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Abstract 

EULER invented integral transforms in the context of second order differential 
equations. He used them in a fragment published in 1763 and in a chapter of 
lnstitutiones Calculi Integralis (1769). In introducing them he made use of earlier 
work in which a concept akin to the integral transform is implicit. It would, how- 
ever, be reading too much into that earlier work to see it as contributing to the 
theory of the integral transform. Other work sometimes cited in this context in 
fact has different concerns. 

I. Introduction 

Integral transforms occur explicitly twice in EULER'S work. They are to be 
found in a fragment (EuLER, 1763) devoted to a relatively specialised differential 
equation, and later in a chapter of  Institutiones Calculi Integralis (EULER, 1769) 
where the treatment is more complete, more systematic and more general. That 
these papers involve integral transforms is quite clear and has long been recog- 
nised. (See, e.g., DULAC, 1936.) However, claims have been made (DuLAC, 1936; 
ENESTR~SM, 1914) that other papers of EULER'S, papers indeed predating those 
mentioned above, also involve integral transforms. 

The purpose of the present paper is to dispute such claims. In three cases, 
we may (from our vantage point) see integral transforms as implicit in the anal- 
ysis, and EULER by the time of his paper of  1763 seems also to have taken this view, 
but nowhere in these papers is the notion advanced as such, let alone studied in 
depth. In relation to other papers mentioned in this context, it is clear that no 
transform is involved at all. 

Thus the two papers referred to above, rather than the earlier work, should 
be seen as the genesis of the concept of integral transform. 
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2. Integral Transforms 

According to modern usage (see, e.g., NE6AS, 1969), an integral transform is 
a map from one function, f(t), to another, F(p), by means of a definite integral 

b 

F(p) = f K(t,p)f(t)dt,  (1) 
a 

where a, b are constants. Other authors, more generally, would consider contour 
integrals in the t-plane, but such usage clearly post-dates EULER. 

Integral transforms are widely used in the solution of differential equations, 
although this does not exhaust their range of application. EULER, however, con- 
siders them only in this context. In the modern approach, a differential equation 
in an unknown function f(t) would be transformed by the use of Equation (I) 
into another (to be hoped simpler) equation involving F(p). 

The earlier approach, initiated by EULER and surviving into this century, was 
different. This began with a differential equation in F(p) and assumed a solution 
of the form given by Equation (1). This then led to a new (and, in useful cases, 
simpler) equation in f(t). (For more detail on these two approaches, see my 
earlier studies: DEAKIN, 1980, 1981, 1982.) 

One might view this older approach as constituting a special case of a more 
general one, described by DULAC as EULER'S, in which a differential equation in 
F(p) is solved by seeking a solution of the form 

b 

r(p) = f ~(p, t) dt (2) 
a 

for some specified function q~. 
The problem of specifying ~ in Equation (2), as opposed to that of specifying K 

in Equation (1), has meant that this method is hardly, if ever, employed. 

3. Bibliographic Details 

The following papers have been cited (DuLAC, 1936) as bearing on the subject. 
They will be referred to in the sequel by the ENESTR6M numbers (e.g. E28) pre- 
ceding them in the listing, Full details are given in the bibliography. The papers 
are: El l  (EULER, 1733), E28 (EULER, 1738a), E31 (EULER, 1738b), E44 (EULER, 
1740a), E45 (EuLER, 1740b), E70 (EULER, 1744), E274 (EULER, 1763), and Chap- 
ter 10 of Book 1, Part 2 of Institutiones Calculi Integralis (EULER, 1769). 

Also relevant is a paper E49 (EULER, 1741) on the oscillations of a hanging 
chain, whose methodology has some kinship with E28 and E31, but which is 
not referenced by DULAC. This paper is summarised by TRUESDELL (1960), pp. 162- 
165. 

This list is ordered according to the obvious chronological sequence. The 
studies fall naturally into two groups. Dates of initial presentation of each of 
the papers are as follows: El l ,  1733; E28, 1732/3; E31, 1732/3; E44, 173415; 
E45, 1734/5; E49, 1736; E70, 1737; E274, 1760/1; Institutiones, 1769. 
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Thus the first seven all date from the 1730s and the final two are much later. 
The composition of E274 has been assigned various dates (see EN~STR6M, 1913), 
but none earlier than 1758, so that it comes over twenty years after the presen- 
tation of the latest of the others, E70. It is argued that this separation in time is 
reflected in a separation of subject matter and of approach. 

4. Duclac's Account 

On DULAC'S account, E274 continues a scholarly tradition begun with E28 
and continuing through the whole sequence (except that he omits reference to 
E49) to its culmination in Institutiones. He writes (my translation): 

A series of papers are devoted to the method EULER termed "Constructio 
per quadratura curvarum". Led by chance, as he mentioned in Paper 28, to 
the representation of the solution y(x) of a differential equation in terms of  
a definite integral in which x appears as a parameter, EULER sought a sys- 
tematic approach to this type of representation, of which it seems to give the 
first example, and of which well-known applications were made by, in partic- 
ular, LAPLACE, GAUSS and KUMMER. EULER uses this method in two different 
ways. In Paper 31, and in Chapter XI of the 1st part of Volume 2 of Calculus 
integralis, he first obtains the solution in the form of a series and then eval- 
uates the sum of this series by means of an integral of the type indicated. 
EULER later sought a more direct approach, deriving the differential equation 
satisfied by a given definite integral, in which x appears as a parameter. This 
method is described in Papers 44 and 45, and later applied in 70, 274 as well 
as in Chapter X of the 1st part of Volume 2 of Calculus integralis. 

While this makes no claim about integral transforms (i.e. Equation (1)) as 
such, it dates the use of Equation (2) as early as 1732/3. It will be argued that, 
although a form of Equation (2) may be inferred from E28, and analogous equa- 
tions from E31, it misrepresents EULZR'S discussion to present these as the subject 
matter of these papers. A similar point may be made in respect of E49. It will 
further be argued that E44, E45 and E70 have quite different concerns and do 
not involve Equation (2) at all. E 11, a brief summary of E31, will not be separately 
discussed. 

E274 thus will emerge as the seminal paper and it will be argued that EULER 
saw it as such, although there is some evidence that he recognised the connection 
with the integrals implicit in the earlier works. 

The separate papers will now be considered seriatim. 

5. E28 

E28 is the first of a number of papers to be concerned with the "construction" 
of differential equations. As ENGELSMAN (1982, p. 145) remarks, EULZR was not 
initially concerned with solving differential equations so much as with arriving 
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at them from geometrically posed problems, but later "the idea struck him that 
problem and solution should instead by reversed: the geometrical definition ... 
should be regarded [as] the solution rather than the problem, and the differential 
equation that is found should be regarded [as] the problem instead of the solu- 
tion". 

This statement is made in respect of a paper, De differatione, published only 
as Appendix 2 of ENGELMAN'S study and dated "from about 1830". E28, which 
would seem to be a somewhat later study, retains some of the earlier flavour 
in that it commences with a geometric p r o b l e m - t h e  determination of the peri- 
meter of an e l l ipse-and results in the production of a RlCCATI equation. It is, 
however, quite clear (see, in particular, Section 2 of the paper) that EULER is quite 
conscious that he is contributing principally to the theory of the RlCCATI equa- 
tion. 

The point of departure is Figure 1, whose notation I have slightly modernised 
and simplified. M has the coordinates (x, y) and A T  = t. s = A M ,  measured 
along the arc. Let n = (a 2 - b2)/b 2 be a measure of the eccentricity of the 
ellipse. 

0 A 

Fig. 1 

Then it may readily be shown that 

ds b 2 1/{(b 2 + t 2) + nt 2} 
d---/= (b 2 + t2)a/2 (3) 

We may now expand the right-hand side of  Equation (3) as a power series 
in n. Thus 

ds b 2 A b 2 n t  2 Bb2n2t  4 

d t - b  2 +  t ~ + ( b  2 +  t2) a + ( b  2 + t 2 )  a + . . . .  (4) 

where A, B . . . .  are numerical constants. If  we write Equation (4) as 

ds 
--~ = P( t )  + AnP( t )  Q(t) + Bn2P(t)  Q2(t) + . . . .  (5) 
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where P(t) = bZ/(b 2 + t 2) and Q(t) = t2/(b 2 + t2), we see the feature that 
EULER noticed. We have 

b2t 
f ~'(t) Q(t) dt = ½ f P(t) dt - ½.62 + t2 , 

(6) 
b2t 3 1"3 1"3 b2t 1 t2) 2' 

f Q 2 ( t ) d t =  f P ( t )d t  2 . 4 b  z + t 2 4(bZ + 

where each successive integral on the left is expressed in terms of the first of the 
integrated terms of Equation (5). This allows for ready term by term inte- 
gration and so yields a power series for s. 

In particular, if we now impose the limits t = O, 
gives the quadrant of the ellipse: 

be t /  n 1-1  "3 
A M B = - - ~ ( I  + ½ " 2  2 . 2 . 4  

cx~ on the integrals, the series 

n2 ) 
4 + . . . .  (7) 

Further, notice that the integrated terms of each of Equations (6) vanish at both 
of the limits t = 0, o0. 

2 
EULER now alters his notation, setting s = --~-(AMB) and n = - x  2. (That 

this x is actually an imaginary quantity if, as his diagram indicates, b < a, he 
allows to pass without comment.) Then from Equation (7) he deduces the equa- 
tion 

(x 2 - 1)--~x X-~x = xs (8) 

(where again I have modernised the notation). The substitution 

x ds 
Y = s ~ (9) 

now yields 
dy y2 x 
-~x -4- x2 , (10) x - - 1  

a RICCATI equation, which may also be written 

y2 1 
2 + - - =  

F/ H - - I ' '  (ll) 

also a RICCATI equation. 
Equations (10), (11) have now been "constructed". They may, of course, be 

solved in the modern sense by reversing the procedure and obtaining the series 
solution (7). However, no integral transform is involved, and DULAC'S claim that 
the procedure involves an integral of  the form (2) rests on implied equalities. 

We can, indeed, using EULER'S work, express the solution of Equation (8) as 
a definite integral involving x as a parameter. 
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First note that Equation (8) has the series solution 

x 2 1 • 1 • 3 x 4 
s = 1 - ½.-~- - 2- 2 . 4 "  4 . . . .  (12) 

Next note that (with this meaning of  s) Equation (3) may be written 

2 ~ b]/(b2__ .+. t.a)_, c f2t= 
s = - - j  (b 2 -k t2) a/2 dt, (13) 

Yg 0 

and setting t = ub, we find 

2 ? V 1  q- U2 -- X2U2 
s = -  (1 + u2) a du. (14) 

7~ 0 

This is the basis of DULAC'S claim that such an integral is involved, but no- 
where does EULER make this point explicit and indeed his change of notation serves 
to distance Equation (3) from Equation (8), although as Equation (8) is linear, 
the scale factor 2/~b is largely irrelevant. However, the integral form of Equa- 
tion (3) is in fact indefinite. It is only when the special case of a quadrant is con- 
sidered that a definite integral emerges. 

6.  E l l  and E31  

We need not consider E l l  separately, for, as DULAC remarks, it is merely a 
summary of the subsequent E31. It is referenced in E28, which shows that EULER 
saw it as part of the same general investigation. We thus turn to E31. 

This deals with the RICCATI equation 

ax ~ dx = dy + y2 dx. (15) 

(This is the original RICCATI equation, subsequently generalised to 

dy 
+ Q(x)y  + R(x)y2 = P(x) (16) 

a different special case of which is "constructed" in E28.) 
EULER'S concern here is with series of the form (5) which will yield equations 

of the form (6). In particular, he considers the case 

1 z n 

P (1 + bzUf ' Q 1 + b z  ~ (17) 

which has a reduction formula 

(0 - 1 ) / z  + 1 p Q o - 1  _ 1 z ( ° -1 )~+I  

f PQ°dz = b-~(~ ~- 0 - 1) f dz b/Z(~ + 0 - 1) (1 + bz") ~+°-1' (18) 

leading to equations analogous to Equations (6). (Here 0 is a positive integer). 
If/z, ~ satisfy /z~ > 1, the integrated terms of Equation (18), and thus of all equa- 
tions based on it, vanish not only when z = 0, but also at z = oo. 
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Thus it is possible to proceed in a fashion analogous to that used in E28. 
On the one hand, we have the substitution y = t -1 dt/dx which converts Equa- 
tion (15) into the linear second order differential equation 

d2t 
= ax"t (19) 

dx  2 

for which a series solution is readily found. On the other, we seek to sum this 
series in the form of a term by term integration of the form 

oo 

f P(1 + AgQ + ABgZQ 2 + . . . )dz ,  (20) 
o 

where A, B . . . .  are constants, g is a parameter and z a variable of integration. 
Intricate sequences of successive substitutions relate g to x in various cases, so 
that the form (20) is used in a way similar to that in which Equation (4) was 
used, towards the solution, in this case, of Equation (11). 

If now Z = Ht, H being a constant, Z is given by 

Z = ? 4(x, z) dz (21) 
0 

where q6(x, z) is an elaborate function of x, z given correctly by DULAC in a 
footnote in the Opera Omnia version, y then is given by y = d Z / Z  dx. 

EULER is here quite explicit in his use of an equation of the form (2), whereas, 
in E28, although Equation (14) is implied by the work, it is never exhibited ex- 
plicitly. 

7. E44 and E45 

E44 is a seminal paper in the theory of partial derivatives and, for its contri- 
bution to that field, the reader is referred to ENGELSMAN'S (1982) study for a fuller 
account. 

The starting point (Par. 3 of the paper) is the equation, in modern notation, 

z = f P(a, z, x) dx, (22) 

which DtJLAC in a footnote (Footnote 2 to Par. 3) interprets as (in essence) 

z = / P(a, z, t) dt (23) 
Xo 

where Xo is independent of  a. 
During the integration, a is held constant, but it is subsequently allowed to 

vary and EULER sets 

dz = P dx + Q da, (24) 

the second term on the right being due to the variation of a. He now has 

dP = A dx + B da (25) 
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(say) and 
dQ = C dx + D da (26) 

(say). But then B = C, and thus 

Q = f B dx. (27) 

In other words, Q may be found by differentiating under the integral sign. 
The rest of the paper is occupied with examples and extensions, being con- 

cerned with the now defunct theory of modular equations. (Equation (24) is a 
modular equation if Q can be determined algebraically in terms of x, z, a.) For  
an account of EULER'S theory of modular equations see ENGELSMAN (1982). 

We may note, however, that even with DULAC'S amendment (Equation (23)), 
Equation (22) is concerned with indefinite rather than with definite integrals, and 
thus no true transform is involved. 

E45 is an addendum, notable, for our purposes, only in that it explicitly 
omits z from the right-hand side of Equation (22). Again no transform is involved. 

8. E49 

EULER'S work on the oscillations of  a flexible hanging chain derives from 
discussion of the problem with DANIEL BERNOULLI. The mathematical statement 
of the problem reduces to the solution of the equation 

x dZy dy y 
n + 1 dx ----5 + ~ + --o~ = O, (28) 

where n, o¢ are constants. This equation reduces, after the substitution y '  = yz, 
to the R~CCAT~ equation 

n + 1 + z2 + z +--~x = 0. (29) 

Furthermore, EULER derives a series solution and is able to express this (it 
represents a modified Bessel function) in terms of a definite integral. The calcula- 
tion is discussed in detail by TRUESDELL (1960). 

This paper concludes: "And so, likewise, there follows from this the con- 
struction of the Riccati equation, which I gave some years ago". (My translation.) 
The reference is presumably to E31, which was three or four years prior to E49. 

9. E70 

E70 considers the equation 

z = f P(a, x) & ,  

where again no limits are imposed on the integration. In particular the form 

z = f e~XX(x) dx (30) 



Euler's Invention of Integral Transforms 315 

is studied. This equation has a form somewhat reminiscent of the LAPLACE Trans- 
form and this may have led ENESTR•M (1914) to see it as an early form of that, 
whereas, in fact, as I have argued elsewhere (DEAKIN, 1981), it is nothing of the 
kind, as an indefinite, not a definite, integral is involved. 

Again EULER'S main concern is the production of modular equations. One 
example will suffice to show his approach. If  

z = f eaXxX(x) dx  = ~x f eaXX(x) dx  + m e ~ X ( x )  - m 

where m, o~ are constants, then the modular equation 
x 2 2bx - -2max  

dz = (b - ma)  z da - m da + e 2m ( d x  + m da) (31) 

results, b being equal to o~ + ma. 

The focus of attention is far removed from the use of equations like (1) and 
(2) to solve differential equations. 

10. E274 

The fragment E274 considers the differential equation 

d2y dy 
(Fu z + Eu  + D ) ~  + (Cu  + B ) ~  + A y  = 0, (32) 

and does so by explicitly considering y to be a definite integral, not only of the 
form (2) but indeed of the form (1). EVLER sets 

y = f e dx(u + x)", (33) 

"where P, which we need to define later, denotes some function of x, but not 
u. When this function becomes known, the integration is performed, at least 
by quadrature, for each value of u, which during the integration is like a 
constant. The integral is then so taken that it vanishes for some assigned 
value of x, and is evaluated for some fixed constant value of x (quite inde- 
pendent of u); when this is done, y is equal to some determined function of u, 
with the property that it satisfies the given equation." 
(Translation by DEAKIN 8~; ROMANO, 1983.) 

This is a very clear statement of the principle behind the use of the integral 
transform, and indeed, EULER gives a more general statement, which may be 
taken to apply to the form (2): 

"I  now suppose y to be given by some integral form involving, as well as u, 
a new variable x, such that, during the integration, only x is treated as a 
variable, u being regarded as a constant. But when the integration is com- 
pleted, whether by analytic means or by quadrature, the quantity x will be 
assigned some given constant value, and, as a result, the integral appears 
as some function of u, which is to be precisely that which satisfies the equa- 
tion." 
(Translation by DEAKIN & ROMANO, 1983.) 
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This is clear and explicit and occurs at the beginning of the study. While E31 
does contain explicit accounts of Equation (2), they are not central to the concern 
of that paper, and E28 contains only implicit integral forms. The approach of 
E274 is 

" . . .  the author puts forward a new and quite remarkable technique for dealing 
with these equations, and produces, even at this early stage, some remarkable 
examples of its use . . ." .  
(Translation by DEAKIN & ROMANO, 1983.) 

This is not to say, however, that it is not implicit in the earlier work. EULER 
recognises that it is. 

" . . .  I demonstrate the construction of this equation in the same way as I 
earlier set out for the RlCCATI equation . . . "  
(Translation by DEAKIN & ROMANO, 1983.) 

The reference is to E31 and possibly also t o  E28. DULAC (1936) in a footnote 
includes E70, but we have seen that the procedure there is different. We may, 
however, view E274 as a new departure because of its clear and explicit account 
of the method, and, indeed, also because of its use of Equation (1), as opposed 
to Equation (2). This latter feature is not made explicit by EULER, but it is this 
that allows for the simple forms obtained by differentiating under the integral 
sign. 

11. Institutiones Calculi Integralis 

These matters are taken up more generally in Chapter X of the first part of 
Volume 2 of Institutiones Calculi Integralis. This begins with the question of 
differentiating Equation (2) under the integral sign, which quite clearly now de- 
notes definite integration. Solutions to second order differential equations are 
then envisaged as having the form (2). 

The integrands of Equation (2) are first posited and the differential equations 
whose solutions they give are then derived, so that, in a sense, EULER is still 
"constructing" the differential equations. He does, however, see solution of dif- 
ferential equations as the problem and his construction as contributing to the 
exploration of the solvability of different equations. Thus the substitution (in 
modern notation) 

c 1 /U 2 + X 2 

y = f x " V c ~ _ x ~  dx (34) 
0 

is shown to solve 

d2y (n + 1) dy (n + 1)y 
+ - -  - o ,  ( 3 5 )  

du 2 u du c 2 + u 2 
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and a generalisation 

a 

y =  f x  n l(u 2 + xa)U(c 2 _  x2) .dx (36) 
0 

to solve a more complicated differential equation. 
Equation (34) may be thought of as an integral transform of x" applied to 

the solution of Equation (35). The kernel of the transform is thus 

V U + X 2 

_ X 2" 

A number of other transforms are adduced with kernels which relate to modern 
transforms. In Section 1036, for example, we have e ~x appearing for the first time 
as a kernel in the integral 

a 

u = f e'Xx"(a - x ) " d x  (37) 
0 

satisfying the differential equation 

d2Y - (n + 1) 0 (38) u--d~u2 + (n + v + 2 - au) dy 
Y u a y =  . 

This form and others like it are, as I have pointed out elsewhere (DEAKIN, 
1980, 1981, 1982), versions of the LAPLACE Transform akin to that which preceded 
our modern version, which became standard during the early years of this cen- 
tury. In particular, EULER points out that it may be used to solve what we now 
term the LAPLACE Equation 

dZY ~u 
(A + o ~ u ) ~  + (B + /3u) + (C + yu) y = 0. (39) 

More generally, he considers the transform 

a 

y = f eK(')O(x)P(x) dx ,  (40) 
b 

whose properties are discussed in a previous paper (DEAKIN, 1980). 
The transform considered in E274 is also generalised to 

a 

y = f P(x) (K(u) + Q(x))" dx .  (41) 
b 

All of these endeavours are aimed at exploring the scope of solution techniques 
for second order differential equations. 

"So while even now we are a long way from a solution of the problem, that 
is of finding a formula which provides the integral of any given second order 
differential equation (whether the solution of this problem will ever be dis- 
covered seems quite uncertain), we nonetheless apply ourselves to it, so that, 
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at least in special cases, we try to base the inquiry into the form of the integral 
on the nature of  the given equation, and so to some extent we progress towards 
an explicit solution." 
(Translation by DEAKIN & ROMANO, 1983). 

This material continues into Chapter XI, some of which is reminiscent of  
E31, but this takes us away from a concern with integral transforms proper. 

Acknowledgement. I thank Dr. J. J. CRoss for his help and encouragement and Pro- 
fessor C. TRUESDELL for his constructive criticisms of an earlier draft of this paper. 
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