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Abstract. The well-known finite element representation of reinforcing bars by means of overlay ("rebar") elements is recast in 
the context of finite strain analyses of cord-reinforced composite materials. The variational formulation including the linearized 
forms is presented on the basis of hyperelasticity. Three material laws including two variants of the Neo-Hooekean model and 
the quadratic logarithmic model are investigated. An explicit formulation for uniaxial stress states is given for the Neo- 
Hooekean model. A comparative evaluation with regards to computational efficiency and physical plausibility shows that the 
logarithmic model is optimally suited for this class of problems and for moderately large strains. The rebar-element concept 
in conjunction with an incompressible finite element formulation for the representatien of a rubber matrix material is applied 
to comparative finite strain FE-analyses of a cord-reinforced rubber sandwich panel, with different hyperelastic models used 
for modelling of the ply material. 

1 Introduction 

Finite element analyses of structures made of cord reinforced composite materials require adequate 
methods to characterize the highly anisotropic behavior induced by one or several layers of parallel 
fiber bundles (cords) with different spatial orientation embedded in a matrix material. A typical 
example for this class of structures are automobile tires. Currently most numerical analyses of 
cord-reinforced composite materials are based on theories and techniques originally developed 
for laminated fibrous composites, with several arbitrarily oriented cord layers and the matrix 
material being represented within one single finite element on the basis of an anisotropic constitutive 
law, see Noor and Tanner (1985), Tabaddor and Stafford (1985), Reddy (1989) and references 
therein. An alternative computational approach on the basis of so-called rebar elements which 
previously has been successfully applied in computational mechanics of reinforced concrete 
structures in the context of the infinitesimal theory, see, e.g., Mang and Meschke (1991), turned 
out to be remarkably effective in finite strain analyses of cord-reinforced rubber composite material 
(Helnwein et al. (1993)). This technique completely circumvents the drawbacks associated with 
"averaging formulations" without significant additional computational efforts. In particular, it 
provides a mechanically proper description of the different constituents in the framework of large 
strain theories. The merits of this approach are discussed in detail in Sect. 2. 

Section 3 contains the variational formulation for a single fibre on the basis of hyperelasticity, 
remarks on the implementation in a finite element code are given in Sect. 4. In Sect. 5 different 
material models are re-formulated for the special case of uniaxial stress states. Two models belong 
to the class of Neo-Hookean material laws (Sect. 5.1). Explict expressions for the axial stress- 
stretch relationship and for the uniaxial tangent modulus, respectively, are given for one variant 
of these formulations. In Sect. 5.2 the quadratic logarithmic model is proposed as an effective 
alternative approach suitable for most practical applications. 

Section 6 contains a comparative evaluation of these three models, along with the still widley 
employed St. Venant Model, with regards to their computational effectiveness and their uniaxial 
stress-stretch characteristics at large strains, respectively. 

In Sect. 7, the influence of the different formulations with regards to the predicted structural 
response is illustrated in the context of FE-analyses of a cord-reinforced rubber sandwich panel~ 
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Fig. 1. Modelling of cord-reinforced composites by "Rebar"--elements 

2 Remarks on rebar-elements 

Rebar elements may be characterized as "overlay" elements that represent one or more cord layers 
with arbitrary orientation in conjunction with corresponding elements representing the matrix 
material (Fig. 2). The matrix element and the "overlay" element share the same nodal points. 
Therefore, no additional degrees of freedom are introduced. A recent paper by Helnwein et al. 
(1993) demonstrated, that this well known methodology which has been employed successfully in 
computational mechanics of reinforced concrete structures is well suited for the analysis of 
reinforced composite materials when extended to the large strain regime. This approach possesses 
a number of desireable features when compared to standard models based on techniques developed 
for laminated fibrous materials: 

�9 The different components--several unidirectional laminae and the matrix material--are 
represented completely separately. In the case of rubber matrix material, for instance, a non-linear 
elastic law such as the Mooney material law may be applied altogether with a mixed finite element 
formulation to account for the incompressible character of rubber. As far as the cord layers are 
concerned, formulations of the Neo-Hookean type with different material parameters for different 
layers within one element may be applied. Consideration of micro buckling or of plastification of 
the cords does not constitute any additional difficulties. 

�9 Several cord layers may be represented within one single element without inducing any 
additional discretization error. This makes the use of rebar elements particularly efficient in large 
scale 3D analyses. 

�9 Experimentally obtained material parameters for the individual components may be used 
directly as input parameters for the analyses. 

�9 The (true) stress state is obtained separately in the different plies and in the matrix material, 
respectively. 

3 Kinematics, weak form and its linearization for the 1-D case 

In this section we give a summary of the basic kinematics, the weak form and its exact linearization 
on the basis of hyperelasticity for the special case of a one dimensional fibre with arbitrary Spatial 
orientation. 

Coordinates XA e ~  in the reference configuration are associated with corresponding coordinates 
x A of a point A in the deformed (spatial) configuration by the map xA = ~O(XA). In what follows, 
a single fiber ("rebar") with its.orientation defined in the reference configuration by the unit vector 
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T is considered. The corresponding unit vector t in the spatial configuration is given by 

,~n t = FT (1) 

where 2R is the axial stretch of the fibre and F denotes the deformation gradient of the composite 
material. Multiplying Eq. (1) by F r and by T r, respectively, the stretch '~R may be expressed in 
terms of the Right Cauchy-Green tensor C = FTF and of T as 

2~ = TrCT. (2) 

The deformation of the rebar fibre is characterized by a modified Right Cauchy-Green tensor, 
CR, defined by its spectral decomposition 

C~ 2 2 T |  ~ 2 ,~ A = )~L,A L |  (3) 
A=l,2  

where 2L, A denote the lateral stretches and L A are unit vectors orthogonal to T. The under- 
lying assumption of axisymmetry of the deformation of one single fibre implies that 2L, 1 = 2L, 2. 
Equation (3) then takes the form 

Ce = 22T | T + 22(L ~ | L ~ + L 2 | L2). (4) 

From Eq. (4) it follows, that the direction of the rebar fibre, T, is a principal direction of CR, and, 
consequently, the in-plane shear deformations of the plies are neglected. Moreover, the assumption 
of zero lateral stresses in the fibres implies that 2 L =f(2R). Compatibility with respect to the 
deformation of the matrix material and the fibre in axial direction requires that 

TrCR T = 22 = TTCT.  (5) 

The space of admissible variations, ~ ,  is defined in the standard form as 

~/:={ri:q~(2)~lR3[q(q~(X))=O for Xe?oN} (6) 

where c~q,2 denotes the part of the boundary 02  of the body 2 where displacements are prescribed. 
We further use the notation of go = ri~ denoting the admissible material variations. 

With this standard notation at hand, the weak form expressed in the spatial configuration takes 
the form 

g(go, r i )=  ~(TR'FI~dv - -gex t  (7) 
U 

where t/~ = trvri  t is the gradient of the virtual displacements transformed to the rebar direction 
and gent denotes the virtual work of the external forces. Noting that 

VriF = GRAD rio (8) 

altogether with Eq. (1) yields 

tl, R = tTGRAD t/oF_ tt = 1 t rGRAD !/o T. (9) 
2R 

The relation between the Cauchy stress o- and the Second Piola Kirchoff stress S 

1 
a =  - FSF r, (10) 

J 

with J = Det F, may be specialized to the uniaxial case using Eqs. (1), (2) 

22 
o-~= t r 1 FSFrt  = 1 1  T rC T S , T rC T  = .. ~ SR (11) 

j j ) 2  j 

with o R = t r a t  and S R = TrST. From Eq. (7) the final result for the weak form expressed in the 
reference configuration is obtained as 

G(ep, rio) = ~ SR "TrFr  GRAD rio T d V -  Gext. (12) 
v 
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The constitutive behavior of the rebar fibre is expressed in terms of a stored energy function, W, 
of the form 

W(X, CR) = W(X, 2 R, 2L), (13) 

where Eq. (4) is considered. Note that W(X, 2R,2L) is rotationally invariant and, therefore, 
objectivity of the constitutive response is guaranteed. The Second Piola-Kirchhoff Tensor is 
obtained from the stored energy function as 

S = 2 c~ W = 2 ~ W ~2R 0 W 02L - -  +- 2 (14) 
~CR 02R C~CR C~2L ~CR" 

From Eq. (2) the relation 

2~gd)~ g = TrdCg T = dCR:T | T (15) 

is obtained, and consequently, 

~2R_ 1 T |  (16) 
~C R 22~ 

Analogousely, 

82 L _ 1 L I |  a +LZ| (17) 
OCR 22L 

Inserting Eqs. (16) and (17) into Eq. (14), transforming S into the direction of the rebar fibre and 
noting that due to orthogonality LA-T = 0, A = 1, 2, yields 

SR(2R, )~L) = 2TT 0 W(2R, "~'t) 632R T = 0 W(2 R, 2L) 1 _ 2 ~ W(2s' 2L) (18) 

Substituting T in Eq. (18) by T = )~R F -  it (Eq. (1)) and noting that 

T Q T  = 22RF- l(t | t)F -r,  (19) 

the Kirchoff stress tensor, transformed to the direction of the rebar fibre, is obtained as 

T'R('~R, '~L) = tT'ct = tTFSFTt  - -  ~W('~R' "~L) 2R" (20) 
~2R 

For the case of uniaxial stress states considered here, the constraint equation 

TL(,)~R, 2L ) = ~W()~R, )LL) )L L = 0 (21) 
~2L 

determines the relation 2L = 2L(2R). Hence, linearization of S R = SR(2R) is obtained as 

dSR - dSg(2g) d22 dC. (22) 
d22 dC 

The first term on the right hand side of in Eq. (22) represents the uniaxial tangent modulus which 
is obtained from the specific hyperelastic model by taking the derivative of Eq. (18), 

dSR - 2 d2 W('~'R' '~r) 
d)~ 2 d()L2) 2 

From Eq. (16) the second term is obtained as 

d)'2 T |  
dC 

(23) 

(24) 
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Linearization of C is given by the standard result 

dC = FTGRADu + GRADruF. (25) 

With these results at hand, the exact linearization of the weak form Eq. (12) in the reference 
configuration is readily obtained as 

D G'rlo = S dSR'TrFTGRAD r/oT dV + ~ S R'T T d F  T GRAD r/oT d V 
v v 

v \d~.R/ 

+ ~ (GRADu T)TSR(GRAD I/0 T) dV. (26) 
v 

Accordingly, using Eq. (1) and Eq. (8), linearization of the Euler-Lagrange equations expressed 
in the spatial configuration is obtained as 

fig" r / =  ~ trvsu t'(e,)-trVl/St dv + ~ (Vu t)r" o'R" V !/t dr. (27) 
p /) 

v is the volume of the body in the current configuration, e t denotes the uniaxial spatial tangent 
modulus, defined as 

- 2~ ( 2dSR'~ = )4 E (28) 
e t - - f \ ~ 2 R ]  j r, 

where Er = 2dSR/d22 represents the material tangent modulus of the rebar fibre, and 
VSu = 1 g(ui4 + ua, i). (29) 

4 Remarks on the numerical implementation 

The geometry of the rebar layers is defined in the context of 3D isoparametric elements, char- 
acterized by the map 

N 

xh~---e E NA(~) XA' (30) 
A = t  

where X h X A ~, are the interpolated and the nodal coordinates in the reference configuration, 
respectively, NA(~) are the shape functions, and ~r = [~, ~, ~] are the natural coordinates in tile 
isoparametric domain and N is the number of nodal points in the element. 

Figures 2a and 2b show a typical rebar layer embedded in a 20 node isoparametric element. 
Figure 2a contains the geometry of the cord layer in the parent element, Fig. 2b illustrates the 
corresponding configuration in the isoparametric mapping. The numbers 1, 2, 3, 4 denote the 
integration points in one layer. The spatial position and direction of the rebar fibres is defined for 
each layer in the isoparametric domain at n integration points (Fig. 2a) by the values ~-, and T,, 

n 
a b 

Fig. 2. Typical Rebar layer in a 20-node isoparametric 
element: a geometry in the parent element, b geometry 
in the isoparametric domain 
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which are input by means of a subroutine. ~-, denotes the distance of the rebar fibre from the middle 
surface of the element at each integration point n. The spatial position of a rebar layer within the 
element is then defined by the shape functions N g as 

(R(~, ~) = ~ NA,R(~, q)(A" (31) 
A=I 

In the present context, the geometry of a rebar layer is approximated by a bilinear form defined 
in the isoparametric parent element, with the natural coordinates of the integration points 

1 1 

and the shape functions N R given as 

Nt ,g= �88162  1)(x/5~/-- 1), N2,R= --�88 + l)(x/3~/--1) 

Na,R =�88 + 1)(x/5~/+ 1), N4,R=--�88 1)(w/3q + 1). (33) 

5 One dimensional hyperelastic formulations 

In this section, we formulate the constitutive behavior of a general class of (compressible) materials 
for cord-reinforcements undergoing large deformations for the special case of uniaxial stress states 
using two different formulations of the standard Neo-Hookean material model (Sect. 5.1) and the 
quadratic logarithmic model (Sect. 5.2). A complete summary of the expressions for the function of 
stored energy, IV, the fibre stress S R, and the uniaxial material tangent modulus E r for all models 
including the linear St. Venant Model, is contained in the Appendix. 

5.1 Neo-Hooekean Models 

A particular formulation of W(CR), that has the correct behavior as JR --* 0 and JR ~ o% see, e.g. 
Ciarlet (1981) for a detailed discussion, was proposed by Simo and Pister (1985) in the form 
(Neo-Hooekean Model 1) 

W(CR) = U(JR) + [TV(CR) = �89 - ~G)(ln JR) 2 -- GlnJg + G(IRt  -- 3) (34) 
2 ' 

where IR, 1 = tr CR and K and G correspond to the bulk and the shear modulus of the linear theory, 
respectively. We remark that this formulation preserves the physical meaning of the Poissons ratio 
in the large strain regime. In particular, for v = 0 and for uniaxial stress states, the lateral stretch 
2 L = 1 (see Fig. 7). 

For the special case of a single fibre characterized by an uniaxial stress state, 1R,1 and JR may 
be expressed by the axial (2R) and lateral (2,:) stretches, using Eq. (4), 

JR = 2R ")o2, IR, t = 22 + 222. (35) 

2 L has to be determined from the constraint Eq. (21), which takes for this particular model the form 

rL(2R, 2L) = K In J + G(2~ - ~ln a - 1) = 0. (36) 

Remarkably, no explicit expression for 2 L = f()~R) can be obtained from Eq. (36). 
We may, however, determine a closed form solution by rewriting Eq. (36) as 

y + x exp (y) = x - In 2R (37) 

using the substitutions 

G 
y = l n 2 L  z, x -  (38) 

K -- 2G/3 
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and expanding exp (y) by a third order polynomial as 
3 ym 

exp(y)~  ~ - - ,  (39) 
m=0 m[ 

with lY] < oo as the interval of convergence. The closed form solution of the resulting algebraic 
equation of third order, 

y 3 + 3 y 2 + 6 y  1+  + - l n 2 a = 0  (40) 
~c 

is easily obtained from the Cardano formulae. The respective expressions for 2 L, S R and for the 
uniaxial tangent modulus E r = 2dSR/d2 ~ are contained in the Appendix. 

As an alternative approach, Eq. (36) may be solved by a Newton-Raphson iteration procedure. 
In Sect. 6 the issue of computational efficiency of both approaches will be adressed. Excellent agree- 
ment between the implicit and the explicit solution has been obtained for 0 < 2 R < 4. 

A variant of the compressible Neo-Hookean material is characterized by a separation of 
volumetric and deviatoric terms in the stored energy function in the form (Neo-Hookean Model II) 

W(CR) = U(JR) + W(C R) -- ~- In JR + -2 (Ia,1 -- 3) (41) 

where ]-R 1 = JR 2/3 IR i and U(JR) is a convex function. The constraint equation is obtained from 
Eq. (21) ~_nd from Eq~ (41) as 

K 2 rr()bR')~L) = ~ ( J R -  1 ) -  5UVRt C't-2/S ()L2--22) =0.  (42) 

Again, as was noted already in the context of the model by Simo and Pister, 2 L cannot be obtained 
in closed form from Eq. (42). Therefore, an iterative procedure like the Newton algorithm has to 
be applied. We refer to Sect. 6 for a comparative computational assessment with regards to the 
effectiveness of the enforcement of the constraint condition Eq. (21). 

The axial Second Piola Kirchoff stress and the tangent modulus are then determined from 
Eq. (18) and from evaluating dSR/d22, respectively. The respective expressions are summarized in 
the Appendix. 

5.2 Quadratic Logarithmic Model 

In this section, the quadratic logarithmic model is proposed as an alternative approach that 
completely by-passes the issue of costly iterative procedures or lengthy evaluations of algebraic 
expression as it is the case for the classical Neo-Hookean formulations in conjunction with uniaxial 
stress states. The logarithmic model has been used recently in the context of multiplicat~ve 
plasticity algorithms, see e.g. Simo (1992). It is characterized by a quadratic stored energy function 
of the form 

W(CR) = W(2R, 2i.) = �89 -- 2G)(ln JR) 2 + G [(ln 2R) 2 + 2(ln )@2]. (43) 

This model fulfills the requirements for extreme strains in the sense that W ~  oo as JR ~ 0  and 
W--, oo as J R ~  oo. Unfortunately, however, W is not a convex function. Consequently, the 
feasibility of this formulation is restricted to the full compressive regime but, as far as tensile strains 
are concerned, only to moderately large strains (see Sect. 6). Despite this shortcoming, this model 
provides an excellent approximation for practical purposes, vastly superior to the St. Venant 
Model of finite elasticity. We refer to Sect. 6 for a detailed comparative evaluation. 

The constraint equation 

Zc(2 R, 2L) = (K -- 2G)In JR + 2G In 2 L = 0 (44) 

yields the lateral stretch in completely analogous form to the infinitesimal theory with the strains 
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Table 1. Normalized CPU time consumed for the evaluation of 2R, SR and dSR/d22R using different constitutive formulations 

v 2R St. Venant Neo-Hooke I Neo-Hooke I Neo-Hooke II Logarithmic 
Model explicit iterative iterative Model 

0.0 0.5 1.0 9.0 39.7 7.1 2.7 
3.0 1.0 9.1 8,6 7.5 2.7 

0,25 0.5 1.0 9.1 7.9 8.7 2.7 
3.0 1.0 8.9 7.9 8.6 2.7 

0 .~9  0.5 1.0 8.9 5.8 9,9 2.7 
3.0 1.0 9.2 5.8 11.0 2.7 

e R, e L defined now as the respective logarithmic stretches 

In 2L = eL = --  VeR = --  V In 2R. (45) 

The axial Kirchhoff stress rR and the Second Piola Kirchhoff stress SR are then obtained in the 
trivial form 

9 G K  In 2 R 
r R - In )OR = E In )~R, SR = E - - 5 - '  (46) 

3K + G ~'R 
and the axial tangent modulus E T is given by 

2 dSR E T :  d22 = E l 1  --ln22R] ~7 R j .  (47) 

6 Evaluation of the models 

This section contains a comparative evaluation of the different constitutive formulations investi- 
gated in Sect. 5 along with the "classical" St. Venant Model of finite elasticity, defined in the 
reference configuration by 

S =  K - - - f -  t r E I + 2 G E ,  with E = � 8 9  (48) 

We start with an assessment of the relative computational effectiveness of the models. More 
precisely, we compare the computer time required for the evaluation of 2R, SR and dSR/d2ZR . This 
comparison includes iterative procedures altogether with the explicit expressions proposed in 
Sect. 5.1. 

We will refer to the formulation proposed by Simo and Pister (1985) as the N e o - H o o k e a n  
M o d e l  I and, with regards to the alternative formulation investigated in Sect. 5.1, as the N e o -  
H o o k e a n  M o d e l  I I .  Table 1 summarizes the relative CPU time, consumed for the evaluation of 
2 R, S~ and dSR/d2  ~ for different values of the poissons ratio v and for two values of the axial 
stretch, 2 R = 0.5 and 2 R = 3.0, using different material models, normalized with regards to the 
respective CPU time required for the St. Venant Model. As far as the comparison between the 
iterative procedure and the explicit formulation is concerned, Table 1 reveals that, except for small 
values of v, the numerical evaluation of the lengthy algebraic expressions given in the Appendix 
is generally more time consuming than the iterative Newton procedure. As expected, the simple 
expressions involved in the determination of 2 R, SR and dSR/d2  ~ for the logarithmic model make 
this formulation extremely attractive from the computational standpoint. The required CPU time 
is only --~ 30% compared to the Neo-Hookean formulations. 

Figures 3-5 show the uniaxial Cauchy stress-stretch characteristics obtained for different 
values of Poissons ratio v from the St. Venant Model, the Neo-Hookean Models I and II and from 
the logarithmic model, respectively. They illustrate the well known fact that the St. Venant Model is 
useless even for moderately large strains. The three hyperelastic formulations agree remarkably 
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-3.0 0 Logarithmic Model 

g 

1 ' i 0 ' -  X R 

Figs. 3-5, 3 Stress-stretch characteristics for differellt 
models and v = O. 4 Stress-stretch characteristics for dif- 
ferent models and v = 0.25, 5 Stress-stretch characteristics 
for different models and v = 0.5 

well in the compressive regime. When large tensile strains are involved, all three models show 
different OR--2R characteristics. This is specially well illustrated in Fig. 4, corresponding to 
v = 0.25. We remark, that no attempt of an evaluation on the basis of experimental results is made 
in this paper, and therefore no judgement  concerning the physical feasibility of the models is made 
here. All three models, however, show vastly superior response compared to the St. Venant Model. 
The logarithmic model suffers from the drawback, that for extreme strains a physically un- 
motivated and numerically problematic "softening" effect occurs. Fortunately, this occurs at strain 
levels which are irrelevant for most practical applications: softening starts at 2 R = e = 2.72... for 
v = 0 (Fig. 3) and at 2 R = e a = 7.39... for v = 0.25 (Fig. 4). No softening occurs for the incompres- 
sible case. In this case, both Neo-Hookean  formulations necessarily coincide (Fig. 5), since the 
deviatoric part  of the stored energy function coincide for J = 1. 

Figures 6, 7, 8 and 9 contain 2R -- 2L plots for different values of v obtained from the St. Venant 
Model (Fig. 6), the Neo-Hooke  Model I (Fig. 7), the Neo-Hooke  Model II (Fig. 8) and the 
logarithmic model (Fig. 9). Only the Neo-Hookean  I formulation and the logarithmic model 
preserve the physical meaning of Poissons ratio for any value of 2 R, which implies, that 2 L = 1 for 
v = 0 and (2 R - 1).(2 L - 1) < 0. The St. Venant Model (Fig. 6) shows the well-known pathological 
behaviour at large tensile strains (violation of the local inpenetrability condition) and large 
compressive strains (violation of the local incompressibility condition for v = 0.50). The Neo- 
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Figs. 6 - 9 ,  6 2~ - 2 L plots for different values of  v obtained from the St. Venant Model. 7 2R -- 2L plots for different values 
of v obtained from the Neo-Hooke Model I. 8 2R - 2L plots for different values of v obtained from the Neo-Hooke Model 
II. 9 2R -- 2L plots for different values of  v obtained from the Logarithmic Model 

Hookean Model  II, which is characterized by a complete separation of deviatoric and volumetric 
terms in the stored energy function, does not preserve the physical meaning of v, since 2L # 1 for 
v = 0. In the compressive regime, at large strains, 2L(2R) is not a monotonic  function. The values 
for 2 R associated with extremal points in the 2L -- 2R curves, denoted by 2] ,  depend on the chosen 
value for v: 2~ = 1.0 for v = 0 and 2~ = 0 for v = 0.5, Hence, in the incompressible limit, this defect 
vanishes. Due  to this pathological behavior, attention has to be paid with respect to the choice of 
the elasticity moduli  when using the Neo-Hookean  II formulation. 

In the incompressible limit, all models except the St. Venant model yield identical ,l R - 2 L plots, 
since the constraint conditions Eqs. 36, 42 and 44 induce that J ~ 1 as G/K--, O. 

7 Numerical simulations 

This chapter contains an application of the different material models to 3D-finite element analysis 
of  a sandwich rubber plate. The plate is reinforced by two pairs of diagonally oriented cord layers, 
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Fig. 10. Sandwich slab subjected to punch indentation (dimensions: mm) 

Fig. l la ,  b. Finite element model of the sand- 
wich slab: a coarse mesh, b fine mesh 

each pair located parallel to the top and the bottom surface of the slab (Fig. 10). The angle between 
the y-axis and the cords is + 20 ~ The rubber plate is subjected to an indentation of a rectangular 
rigid punch located at the center of the slab (Fig. 10). 

The goal of this simulation is a comparative evaluation with respect to the structural behaviour 
predicted by the different material formulations discussed in chapter 5. The rubber matrix material 
is modelled by the Mooney Material Law with the Mooney-parameters taken as C 1 = 1.0 kN/cm 2, 
C 2 = 0.333 kN/cm z. The material parameters for the cords are taken as ER = 1000.0kN/cm 2, 
v = 0.25. As far as the rubber matrix material is concerned, the condition of incompressibility is 
enforced by the lagrange multiplier method. The geometric boundary conditions are defined by 
fixed displacements in y and z-direction at all points at the lower surface within a distance of 33 cm 
from both edges of the plate, thus simulating the plate as being "glued" to a rigid surface. Fig. 10 
contains the geometry of the sandwich plate, the location of the rigid punch, and the boundary 
conditions. 

Three finite element models characterized by different degree of discretization are used in the 
calculations: Meshes A and C are based on 8-node elements for the cords and for the matrix 
material, respectively. Mesh B uses 20 node elements. The coarse meshes A and B (Fig. t la) contain 
135 incompressible and 90 rebar elements, the consistently refined mesh C (Fig. 1 lb) contains 1080 
incompressible elements and 720 rebar elements. In the coarse mesh, the rebar elements are located 
at the top and the bottom of the plate, representing 2 layers of reinforcement each. In the fine 
mesh, each cord layer is modelled separately by one layer of rebar elements near both surfaces. 

Figures 12 and 13 show the deformed shape of the sandwich slab at u = 6cm obtained from 
mesh A (Fig. 12) and from mesh C (Fig. 13). Figures 12a and 13a clearly show the distortion of 
the plate induced by the reinforcing plies. 

Figure 14 contains the load-displacement curves obtained from numerical analyses of the 
slab using different meshes and different material models for the cords, namely the St. Venant 
Model, two Neo-Hookean formulations and the logarithmic model. For comparison, a u-P- 
curve obtained from an analysis of the rubber plate without cord-reinforcement is included in 
Fig. 14. As far as the influence of the particular material model with respect to the structural 
behaviour of the sandwich plate is concerned, the St. Venant Model shows a slightly stiffer response 
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Figs. 12-14. 12a, b Deformed plots of the sandwich slab obtained from mesh A at u = 6cm. 13a, b Deformed plots of the 
sandwich slab obtained from mesh C at u = 6cm. 14 Load-displacement curves obtained from different material models for 
the reinforcing fibres 

relative to the Neo-Hookean models and to the logarithmic model, respectively. The relative 
difference between these three models is negligeable. 

This result indicates that the more sophisticated models, like the Neo-Hookean formulations, 
do not improve the physical representation of reinforcing cords in FE simulations when compared 
to the quadratic logarithmic model. Taking into consideration the numerical inefficiency of the 
Neo-Hookean Models when degenerated to uniaxial stress states, the logarithmic model seems to 
be the adequate choice for the representation of reinforcing cords in the framework of rebar 
elements. 

8 Conclusions 

The paper revisits the technique of representing reinforcing cords in composite materials by means 
of overlay ("rebar') elements in the context of large strain finite element analyses. The cord layers 
are represented by bundles of parallel fibres characterized by uniaxial stress states, with the 
in-plane shear stiffness being neglected. 

The kinematics and variational formulation of rebar elements is presented in the frame-work 
of finite strain hyperelasticity. Three hyperelastic material formulations are discussed. It turns out, 
that the special case of uniaxial stress states is not obtained in a trivial form from the general 
threedimensional format of the compressible Neo-Hookean formulations. For a particular form 
of this class of material laws explicit expressions for the axial stress-stretch relationship altogether 
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with the uniaxial tangent modulus are given. An alternative formulation that completely by-passes 
this cumbersome issue is proposed by means of the quadratic logarithmic model. Due to its 
simplicity, this model is computionally very efficient and suitable for applications involving large, 
although not extremely large, strains. 

A comparative evaluation of three hyperelastic constitutive models along with the "classical" 
St. Venant Model is concerned with the computational effectiveness, the physical plausibility and 
the uniaxial stress-stretch characteristics of the different models at large strains. 

The performance ofrebar elements in conjunction with hyperelastic formulations is illustrated 
by means of a numerical simulation of a cord-reinforced sandwich rubber slab. This simulation 
reveals, that the most simple model available for finite elasticity theories--the logarithmic model- -  
is ideally suited for the bulk of practical applications involving cord-reinforced composite materials. 

Appendix 

This Appendix contains a summary of the expressions for the function of stored energy, W, the 
axial Second Piola-Kirchhoff stress, S R, and the uniaxial material tangent modulus E r for the 
St. Venant Model, the Neo-Hookean Model I according to Simo and Pister (1985), the Neo- 
Hookean Model II and for the logarithmic model, respectively. 

St. Venant Model 

W =  �89 - ~G)(tr E) z + GE:E, 
SR 1 2 = iET(2 R -- 1), 

9KG 
E T - = cons t .  

3K+G 

Neo-Hookean Model I 

w =  �89 - 6 ) ( i n  - a In J .  + ( I . , ,  - 3), 

Sg = [(K - ~G)In JR + G(2~ - 1)]/2~, 

[ 2G)(1 21nJR)+2G ( K z ~ - G ) 2 - ~ / 2 ~ ,  E r = ( K -  5 - 2 2 
(K - X G) + G)~ z.j 

2 L = f(2R)is determined from (36). 
With respect to the explicit formulation proposed in Sect. 5, expressions for 2L, S~ and Er are 

obtained as 

j? = 6 ~ / ~ [ 1  - (1 - e)In 2R], = 2G/3K, 

~= 
x / ~  + (4 -- ~)3' 

4/q-- (6 
(=.~ ~ -1/3), J - - 2  Rexp(0, 

l n J  
-- -- l/its), 2L = exp (~/2), S R=K(1 ~ ) ~ + G ( 1  ,2 

Er K(Z-c0  1 - 2 1 n j - 2 ( 6 + 1 / 6 )  - 2 + - ~ ) ; ] +  t~G 
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( J 2 2 1  )+G__ W=�89 lnJR ()-R,I - -  3),  
2 

3K 2 
S R = ~--~2(JR - -  1) 

22 R 

- -  ~.L)(~.J R 4- 1 
E T = -Cs " + ~- , 

;~g 2J2R (2~  r2 - , I L )  
3 

2G - 
where ~c = 2 R = J -  1/32R, 7. L -- J -  ~/32 L and 2L =f(2R) is determined from (42). 

3K'  

L o g a r i t h m i c  M o d e l  

W =  �89 --~ G)(ln JR) 2 + G[(ln 2~) 2 + 2(ln 2r)2], 

9KG In 2 R 
S R = 

3 K + G  22 

9/co  -(1-1n4) 1 
e r  = 3 ~ + - 6 1  - , w i t h  

In 2L = - v In 2R. 
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