~ + 0(~2~ 

= 0(  ~" (28) 

+ ~(0(~3 + %~ + 0(~5~ + 0(~6~) 

C'yZ ~"  0(17 "-}- 0(18~ ~- 0(19/~ -~- 0(20 ~ ]  

+ ff(0(37 + 0(3d + 0(89~ + %r 

C'zx = a21 AI- 0(22~ "q- 0(23/7 ~- 0(24~ 

-}- 0(47 ~2____~ 

+ ~0(51~2_~ 

+ ~ ~___~ 

+ r 0(52 ~ 2  

The above assumed strain field defined in the local coordinate system is incomplete and non-symmetric 
because of the underlined terms that are introduced to suppress the compatible kinematic modes. (See 
Park 1994 for detail.) 

4 
Construction of a new local coordinate system 
An assumed strain shell element which is invariant can be derived by using a local coordinate system 
carefully chosen at each integration point. To construct the local coordinate system, first a local coordinate 
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system is defined at the element centroid i.e. at the ~ = ~/= ~ = 0 point. For this, the posit ion vector of 
a point on the shell mid-surface X0 is expressed in terms of the nodal values as 

X o = ~ N i (  ~, rl) (Xo)i (29) 

where N~(r r/) is the mapping function corresponding to node i and (X0) ~ is the value of X o at node i. 
The unit  vectors vt and v 2 are parallel to ~ and r/, respectively, and are defined at the centroid 
using the following equations. 

 xo/l x01 

 x0/I  x01 
(30) 

Subsequently, the unit  vector v~ is constructed by bisecting v 1 and v2. The vector normal  to the shell 
mid-surface a 3 is obtained by taking cross product  ofvt  and v 2 (Fig. 2). Now, a t is constructed by bisecting 
v~ and vm x a~. Finally, a2 is obtained by taking cross product  of a 3 and a t as shown in Fig. 3- 

Next, it is necessary to define a local coordinate system at other integration points. In this paper, 
the method previously used by Yeom and Lee (1989) is explained along with a new approach to define 
a local coordinate system at each integration point. 

4.1 
Local coordinate system 1 
A local orthogonal coordinate system at each integration point  is defined following the same way used 
for the construction of a local coordinate system at the element centroid. As shown by Yeom and Lee 
(1989), the strain field in Eq. (27) is assumed with respect to the local orthogonal coordinate system defined 
in this fashion. 

4.2 
Local coordinate system 2 
In the new approach proposed in this paper, the a 3 vector is first constructed at each integration point  
following the same way used to define a 3 at the element centroid. The a 3 vector at the element center (a c in 

c and c undergo rotations Figure 4) is then rotated to a 3 at an integration point  (a3C). As a c rotates to a~, a t a 2 
to generate a~ and a~ that  are expressed by following equations described in Kane et al. (1987). 

a~ = a l c c o s 0 -  (ax c • M s in0 + (aC.Z) ~(1 - cos0)  

a2G = aCcos 0 - (a c • )0 s in0  + (aC-Z)k(1  --  cos0)  

where 

G ~, = a c • a 3 

0 = cos- l (aC.a~)  

(31) 

(32) 

Figs. 2, 3. 2 Construction of Vl, v2, ~]m and a 3 vectors at the element center. 3 Construction of a local coordinate 
system at the element center 



In Eqs. (31-32) and Fig. 4, superscript 'G' indicates that the vector associated with it is defined at an 
integration point or Gauss point and superscript 'C' indicates the element center. 

The two local coordinate systems become identical to each other when an element is fiat and rectangular. 
When the element is used to model cylindrical shell structures using uniform meshes, the local coordinate 
system i turns out to be equal to the local coordinate system 2. However, the two local coordinate systems 
become distinct from each other when the element geometry is distorted. 

5 
Numerical tests 
Patch tests were performed to check the ability of the element models using local coordinate system 
2 to represent constant stress or moment. In addition, locking tests were carried out to investigate whether 
the new local coordinate system z works well for thin plate and shell modeling. Depending on the local 
coordinate system implemented, the nine-node shell element with five degrees of freedom per node 
and the nine-node shell elements with six degrees of freedom per node are designated as follows: 

Element designation Local coordinate system DOF per node 

C 1/5 1 5 
C2/5 2 5 
C2/6 2 6 

In the tables that follow, the result for 'C 1/5' is taken from Yeom and Lee (1991) where it is presented 
as 'OLD'. The material properties used in the numerical tests except for the beam with 9o ~ 
pre-twist are Young's modulus E = 10 x 106 and Poisson's ratio v = 0.3 

6 
Patch tests 

A reactangular plate under uniform tension A rectangular plate is under uniform tension Px = 1 (psi) 
as shown in Fig. 5. Using the symmetry in geometry and loading, a quarter of the plate is modeled by 
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Fig. 4. Construction of a local coordinate system at an 
integration point 
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Figs. 5,6. A rectangular plate under uniform tension. 6 D2 x 2 and D4 • 4 meshes 
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distorted 2 • 2 and 4 • 4 meshes that are denoted by D2 • 2 and D4 • 4, respectively, as shown in Fig. 6. 
The dimensions of the plate are L = b = 2 (in) and the plate thickness is t = 0.02 (in) resulting in a L/b 
ratio of 1 and a b/t ratio of lOO. 

The horizontal displacement at the plate corner A is normalized by the exact solution U=c t = pxL / 
(2E). The normalized horizontal displacement at the plate corner A is denoted by U A in Table 1. Axial stress 
evaluated at the integration point B is also normalized by the exact solution and denoted by (G=)B. As 
shown in Table 1, the C2/5 and C2/6 elements represent the constant stress state even for the 
distorted meshes. On the other hand, the C 1!5 element adopting the local coordinate system 1 fails to 
represent the constant stress state when this example is modeled by distorted meshes. 

A rectangular plate under uniform bending A uniform bending moment per unit length M x = 1 (lb- 
in/in) is applied along the edges of a rectangular plate (Fig. 7)- As in the previous example, a quarter 
of the plate is modeled by distorted 2 • 2 and 4 • 4 meshes (D2 • 2, D4 • 4 in Fig. 6) to check whether the 
element can represent a constant moment state. 

The length in the Y direction is fixed as b = 2 (in) and the length in the X direction, a, is given such 
that the resulting aspect ratio a/b = I, 2. The plate thickness is given as t = 0.02 (in) resulting in the b/t 
ratio of loo. 

The lateral displacement at the plate corner C is normalized by exact solution (Timoshenko and 
Woinowsky 1959). The moments M x and My at the integration point B are normalized by applied 
M,. Figure 6 shows the location of points B and C. The normalized lateral displacement is denoted by 
W c and the normalized moments are denoted by (M=) B and (My) ~ in Table z. Note that, in contrast to the 
C1/5 model using the local coordinate system 1, the C2/5 and C2/6 element models represent constant 
moment state even when distorted meshes are used. 

Mesh Element model U a (axx) ~ 

D2x2 

D4• 

Cll5 0.9968 0.9974 
C2/5 1.0000 1.0000 
C2/6 1.0000 1.0000 

C1/5 0.9995 0.9994 
C2/5 1.0000 1.0000 
C216 1.0000 1.0000 

Table 1. Normalized horizontal 
displacement and stress 

Y 

/ 

S / 1  
I- "1 a 

~ X  

Fig. 7. A plate under bending moment 

Table 2. Normalized lateral displacement and moment resultant for M, = 1 

a/b Element model D2 • 2 D4 • 4 

Cl/5 
C2/5 
C 2/6 
C 115 
C2/5 
C2/6 

wc (Mx)= (G)= Wc (Mx)~ (G)= 

1.0005 0.9992 0.0011 
1.0000 1,0000 0.0000 
1.0000 1.0000 0.0000 
1,0005 0.9858 --0.0025 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 

1.0001 0.9995 --0.0003 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 
1.0000 0.9954 --0.0009 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 



A circular ring under uniform internal pressure A circular ring of radius R = 100 (in), width b = 1 
(in) and thickness t = 1 (in) is under uniform internal pressure (Fig. 8). Due to the symmetry in geometry 
and loading, a 5 ~ section of the ring with width of b/2 is divided by two uniform elements (U2) and 
two distorted elements (D2). The D2 mesh is made such that the angle between line BE and AC is 60 ~ 
when the 5 ~ section is stretched on a fiat plane (Fig. 9). 

The radial displacement at the corner A and hoop stress at the integration point F are normalized 
by the corresponding exact solutions in Boresi et al. (1978). The normalized radial displacement and hoop 
stress are denoted by WA and (cr00)F, respectively in Table 3. Note that the C 1/5 model can not represent 
constant stress state when distorted meshes are used. The element models using the local coordinate 
system z have the ability to represent the constant stress state. 

A sphere under uniform external pressure As shown in Fig. 10, a sphere of radius R = 10 (in) and 
thickness t = 0.1 (in) (R/t = 100) is under uniform external pressure Pr = 1 (psi). Using the symmetry 
in geometry and loading, a 0 = 0 = 2~ portion is modeled for this example. The section is divided by a 2 • 2 
uniform mesh (U2 x 2) and a 2 x 2 distorted mesh (D2 x 2). The 2 x 2 distorted mesh is constructed 
such that the angle 7 = 60~ when it is stretched on a flat plane (Fig. la). 

Table 4 lists the radial displacement (Ur) at the node point A and tangential stresses (r;4~ and a00) 
at the integration point G normalized by the corresponding exact solutions provided in Roark and Young 
(1975). The radial displacement at every nodal point is identical due to the symmetry in geometry and 
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Figs. 8, 9. 8 A ring under uniform internal pressure. 9 A D2 mesh for 5 ~ section of the ring 

Mesh Element model W a (aoo) ~ 

U2 

D2 

C 1/5 1.0000 1.0000 
C2/5 1.0000 1.0000 
C2/6 1.0000 1.0000 
C 1/5 1.0022 1.0120 
C2/5 1.0000 1.0000 
C2/6 1.0000 1.0000 

Table 3. Normalized radial 
displacement and hoop stress 

Z 

' ,fl ' ,  2 ......... 
'~ 2o",., " .......... D A 

X 4 ';'~", ,, ,,, ,,,,,, 

B B C 

10 Y l l a  b 

Figs. ao, n. loAsphereunderuniformexternalpressure, naA uniformlydivided2 x 2meshbAdistorted2 x 2mesh 
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loading. Tangential stresses at every integration point inside any element are also equal to each other. 
The results shown are obtained using the nine-node element with six degrees of freedom per node in which 
the local coordinate system 2 is adopted (r This example shows that the element model C2/6 has 
the ability to represent constant stress state. 

7 
Locking test 

A clamped square plate under uniform pressure A square plate clamped along the four edges is under 
uniform pressure (Fig. 12). Using the symmetry, a quarter of the plate is modeled by distorted D2 x 2 
and D4 x 4 meshes as well as uniform U2 x 2 and U4 x 4 meshes. The D2 x 2 and D4 x 4 meshes 
are the same as those used in the previous examples (Fig. 6). The side lengths of the plate are a = b = 2 
(in) and the plate thickness t is given as 0.02, 0.002 and 0.0002 (in). 

The maximum displacement at the plate center is normalized by the exact solution (Timoshenko 
and Woinowsky 1959) and listed in Table 5. When uniform meshes are used, all three element models 
give the same results. However, the result obtained by C2/6 is slightly better than those obtained by C 1/5 
and C215, when D4 x 4 mesh is used for b/t = 103 and 104 cases. 

A pinched circular ring A circular ring is subjected to a pair of concentrated loads P -- 1 (lb) as shown 
in Fig. 13. The dimensions of the ring are radius R = 100 (in), width b -- 1 (in) and thicknesses are given 
as t = 1, 0.2, 0.1 (in). Using the symmetry of geometry and loading, only one eighth of the ring is modeled 
with meshes of distorted elements (D4 and DS) as well as a mesh of four uniformly divided elements (U4). 

The U4 mesh is constructed by dividing one eighth of the ring into four uniform elements in the 
circumferential direction. Figure 14 shows the D4 and D8 meshes for the section. For the D4 mesh, the 

U 2 1 2  D212 

U r 1.000 1.000 
%+ 1.000 1.000 
%0 1.000 1.000 

Table 4. Normalized radial displacement U r and 
tangential stresses a ++, %o 

Y / 
C.L. 

C.L. 
I" "l a 

~ X  

Fig. 12. A clamped square plate under uniform pressure 

Table 5. Normalized lateral displacement at the square plate center 

b/t Element model U2 x 2 U4 x 4 D2x2  D4•  

102 C1/5 1.0131 1.0029 0.9955 1.0011 
C2/5 1.0131 1.0029 0.9962 1.0004 
C2/6 1.0131 1.0029 1.0186 1.0035 

103 C 1/5 1.0111 1.0009 0.8421 0.9857 
C2/5 1.0111 1.0009 0.8517 0.9858 
C2/6 1.0111 1.0009 0.9239 0.9976 

104 C 115 1.0111 1.0009 0.5801 0.9345 
C2/5 1.0111 1.0009 0.2324 0.9435 
C2/6 1.0111 1.0009 0.2282 0.9854 



P 

13 P 

R= lO0in 

P = l l b  

E = 107 psi 

v=0.3 

D 

E 

C 

14 

Figs. 13,14. 13 A pinched ring. 14 The D4 and D8 meshes for 1/8 of the ring 
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Table 6. Normalized displacement at the loading point 

R/t Element model U4 D4 D8 

100 C 1/5 1.0008 1.0007 1.0002 
C2/5 1.0008 0.9991 1.0000 
C2/6 0.9983 0.9970 0.9996 

500 C 1/5 1.0006 0.9953 0.9993 
C2/5 1.0006 0.9828 0.9970 
C 2/6 0.9981 0.9861 0.9973 

1000 C 1/5 1.0004 0.9857 0.9977 
C2/5 1.0004 0.9530 0.9917 
C2/6 0.9981 0.9711 0.9933 

angle EBC is 60 ~ when the modeled section of the ring is stretched on a flat plane. The D8 mesh is 
constructed by dividing the D4 mesh along the dotted lines. 

The radial displacement at the loading point is normalized by the exact solution (Lee and Pian 1978) 
and listed in Table 6. For the distorted mesh, the C 1/5 model appears to work slightly better than the 
C2/5 and C2/6 models. However, the differences are negligible. 

A 90 ~ pre-twisted cantilever beam under tip loads A 90 ~ pre-twisted cantilever beam is under forces 
applied at the beam tip in the Y or Z direction as shown in Fig. 15. Tip displacements in the corresponding 
loading directions for two loading cases (a) and (b) are calculated for two beams with different thicknesses. 

Table 7 lists the tip displacements in the Y and Z directions for the loads in the Y and Z directions, 
respectively. The displacements are obtained using the nine-node shell element with six degrees of 
freedom per node (C2/6) and normalized with respect to exact solutions provided in Belyschko and 
Wong (1989). The numerical solutions agree very well with exact solutions even for a very thin beam. 

Z ,  w L =  12in 
b = l . 1  in 

E = 2 9 X 1 0 6  psi 
Y , v  v =  0.22 

~ , Wtip 

~ -'~ (a)Fy,  vti p 

~ X , u  
Fig. 15. A 90 ~ pre-twisted cantilever beam under tip 
forces 



Table 7. Normalized tip displacement of a 90 ~ pre-twisted cantilever beam 

Mesh t = 0.32 in t = 0.0032 in 
size 

(a) V~p (b) Wt~ v (a) V~v (b) Wti p 

6 • 1 1.00472 1.00753 1.00320 0.99683 
12 • 1 1.00140 1.00131 1.00984 1.00355 
12 • 2 1.00066 1.00103 1.00420 1.00255 

484 8 
Conclusion 
In the present paper, a new method to determine a local coordinate system is proposed and examined 
by implementing it in two n inemode assumed strain shell elements. From the patch tests, the 
shell elements C2/5 and C2/6 employing the new local coordinate system demonstrate their ability to 
represent constant stress or moment  state. In addition, the C2/5 and C2/6 models are insensitive to shear 
and membrane locking. This indicates that the new local coordinate system removes the shortcomings 
of the local coordinate system used in the C 1/5 model without reintroducing element locking. 
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