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It  is generally accepted that, after an auspicious beginning with EUCLID'S 
formulat ion o f  the ray-concept  and an equally auspicious sequel, during which 
both  optics proper  and catoptrics were put  on a firm scientific footing, the early 
development  o f  mathematical  optics was cut  short by PTOLEMY'S failure to find 
the sine-law of  refraction.1 This failure, which apparent ly s temmed the growth 
o f  mathematical  optics for  some fifteen centuries, has long puzzled historians o f  
science. We know for  a start that, in at tempting to derive the law experimentally, 
PTOLEMY was on the right track, and we also know that  the experiment he devised 

1 The outlines of this "textbook" interpretation can be discerned in, or reconstructed 
from, a variety of standard sources: cf., e.g., WILLIAM WHEWELL, History of the Inductive 
Sciences, second edition, vol. 2 (London, 1847), pp. 371-79; [ERNST MACH, The Principles 
of Physical Optics, tr. J. S. ANDERSON & A. F. A. YOUNG (New York: Dover, 1953), 
pp. 39-40; REN~ TATON, Histoire gdndrale des sciences, vol. 2 (Paris: Presses Universi- 
taires de France, 1957), pp. 299-301 ; VASCO RONCHI, The Nature of Light, tr. V. BAROCAS 
(London: Heinemann, 1970), pp. 108-112; and ALBERT LEJEUNE, Euclide et Ptol~mde: 
Deux stades de l'optique gOomOtrique grecque (Louvain: Universit~ de Louvain, 1948), 
pp. 172-77. As far as actual influence is concerned, PTOLEMY'S Optics enjoyed remarkably 
little success until the Islamic Middle Ages, when it was used to some extent in AL-KINDI'S 
De aspectibus (ninth century) and to a very significant extent in IBN AL-HAYTHAM'S 
Kitab al-man-azir (c. 1000). The only version of the Optics now extant exists in a mid- 
twelfth centurs) translation--which unfortunately lacks the first book and ends abruptly 
in the middle of the fifth book--by  the Admiral EUGENE of Sicily from an undiscovered 
Arabic exemplar. Through this, and perhaps through other now-lost versions, the Optics 
became relatively well known in the Latin Middle Ages and remained so throughout the 
Renaissance. The first modern edition, drawn from a single manuscript, was published 
by GILBERTO GOVI in L'Ottica di Claudio Tolomeo (Torino, 1885). Some seventy years 
later, ALBERT LEJEUNE published the currently accepted critical edition, L'Optique de 
Claude PtolOmde (Louvain: Universit6 de Louvain, 1956); henceforth all references to 
the Optics will be from this edition. See pp. 27*-37* of LEJEUNE'S introduction for a good 
historical summary of the career of PTOLEMY'S Optics. 
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could have yielded the right results. 2 In  short,  the means o f  discovery available 
to PTOLEMY were essentially the same as those available to his seventeenth- 
century successors; yet where they tr iumphed,  he failed. W h y ?  

Two basic explanations have been offered. The simpler and more simplistic 
o f  these is that  PTOLEMY'S experimental technique was careless, f rom which it 
follows that, had  he been more punctilious, he would have found  the proper  sine 

2 Echoing WHEWELL and GovI, GEORGE SARTON extolls this as "the most remarkable 
experimental research of  antiquity" (Introduction to the History of Science, vol. 1 [Balti- 
more: Williams and Wilkins, 1927], p. 274). Described by PTOLEMY in Optics V, 7-22, 
pp. 227-37, the actual experiment requires a hollow glass semicyljnder (called a baptistir) 
that is closed at both ends. Into it a circular bronze template of the same diameter 
(figure 1) is inserted so that, when the baptistir is filled with water, the water's surface 
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Fig. 1 

will coincide with BD. The circumference of the template is then divided into gradations 
of 1 o a small marker is attached at center C, and a pointer E is set onto the circumference 
so that it can be moved along arc AB. With the template properly inserted into the filled 
baptistir, we can then place E at any position on arc AB, sight along line EC, and move 
a second pointer O along arc DF (below the water-level) until it falls into line with EC. 
That way we can find the corresponding r (measured by arc OF) for any i (measured 
by arc AE) from 0 ° to 90 °. Using this same technique, apparently, PTOLEMY was able to 
measure i and r not only for air to water, but also for air to glass and water to glass. 
According to modern theory, of course, because the direction of  radiation is opposite to 
that assumed in the visual ray theory, PTOLEMY was actually measuring refraction from 
the denser to the rarer rather than from the rarer to the denser medium. See PIERm~ 
BRUNET & ALDO MIELI, Histoire des science-santiquitd (Paris: Payot, 1935), pp. 824-33, 
for a relatively detailed treatment of PTOLEMY'S refraction analysis that includes a French 
translation, based on GovI's edition, of the relevant text of Optics V. For an English 
translation and analysis, also based on Govi 's edition, see MORRIS COHEN & I. E. DRAB- 
KIN, A Source Book in Greek Science (Cambridge: Harvard University, 1965), pp. 271-81. 
Far from perfect, this translation is nonetheless adequate to our basic needs and will 
therefore be used for direct quotations from PTOLEMY. 
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relation between i and r. 3 But this explanation rests on two very dubious assump- 
tions: first, that such a relation is somehow ostensibly " in"  the brute observations 
arising f rom his experiment, and second, that, even if it were, PTOLEMY could legi- 
timately have been expected to see it. The alternative explanation is that, although 
he may not have uncovered the correct law, PTOLEMY did in fact stumble onto a 
law, which is implicit in his refraction tables and takes expression in the constancy 
of "second differences" to be found there. 4 While this certainly accounts for  
PTOLEMY'S failure to find the sine-law, it does not explain why he never acknow- 
ledged the law of  second differences, or for that matter why he seems to have 
proposed no law whatever. 5 According to the one interpretation, then, being 
the consummate experimentalist he was, PTOLEgV could have- -and  indeed should 
have--discovered the sine-law but for some reason did not. According to the other, 
he had a law of sorts within his grasp but unaccountably failed or refused to accept 
it as such. 

Against these two positions, I shall argue in this paper that PTOLEMY could not 
conceivably have found the sine-law and, furthermore, that he had sound reasons 
for not formulating a law based on constant second differences. The argument 
itself will hinge on the claim that, despite what both interpretations might lead 
us to believe, PTOLEMY did not undertake his refraction experiments with an eye 
towards discovery, because he already had a definite idea of  what those experi- 
ments would tell him. He was not, in short, merely collecting and assessing bare 
facts with an open mind. On the contrary, long before he made his actual observa- 
tions, PTOLEMY had every reason to expect that i and r would be constantly pro- 
portional (i.e., that i :  r : :  ia : r~); and even after it was empirically confuted, this 
expectation subtly informed his search for a law of refraction. 

In order to substantiate this claim, I shall first show that such an expectation 
was a logical consequence of PTOLEMY'S mathematical approach to optics. This 
will entail a general consideration of the theoretical foundations upon which 
his mathematical approach was based, as well as a specific consideration of how 
that approach was applied to certain fundamental optical problems. Then, 
against this background, I shall reconstruct PTOLEMY'S analysis of  refraction, 
indicating precisely how it was affected by his presupposing a constant propor-  
tionality between i and r and, in the process, demonstrating that his failure to 

a See, e.g., Govr, L'Ottica, p. xxii. Throughout this essay, i will specifically designate 
the angle of incidence, whereas r will designate either the angle of refraction or the angle 
of reflection, depending on context. 

4 See the table on p. 232, which includes, in addition to the raw tabulations for i 
and r, two columns labelled dl and d2. The first of these columns gives the successive 
differences between r-values, and the second gives the differences between those differen- 
ces. The constancy of these second differences (.5 ° ) is obvious. Though easily inferred 
from his tabulations, this breakdown according to differences was not actually given by 
PTOLEMY but was imposed by GovI (L'Ottica, pp. xxiv-xxvii) and has been followed by 
virtually every commentator since. In the light of OTTO NEUGEBAUER'S work in ancient 
astronomy, it is clear that their basis in constant second differences puts these tabulations 
squarely within lhe Babylonian tradition of astronomical tabulations (cf. TAXON, Histoire 
gdndrale, vol. 1, p. 342). 

5 See, e.g., LEJEUNE, L'Optique, p. 245, n. 33. 
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find a proper law was determined by that same presupposition. Finally, I shall 
point out how this failure reflects the shortcomings not of PTOLEMY, but of the 
theoretical basis underlying his analysis of refraction. Specifically, I shall show 
that the ray-concept upon which Euclidean-Ptolemaic optics depended was not, 
as is normally supposed, mathematically equivalent to the ray-concept as it has 
been understood since the seventeenth century--and, by extension, that the 
mathematical foundations of Euclidean-Ptolemaic optics were radically different 
from those of its seventeenth-century counterpart. 

The Theoretical Foundations 

I have contended in a previous article that, as far as Greek science is concerned, 
"saving the appearances" was a definite methodological construct that applied 
not  only to mathematical astronomy, but to mathematical optics as well. 6 The 
gist of my thesis was that the appearances-saving endeavor was carried out on the 
basis of four principal assumptions, the first and most fundamental of which is 
that all change or flux, insofar as it manifests irregularity, is just an "appearance" 
or illusion. From this follows the second supposition: that beneath the appearances 
there lies a real, intelligible world that is utterly simple, changeless, and eternal. 
This intelligible world, according to the third supposition, is a true Euclidean 
locus or "space", within which things are really what they are by virtue of their 
spatial attributes and relationships. Within such a locus, moreover, the only 
real relationships are those most basic ones obtaining between and among points, 
and they are mathematically expressible in terms solely of rectilinear distances 
and angles. Fourth, these relationships are assumed to be immanent in, and thus 
immediately inferable from, the appearances. 7 In short, if properly understood, 
appearances do not really deceive us at all. They betoken a deeper and simpler 
reality that is rationally accessible to us in terms, finally, of straight lines and recti- 
linear angles. 

Underlying this entire suppositional structure is the notion of a fundamental 
dichotomy between complexity and simplicity. Appearances, as manifestations 
of  change and irregularity, are complex, while reality, as the manifestation of 
true changelessness, order, and uniformity, is simple. To "save" appearances 
is therefore to reduce them to the utter simplicity of uniformity. Such a reduction 
requires some absolutely simple and perfect gauge of uniformity, a salvans, 
according to which the appearances, or salvanda, fall ultimately into rational or- 
der. And what finally determines the perfection of the salvans is its conformance 
to what I have called the Principle of Natural Economy. This principle is the 
metaphysical pivot of  the whole appearances-saving enterprise. Thus, perfect 
uniform circularity, which is the salvans of Classical mathematical astronomy, 

6 Archive for History of Exact Sciences, vol. 24, no. 2 (1981), pp. 73-99. 
7 This is tantamount to saying that the mathematical reality behind the objective 

appearances lies at a single level of abstraction from them, in the space within which 
they are manifested. 
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finds its pivotal justification in the fact that, of all isoperimetric figures, the circle 
and sphere are the most economical. 

Granted these guiding assumptions and principles, the actual process of 
saving the appearances consists essentially of breaking up a given complex of 
salvanda (e.g., planetary motion in general) into simpler components. Each com- 
ponent within that complex constitutes an "anomaly" and, as such, must be 
reducible to uniformity, either directly or indirectly, according to the accepted 
saIvans. If  it is indirectly resolvable (and therefore still complex), it must be 
further subdivided until, at last, each sub-anomaly will dwindle to perfect uni- 
formity. Consequently, the whole complex of salvanda comprises a nesting set 
of anomalies, in which the simpler is systematically subsumed under the more 
complex. Once brought to uniformity, any anomaly within that complex becomes 
a special case of the saving principle, and when the complex itself is brought to 
full uniformity, anomaly by anomaly, the appearances are saved, s Furthermore, 
the mathematical expression of that salvation will always be in the form of Eucli- 
dean proportions between straight lines and rectilinear angles--proportions whose 
terms are strictly spatial and represent real, underlying point-to-point relation- 
ships. 

For instance, to all appearances retrograde motion is a matter of the vagaries 
of one point (planet P in figure 2) moving irregularly through space with respect 
to a fixed terrestrial viewpoint E. The anomaly itself consists in the fact that planet 
P seems on occasion to move backward, as is represented by continuous line P1P2 
to the left of the figure. According to the Ptolemaic system, however, this anomaly 
is a complex of two simpler elements and really involves three points, one of 
which--E, the center of the deferent--is fixed, and two of which--P and center 
C of the epicycle--move in relation both to E and to each other. 

// 

Fig. 2 

s Thus, by systematically repacking these saved special cases, we should be able to 
reproduce the iBitial appearances exactly. 
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But P moves uniformly upon its epicycle, as indeed does C upon its deferent, 
so the anomaly is resolved into two perfectly uniform circular motions. In tan- 
dem, they will produce the complex, irregular orbit represented by the heavy 
broken line, and that orbit in its turn will produce the appearance of retrogression. 
Further, since the frequency and size of the retrograde loop are functions of the 
relative size of the epicycle, as well as the relative velocity of the planet upon it, 
the final mathematical salvation will reduce to the ratio of  EC (the deferent's 
radius) to CP (the epicycle's radius) and arc CC1 (measured by / C E C 0  to arc 
XP~ (measured by / XC~P0. The final terms of  salvation--straight lines and recti- 
linear angles--are therefore strictly spatial and represent point-to-point relation- 
ships that are really in, and immediately inferable from, the appearances. 

Saving Optics 

As clearly as this analysis applies to Ptolemaic astronomy, it applies equally 
well, though perhaps less obviously, to Euclidean-Ptolemaic optics. To begin 
with, Euclidean-Ptolemaic optics, like its astronomical counterpart, has a single 
salvans--the visual ray. In essence, visual rays are just reified lines of sight pro- 
jected in bundles from the eye to form a cone, whose apex defines the viewpoint 
and whose base marks out the visual field. 9 Each ray flows outward into that 
field until it strikes an optically opaque surface, which is thereby seen? ° By 
establishing physical contact with object-surfaces, then, the visual ray mediates 
directly between us and the visible realm. More important, however, because that 
mediation is perfectly rectilinear, the visual ray establishes a direct spatial rela- 
tionship between us and objects within the region carved out by the visual cone. 
This relation in turn depends on the shape, position, disposition, and size of those 
objects--in short, the compendium of mathematical attributes that makes them 
intelligible. 11 

Through its perfect, uniform rectilinearity, the visual ray provides us with a 
simple, rational way of perceiving these all-important attributes. Shape, for ex- 
ample, is perceived through points of intersection picked out upon the object- 
surfaces by incident rays, whereas position and disposition are perceived by means 
of ray-lengths and angles of incidence. And size-perception, finally, depends upon 
radially subtended angles at the viewpoint. Every visible surface within the visual 
field is thus transformed into a mosaic of intersection-points, each bearing a 
unique, fixed linear and angular relation to the viewpoint. The sum total of such 

9 EUCLID, Optics, defs. 1 and 2, in Euclidis opera omnia, vol. 7, ed. I. L. HEIBERG 
(Leipzig: Teubner, 1895), 1:,. 2. All subsequent references to EUCLID'S Optics will be from 
this edition. 

l o EUCLID, Optics, def. 3, p. 3. 
11 The visual ray theory therefore rests on an implicit distinction between the mere 

visibilia--the properties (or property) that make external objects accessible to visual 
sensation--and the perceptibilia--those properties that make them accessible to mental 
scrutiny. ARISTOTLE seems to acknowledge this distinction explicitly with his "common 
sensibles"--i.e., movement, rest, figure, magnitude, number, and unity--all of which are 
mathematical or mathematically based (De anima III, 1, 425a14-17). 
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relations, mediated throughout by the visual ray, tells us everything worth 
knowing about visible objects: namely, what and where they really are in respect 
to us within the Euclidean locus that constitutes the true, intelligible world. 

0 

A B 

Fig. 3 

To make this point more obvious, let us use theorem 21 of EUCLID'S Optics 
as an example. 12 In that theorem EUCLID poses the following problem: assuming 
that we see a magnitude of unknown length (AB in figure 3) from an indeterminate 
location C, to find its real length. The heart of the problem is that AB will appear 
to be smaller than it really is, its relative smallness depending on the distance 
of  C from AB and therefore on the size of subtending angle ACB. To "save" 
this appearance, we draw rays CA and CB connecting the viewpoint with the end- 
points of the magnitude, place known length DE parallel to AB at such a position 
that it appears to be the same length (i.e., so that its endpoints are touched by 
the rays), and measure CD and CA. By Euclidean geometry we know that, since 
DE and AB are parallel, L CDE = L CAB, and L CED = L CBA (which is 
to say that L C D E : L C E D : :  L C A B : L C B A ) .  Therefore, we know that 
CD : DE :: CA : AB. Having measured CD and CA, and knowing the length of  
DE, we can thus determine the true length of AB. That is, we have saved the appear- 
ance of smallness by determining true size; and the same approach can be used 
to save a wide variety of optical appearances, including, for example, the fact 
that a large circle seen at a certain distance and obliquity will seem to be what we 
would now designate as a small near-ellipse, la 

Three significant features link this optical example to the previous astrono- 
mical one. First, the salvation ultimately comes to ground in Euclidean propor- 
tions between rectilinear lengths (i.e., C D : E D  :: C A : A B )  and angles (CDE:  
CED :: CAB : CBA). Second, the linear and angular terms of these proportions 
represent direct spatial relations between viewer and viewed, relations that are 
immediately inferred from the phenomena. Third, and perhaps most significant, 
the salvation itself hinges on an absolutely simple salvans, the visual ray, whose 
saving grace is its perfect, uniform rectilinearity. So, as far as mathematical optics 
is concerned, the visual ray is essentially a straight line, and a straight line is the 
measure of perfect point-to-point brevity. In short, the salvans for optics, like 
that for astronomy, conforms to to the Principle of Natural Economy. 

12 Optics, p. 12. 
la Cf. EUCLID, Optics, props. 34-36, pp. 60-80. 
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There is yet one further link between Euclidean-Ptolemaic optics and Ptole- 
maic astronomy, the crucial nature of which will become evident in the following 
section. By PTOLEMY'S time, the domain of salvanda in optics, like that in astro- 
nomy, had been resolved into a definite sequence of anomalies, determined in 
ascending order of complexity by whether the visual ray is unbroken, fully broken 
or reflected, or only partially broken or refracted--hence, the three traditional 
subdivisions of optics, catoptrics, and dioptrics. 14 According to this structure, 
then, Euclidean-Ptolemaic optics evolves in a logical succession of salvations, 
starting with the very simple "anomaly" of direct vision, progressing to the 
more complicated anomaly of reflection, and culminating with the even more 
complicated anomaly of refraction. Within this succession, the difference between 
anomalies/salvations is one of degree rather than kind, so that reflection is pre- 
sumably just a complex form of direct vision, as is refraction of reflection. To see 
how this presumption was vindicated in practice, we have but to look at the 
classical analysis of reflection. 

Saving Catoptrics 

While the primary concern of optics is the disparity between what a given 
object looks like and what it actually is in space, the overriding concern of cat- 
optrics is the disparity between where the object seems to be and where it actually 
is in space. In other words, the fundamental problem or appearance of reflection 
is that of image-location, and the key to saving it lies in the relationship of equality 
between the angles of incidence and reflection. 15 Recognized quite early--probably 

14 This analytic structure is quite clearly reflected in the organization of PTOLEMY'S 
Optics, which is divided into three major, and absolutely distinct, sections. The first of 
these, which ends with book II, treats direct vision, starting with first principles and cul- 
minating with the analysis of binocular vision. The second section, which treats reflec- 
tion and comprises books III and IV, starts with the analysis of plane mirrors, passes 
to the more complex case of convex mirrors, progresses to the even more complex case 
of concave mirrors, and ends with compound mirrors. Finally, in the third section, which 
consists of book V, PTOLEMY undertakes his analysis of refraction. Even the most per- 
functory reading of the Optics will show that, within the general confines of this basic 
structure, PTOLEMY was trying, insofar as possible, to build the science of optics, step by 
theorematic step, as EUCLID had built the science of geometry. 

is In figure 1, n. 2 above, if BD is taken lo represent a plane mirror, EC the incident 
ray, C the point of reflection, O' the visible object, and CO' the reflected ray, then (i) 
will always be equal to (r). Moreover, since the image I '  of object O' lies at the juncture 
of ± O ' X  (the cathetus) and extension CI '  of incident ray EC, and since (i) = / D C I '  
= (r), then I '  must lie precisely the same distance along cathetus O'X below BD as O' 
lies along the cathetus above BD--i.e., O'X = XI'. The same sort of analysis also 
enables us, mutatis mutandis, to locate I '  in convex and concave mirrors. On the basis of 
these principles, PTOLEMY was able to derive the Law of Equal Angles experimentally in 
Optics III, 7-12, pp. 91-94, using the same template designed for the refraction experi- 
ments. In this case, disk ABFD in figure 1 is laid horizontally, and to it are applied, in 
succession, a plane mirror, a convex mirror, and a concave mirror, such that all three 
reflecting surfaces will be vertical to ABFD, and BD will either coincide with, or be tan- 
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by EUCLID and certainly by ARCHIMEDES-- this all-important relation was accepted 
for at least three centuries as an empirical fact and, as such, carried the force of 
probability if not necessity. That, however, changed dramatically nearly a century 
before PTOLEMY, when HERO of Alexandria transformed mere empirical likelihood 
into law with a simple but ingenious mathematical proof. 

Assume, he says in proposition 4 of the Catoptrics, 16 that the resulting angles 
are not equal. For instance, let  EH in figure 4 represent a plane mirror, G the 
eye, and D the object; and let ray GB strike the mirror at B and reflect to D such 
that /_GBE of incidence =t= /_DBH of reflection. Meantime, draw rays GA and 
AD so that /_GAE ---- /_DAH. Under these conditions, HERO concludes, it can 
easily be proved that the sum of GA and AD is invariably less than the sum 
of any other lines connecting G and D to any point on the mirror's surface other 
than A. 17 

G D 

E B A H 

Fig. 4 

With this seemingly trivial proof, what HERO did in effect was to demonstrate 
the necessity of the relation of equal angles by recourse to the so-called Principle 
of Least Lines. That is, he proved that the path forged by those rays subtending 
equal angles with the mirror's surface is the shortest possible and therefore the 
most economical. Consequently, he actually resolved the Law of Equal Angles, 
the pivotal saving principle of reflection, into a special case of perfect point-to- 
point brevity, the fundamental salvans of optics. In accomplishing that, further- 
more, he demonstrated that the overall anomaly of reflection, with all its atten- 
dant sub-anomalies, is merely a special case of unimpeded visual radiation, itself 
a special case of the Principle of Natural Economy. Optics and catoptrics were 
thus irrevocably drawn by Hero into the same systematic pale. This in turn 
dissolved any real difference, other than in complexity, between direct vision and 
reflection, both anomaly-types having been mathematically reduced to absolute 
order through the same saving principle. 

gent to, the surface of reflection at C. Then, sighting along EC, we move pointer O' 
until it appears to fall into line with EC, and in all three mirrors (r) will invariably prove 
to be equal to (i). It is hardly surprising that, coupled with his refraction experiments, 
these reflection experiments should be adduced as clear evidence of PTOLEMY'S strong empi- 
rical bias in optics. 

16 Heronis Alexandrini opera quae supersunt, vol. 2, fasc. 1, ed. WILHELM SCHMIDT 
& L. NIX (Leipzig: Teubner, 1900), pp. 324-29. 

17 HERO gives an equivalent proof for convex mirrors in Catoptrics, prop. 5, pp. 328- 
31. I should perhaps point out that it was common practice among the Greeks, as well as 
among medieval optical writers, to measure the angles of incidence and reflection with 
respect to the surface of reflection rather than the normal. 
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Perhaps even more important than explicitly validating the Law of Equal 
Angles, though, HERO'S proof  also implicitly validated the entire analytic struc- 
ture of Euclidean-Ptolemaic optics. For, by specifically showing that reflection 
amounts to nothing more than a complex form of direct vision, his proof  raised 
the more general likelihood that, as an anomaly, every optical appearance, as 
well as its salvation, is just a more or less complex form of  some simpler, more 
basic type. In short, he provided an explicit and exemplary justification of the 
heuristic according to which the science of Euclidean-Ptolemaic optics seems 
to have developed from its inception. Hence, in addition to vindicating the saving 
principle of  reflection, HERO'S proof  marked a critical step in the establishment 
of a firm deductive basis, according to a clearly defined and totally interdependent 
system of anomalies, upon which to ground the eventual salvation of all possible 
optical appearances, as 

As far as our understanding of PTOLEMY'S methodology is concerned, this 
point has a twofold bearing. First, it puts his much-touted reflection experiment 
into clear perspective, not as a means of discovering fact or testing hypothesis, 
but simply as a way of graphically verifying what he already knew: a law whose 
force had been established nearly a century before on purely deductive grounds.: 9 
Thus, in this important case at least, experimentalism dwindles to relative insigni- 
ficance as a factor in PTOLEMY'S optical analysis--which strongly suggests that 
he considered induction to be subordinate to deduction. Second, being heir to 
the same optical tradition a s  HERO, a tradition to which HERO himself had con- 
tributed significantly, PTOLEMY was heir to the same heuristic. Methodologically 
this is critical, because it means that, guided by that heuristic, he was logically 
impelled to suppose that, as part of a well-defined system of anomalies, refraction 
would prove to be a special case of reflection, just as reflection had proved to 
be of direct vision. Hence, in approaching refraction he was already predisposed 
to treat it as systematically related to, rather than fundamentally different from, 
reflection. 

Trying to Save Dioptrics 

Just how closely related PTOLEMY actually thought reflection and refraction 
were is evident from his analysis of the similarities between them. "Visual rays," 
he informs us, "may be altered in two ways: (1) by reflection, i.e., the rebound 
from objects, called mirrors, which do not permit of penetration, and (2) by 
bending in the case of media which permit of penetration . . . .  -2o Both alterations, 
in other words, are functions of the ray's striking a surface and then being de- 
flected along another path. The two are also alike, he continues, in that they entail 

in Thus, all optical problems, from those involving unbroken visual radiation to those 
involving refraction, ought ultimately to be resolvable through the Principle of Least 
Lines. 

19 Obviously, then, PTOLEMY was not relying upon experiment to discover the 
relationship of equal angles, nor was he employing it as an experimentum crucis in the 
Baconian/Newtonian sense. 

20 Optics V, 1, p. 223, lines 2-7, tr. COHEN & DRABKIN, Source Book, pp. 271-72. 
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"'the relation of images and objects, ''21 which is to say that in each case the basic 
anomaly consists in the disparity between real and apparent location. In both 
cases, therefore, saving the appearances involves a mathematical reconciliation 
of  these loci. Finally, PTOLEMY claims that in both reflection and refraction, not 
only do incidence and deflection occur in the same plane, but the image is located 
in that plane at the juncture of the line of incidence and what amounts to the 
cathetus, z2 

Despite these similarities, however, reflection and refraction differ in two 
signal ways according to PTOLEMY. First, while reflection involves the ray's strik- 
ing a body with an optically impenetrable surface, refraction involves its striking 
a body with an optically permeable surface. But the permeability of such a body 
is contingent on its relative "density," so when a ray passes from a relatively per- 
meable/rare to a relatively impermeable/dense medium, it will be bent toward 
the normal. Conversely, passage from a dense to a rare medium will cause an 
equivalent bending away from the normal. 23 In either case, the greater the den- 
sity-differential, the greater the bending. 24 The second difference is that, unlike 
reflection, refraction "does not take place at equal angles," although PTOLEMY 
is quick to add somewhat cryptically that "the angles, as measured from the 
perpendicular (i.e., the normal) do have a definite quantitative relationship. ' '2s 

To construe this unspecified relationship as one of constant proportionality 
between i and r is indeed tempting, as COHEN • DRABKIN remark. 26 More than 
tempting, however, it is almost unavoidable in light both of PTOLEMY'S explicit 
acknowledgment of the close ties between reflection and refraction and of his 
evident commitment to the idea that refraction marks the last and most complex 
in a sequence of three anomaly-types, the first two of which had long since been 

21 Optics V, 1, p. 223, lines 10-12, tr. COHEN & DRABKIN, Source Book, p. 272 
22 Cf. Optics V, 3-5 ,  pp. 224-26. In the first of these claims PTOLEMY is simply stating 

that the center of sight, the point of reflection/refraction, the object-point, and the 
image all lie in the same plane. Thus, in figure 1, n. 2 above, E, C, O', and I', as well as E, 
C, O, and I (the image-point in refraction), all lie in plane ABFD. Using the same figure, 
we can see that the image in refraction, I, like that in reflection, I', is located at the juncture 
of EC extended and the perpendicular dropped to the surface of refraction. 

23 Although he hints at it in his preliminary discussion in V, 2, p. 224, PTOLEMY does 
not give a definitive statement of this principle of reciprocity until the end of his experi- 
mental analysis, in V, 31, p. 243. 

24 Optics V, 31, p. 243 and V, 33, p. 244. By relating refractivity to the density- 
differential, PTOLEMY was of course adumbrating the modern conception of an index of 
refraction. An interesting implication of his assuming that the greater the density- 
differential, the greater the bending, is that, in passing into increasingly dense media, 
the ray will be increasingly bent toward the normal until, finally, it will theoretically be 
forced to coincide with the normal. At this point, however, the density will have become 
so great as to render the medium optically impermeable, and reflection will ensue. So in a 
sense reflection is merely refraction carried to the extreme. 

25 Optics V, 2, p. 224, lines 6-8, tr. COHEN & DRABKIN, Source Book, p. 272. Actually, 
this statement is a good deal more cryptic in Latin than the English translation might 
lead to us believe (... nulla fit in eis flexio ad equales angulos, sed habent similitudinem 
quandam et quantitatem que sequitur habitudinem perpendicularium ...). 

26 Source Book, p. 272, n. 2. 
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reduced to equivalency through the least-lines principle. Thus, since the salva- 
tion of reflection had proved to be no more than a systematic variant of  the salva- 
tion of direct vision, it stood to reason that the salvation of refraction would in 
turn prove to be a systematic variant of  the salvation of  reflection, especially 
since the two phenomena display such obvious affinities. In tackling refraction, 
then, it was only natural for PTOLEMY to take reflection as his analytic model. 
But if  reflection was saved through a form of constant proport ionali ty--equali ty 
--between i and r, then why not refraction too ? Why not, in short, draw the ob- 
vious conclusion that the governing principle of  refraction must be equivalent 
to, but more complex or general than, the Law of Equal Angles--i.e.,  that  
i : r : : i  1 : r l .  927 

Assuming that  he actually did follow this self-evident train of  deductions, 
PTOLEMY must have undertaken his refraction experiments expecting at the 
outset only to verify the constant proportionality that reason led him to anticipate. 
So much, at least, is consistent with his use of  experiment in reflection. In this 
case, though, in lieu of  confirmation, experiment yielded confutation, because, 
of  course, there is no constant proportionality between i and r in refraction. 
In fact, so disproportionate are they, even according to PTOLEMY'S results, that 
he could not possibly have found one without denying the evidence of his senses. 
I t  would therefore seem that, in the face of  clear facts, he was forced to repudiate 
his preconceived " law" of constant angular proportionality; yet, as will become 
clear in a moment,  rather than abandon that law, he simply adjusted it to the 
observations and, in the process, adjusted the observations themselves in a very 
telling way. 

Take his results for refraction f rom air to water, reproduced in the table 
below :zs 

i r d~ dz 

0 0 
8 

10 8 .5 
7.5 

20 15.5 .5 
7 

3 0  22.5 .5 
6.5 

40 29 .5 
6 

50 35 .5 
5.5 

60 40.5 .5 
5 

70 45.5 .5 
4.5 

80 50 

Clearly, this table is laid out so that i occurs in a uniform progression from 0 ° 
to 80 ° at a constant rate of  10 °. Against this uniform progression, we have the 
apparently non-uniform progression of  0 °, 8 °, 15.5 °, 22.5 °, ... 50 ° for r. How- 
ever, as is evident f rom the dl column, the first differences between rl,  r2, r3, 

27 This conclusion rests on the obvious fact that i = r is just a specific form of the 
more general proportionality i : r : : i~ : r~. 

28 PTOLEMY'S tabulations, upon which this table is based, are found in Optics V, 11, 
pp. 229-30. I reiterate that the dl and d2 columns were not supplied by PTOLEMY; they 
are modern interpolations. 
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and  so forth, decrease constant ly  by a factor dz = .5 °, the second difference. In  

other words, for every constant  increase in  i, there is a corresponding decrease 
in all. If  we take the first dl (which is also the first value for r- - i .e . ,  8 °) as a base 
factor, however, and suppose that,  instead of decreasing, it remains constant ,  
we will get the un i fo rm series 8 °, 16 °, 24 °, 32 °, . . .  64 ° for r, which, plotted against  
the 10 °, 20 °, 30 °, 40 °, . . .  80 ° series for i, yields the originally anticipated " ideal"  
propor t ional i ty  i : r :: il : r~. In  reality though,  after an initial  sweep of 8 °, the 
base factor decreases uni formly at a rate of .5 ° for every 8 °, so that  the final 
result is 0 ° + 8  ° = 8  ° , 8 ° + 7 . 5  ° ~ 1 5 . 5  ° , 15.5 ° + 7  ° = 2 2 . 5  °, 22.5 ° + 6 . 5  ° = 2 9  ° , 
etc. Therefore, the actual r-series is a funct ion of two basic factors: an  " ideal"  
un i fo rm progression according to constant  increments of 8 ° and  a un i form regres- 
sion of those increments according to constant  decrements of .50. 29 

29 This is easily understood if we translate the problem into terms of motion, with 
the/-series representing a uniform circular motion at a constant rate of 10°/time-unit. 
Then, as i moves uniformly from 0 ° to 80 °, r would ideally move from 0 ° to 64 ° at a 
constant rate of 8°/time-unit; and the two motions would be constantly proportional. 
According to observation, however, instead of moving uniformly, r seems to decelerate 
constantly, so that, instead of sweeping out the ideal arc of 64 °, it sweeps out an actual 
arc of 50 °. The problem thus reduces to this: how can we make the ideal uniform motion 
of r through an arc of 64 ° at a constant rate of 8°/time-unit appear to be a non-uniform 
motion through an arc of 50 ° at a rate that changes constantly by decrements of .5°/ 
time-unit ? A very dose, and very simple, first approximation to "saving" this appearance 
can be found in the Ptolemaic eccentric-model. Let AB in figure 5 represent a circular 
orbit, whose center is C, and let the ideal uniform motion of r be plotted on the circle 
from point C such that r sweeps out arc DK of 64 ° in constant increments of 8 ° (i.e., 
arcs DF, FG, GH, etc. = 8°). Then pick an eccentric point E from which arc DK will 
appear to be 50 ° and from which arcs DF, FG, Gift, etc. will appear to be 8 °, 7.5 °, 7 °, ete 
respectively. Thus, as r sweeps out the uniform succession of 8 °, 16 °, 24 °, 32 °, etc. meas- 
ured from C, it will seem from point E to sweep out the non-uniform series 8 °, 15.5 ° , 22.5 ° , 
29 °, etc.-- the values actually given in PTOLEMY'S table. It should be noted, though, that 
without a number of subtle refinements, this simple eccentric-model will not save the 
appearances exactly, because the rate of apparent deceleration in r is not perfectly constant 
at .5°/time-unit but continually decreases as r approaches K. 

A 

K I 

Fig. 5 
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This analysis extends to PTOLEMY'S tWO remain ing  refraction tables as well. 
In  the first of  these (air to glass) the base factor is 7 ° , and  in the second (water 
to glass) it is 9.5 ° , bu t  in b o t h - - a s  in the table for air to wa te r - - the  second 
difference remains unchanged  at .5°. a° In  all three cases PTOLEMY reduced the 

ao Given in Optics V, 18, pp. 233-34 and V, 21, pp. 236-37, PTOLEMY'S results for 
refraction from air to glass and water to glass are as follows: 

air-glass water- glass 
i r i r 

0 0 0 0 
10 7 10 9.5 
20 13.5 20 18.5 
30 19.5 30 27 
40 25 40 35 
50 30 50 42.5 
60 34.5 60 49.5 
70 38.5 70 56 
80 42 80 62 

That  PTOLEMY'S adjustments were indeed purposeful and not merely due to random error 
is evident from a comparison of his values with the correct values according to the sine- 
law. For instance, compare his values against the values of r for refraction from air to 
water, taking 1.33 as the index of refraction and rounding off to the nearest .5 ° --the prob- 
able limit of his ability to discriminate: 

i r (Ptolemy) r (modern) 

0 0 0 
10 8 7.5 
20 15.5 15 
30 22.5 22 
40 29 29 
50 35 35 
60 40.5 40.5 
70 45.5 45 
80 50 47.5 

Notice, first, that the adjustments are selective. Three of the eight Ptolemaic values are 
accurate, and the remaining five are all adjusted upward. Second, notice that, with one 
signal exception, these adjustments are all uniform at .5 °. Moreover, in that one excep- 
~tional case (when i = 80°), the discrepancy between r (PTOLEMY) and r (modern) is 
unusually large (2.5 °, well beyond the .5 ° limit of error) --too large and too idiosyncratic 
-to he attributed to mere observational error. Surely, then, the likelihood of PTOLEMY'S 
having made these particular adjustments by pure chance to home in on this particular 
rational sequence of r-values is minimal. It is of course remarkable that, even after 
adjustment, PTOLEMY'S values are for the most part exceptionally dose to the ones he 
~'should" have found. 
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anomaly - - i . e . ,  the disparity between the observed and ideal or anticipated value 
of  r - - t o  two absolutely simple components :  a un i form progression according to 
a cons tant  base-rate (7 °, 8 °, or 9.5°), and a un i form regression of that  base-rate 
at a constant  rate of .5 °. He therefore seems to have p inned his hopes for saving 
refraction on establishing a simple mediate relat ion between i and  r through the 
cons tan t  propor t ional i ty  of i and  R (ideal or anticipated r) and a constant ly  
va r i an t  relat ion between R and  r. 31 

In Search of a Law 

By skewing his data  in  the way he did, PTOLEMY made it quite easy to reach 
a general solut ion for r in terms of i, R, and  d2. In  the first place, it is evident f rom 
all three tables that,  for any value of i, r is equal  to the sum of d l ' s  up to that  
poin t ,  and  that  sum differs from the value of R by the overall a m o u n t  of decrease 
in the dl 's .  In  the air-water table, for example, the value of r for i = 20 ° is 8 ° -k 
7.5 ° = 15.5 °, bu t  if dl were to remain constant  at the ideal rate of 8% while i 
progresses f rom 0 ° to 20 °, r would be 16 °. So there is a difference of .5 ° (1 ×dz)  
between R and  r. Similarly, the value of r for i = 30 ° is 8 ° -1- 7.5 ° + 7 ° = 22.5 °, 
which differs by 1.5 ° (3 × d2) from the R of 24 °, whereas for i = 40 °, r = 29 °, 
which differs by 3 ° (6 × d2) f rom the R of 32 °. F r o m  this we can conclude that,  

n--1 

for  any i whatever, the difference between r and R will be ~] dz, where n = i/10. 32 
1 

~-1 n(n  - -  1) 
I n  short, r = R -  ~ d2 = R - - d 2 .  Thus, when i = 70 °, n = 7, 

1 2 

7 × 6  
R-----7 ° × 8  ° = 5 6  °, and  r = 5 6  ° - -  × . 5  ° = 4 5 . 5  °, which is indeed the 

2 
value given in  the table. With  this same technique we can compute r for any 
value of i we please, so that,  for example, to find r for i = 1 °, we compute n 
(which equals 1/10 or .1) and  R (which is n × b a s e - r a t e  8 ° or .8°), and put  those 

.1 × ( - - . 9 )  
values into the equat ion  to get r = .8 ° × .5  = .8225% 33 

2 
I t  should be clear that, besides providing a general solut ion for r, this equat ion  

also offers a clear, concise, and  explicit s tatement in modern  guise of the law of 
second differences implicit  in  PTOLEMY'S analysis of refraction. First, it follows 

31 Ideally, then, R ought to differ from r by some constant factor x (presumably 
= .5°), which varies constantly with i or R so that, if R -- r = x, then a(R -- r) = ax. 
In such a case, i:  (r -k x) :: ai:  a(r + x), which is a relatively simple permutation of 
i : r  : : i l  :r l .  

32 This value for n follows from our taking the value r = 8 ° = R, when i = 10 °, 
as the standard or ideal from which all other values will derive or deviate. Thus, for any 
n-multiple of i, r will be the n-multiple of 8 ° minus the summation-factor. 

33 This method can be applied to the other two refraction tables as well. Thus, to 
.compute r for i = 1 ° in the case of refraction from air to glass (where the base-value 

7 ° .1 x (--.9) 
of R is 7°), we get the equation r × .5 ° = .7 ° -f- .0225 ° = .7225 °. 

i0 2 
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directly f rom his tabulations and is therefore immediately "in" the phenomena 
as he recorded them. Second, it conforms exactly to the proposed model of  uni- 
form progression countervailed by constant regression in the rate of  progression. 
Third, it is absolutely general. Finally, and most telling, it is wholly contingent 
on d2. 34 Thus, by approaching the problem as he apparently did, and skewing his 
results accordingly, PTOLEMY had within his reach a definite and almost intuitively 
obvious law of refraction based on second differences, the very thing for which 
he was supposedly searching. Nonetheless, as his silence regarding that law would 
appear  to indicate, he somehow let it slip through. 

At first glance, this apparent  lapse might seem startling, but if we consider 
the problem as PTOLEMY posed it for himself-- to  establish a direct relation be- 
tween i and r in the restricted form of Euclidean propor t ions- - then it becomes 
readily understandable. For  even if PTOLEMY had found the general solution at 
a practical, computational  level, the difficulty of  expressing it satisfactorily in 
the necessary i : r format  would have been virtually insuperable. For  instance, it 
was doubtless as clear to PTOLEMY as it is to us that the relation between r and R 
involves a continual variation in the difference between the two. That  is, as r 
and R increase, so does the difference between them. Moreover, it is equally clear 
that this increase is a function of d2. The problem is to determine exactly what 
that variation is-- in  other words, precisely what sort of  function of  d2 it is. 3s 

To us, this poses no difficulty whatever. We define the variation, and thus 
n 2 - -  n 

give it definite expression, in the algebraic form ~ d2, which involves a 

simple quadratic function divided by 2 and multiplied by d2. To PTOLEMY, on 
the other hand, such a formulation would have been incomprehensible for a 
variety of  reasons. To start with, in Greek mathematics, fractions represent ratios, 

n 2 - -  n 
not numbers, so ~ would translate into ( n  2 - -  n) : 2. Not  only is such a 

ratio peculiar; it is senseless in Euclidean terms, because it entails a direct relation 
between a linear and an areal magnitude. Worse, the quadratic function n 2 - -  n 
itself involves a direct relation, through subtraction, between a linear and an areal 
magnitude. Worse yet, this whole complex of meaningless relations is directly 
related, through multiplication, to d2. Finally, add to all these complications the 
further complication of relating this extraordinarily complex set of  relations direct- 
ly to r and then relating that relationship directly to i in order to get the requisite 

34 Govi, L'Ottica, p. xxvi, offers an entirely different solution in the algebraic form 
r = ai -- bi 2, where a and b are constants that depend on the table (e.g., in the case of 
air to water, a = .825 and b = .0025, whereas in the case of air to glass, a = .725 and 
b = .0025). Although perfectly adequate, this solution is not intuitively obvious from 
the data, nor does it show any obvious formal contingency on d2. In short, it is too abstract, 
too removed from the phenomena, to have been evident to PTOLEMY. 

35 The nub of the problem is that, while i increases arithmetically, the difference 
between R and r increases geometrically so that, rather than a constant variation, there 
is a constantly increasing variation. This of course dashes any hope of establishing a 
constant "mediate" proportionality of the kind suggested in n. 31 above. 
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n 2 - -  n 

constant proportionality i:  r ÷ ~ d 2 ,  and the magnitude of PTOLEMY'S 

problem becomes clear. 36 
Small wonder that, given the constraints, both mathematical and methodolog- 

ical, under which he worked, PTOLEMY was unable to "find" the law of second 
differences, much less the correct law. Wedded, as he understandably was, to 
the idea that refraction and reflection are fundamentally equivalent and, therefore, 
that refraction, like reflection, should be governed by a constant angular pro- 
portionality, PTOLEMY was destined to fail on at least two counts. First, it would 
have been little short of  miraculous if, fixated upon the actual angles of  incidence 
and refraction, he had ever stumbled upon the proper sine relation between them. 
Not  only is this relation not actually in the phenomena as he recorded them; it 
was not actually in the phenomenon as he conceived i t?  7 Second, by attempting 
to establish a definite relation between those angles according to the ideal i : r  

format,  he set himself an unimaginably difficult task. Even the simple pattern 
of  change in r that he imposed by streamlining his "observations" was too complex 
to be effectively expressed in terms of Euclidean proportions. But the full measure 
of  PTOLEMY'S failure is revealed by the inadequacy of the law that he actually 
did propose. Unable to establish a definite general relation between i and r, he 
chose the only valid alternative he had: to establish an indefinite general relation 
between them. Thus, at the end of his experimental analysis of refraction, he con- 
eluded that, if the ray passes from a rarer to a denser medium, and if i ~ il, then 
i : r ~ il : r~, which means that, instead of a constant proportionality, there is a 
continuous d i s p r o p o r t i o n a l i t y  between i and r .  38 

Suffice it to say, this disproportionality statement is both true and trivial; 
and its triviality has caused it to be, if not entirely ignored, at best passed over 
with the bland assurance that no scientist of PTOLEMY'S caliber would have seriously 
intended it as a l a w .  39 Perhaps not, but it was the only law he could have legit- 
imately proposed under the circumstances. I t  follows logically from his experi- 
mental results, it conforms to his basic model, it is absolutely general, and most 
revealing of all, it takes expression in the sought-after i : r form. In fact, its very 
triviality and insufficiency make this disproportionality law critically important  
as an index of precisely what PTOLEMY was looking for in refraction and the se- 
verity of  the constraints under which he carried out the search. For  in the final 

36 This final constant relation would then be related to 10 : 8, 10 : 7, or 10 : 9.5, 
depending on which case of refraction is under consideration. Thus, for refraction from 

air to water, the full statement of proportionality would be i : r ÷ ~ d2 : : 10 : 8. 

37 In other words, because PTOLE~ quite naturally conceived of refraction as a 
function of the angles, he was not logically bound to take the next step of abstraction: 
to conceive of it as a function of a funct ion  (i.e., the sine) of the angles. 

as This is what PTOLEMY'S final summary in Optics V, 34, p. 245 boils down to. 
39 For example, it is improbable that, without having completely ignored this claim 

of disproportionality in V, 34, SARTON could have maintained that "Ptolemy fomnd that 
the angles of incidence and refraction are proportional . . . .  " (Introduction, vol. 1, p. 274). 
As is clear from his tabulations, PTOLEMY found no such thing. 
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analysis, the form of  that law bespeaks the singlemindedness of  his effort to save 
refraction in terms of direct angular proportionality, and its futility is a perfect 
gauge of the futility of  that effort. 

Conclusion 

Why did PTOLEMY fail to find the sine-law ? Or, to rephrase the question, why 
did he fail to save the appearances of  refraction ? The answer is that it was not 
so much PTOLEMY who failed to save the appearances as "saving the appearances'" 
that  failed him by leading him at the outset to treat the domain of optics as a 
particular kind of anomaly-structure. Accordingly, he was bent on resolving that  
structure into a more or less rigid system of three basic anomaly-types, depending 
upon whether the visual ray was unbroken, reflected, or refracted. The first two 
of these anomaly-types, as well as their respective salvations, had been effectively 
reduced to equivalency through the least-lines principle, and the last two (i.e., 
reflection and refraction) displayed a number  of  crucial affinities. Therefore, since 
the phenomena or appearances of  reflection and refraction seemed to be essentially 
equivalent, it stood to reason that their respective salvations would be too. The 
obvious conclusion for PTOLEMY to draw, then, was that in refraction, as in re- 
flection, i and r would be constantly proportional,  although in the case of  refrac- 
tion they would be unequal. 

I f  indeed PTOLEMY did draw this conclusion, then even before he under took 
his refraction experiments, he had a very definite idea of what to expect. Yet his 
observations failed to bear it out. Instead of increasing uniformly with i, as 
he had anticipated, r seemed to increase at a steadily decreasing rate. Since there 
was a clear anomaly between expected r (R) and observed r, PTOLEMY had to face 
the problem of rationalizing it. Guided by the assumption that Nature acts as 
efficiently, and thus as simply, as possible (the Principle of  Natural  Economy), 
he did so in the simplest way possible, by reducing the anomaly to two fundamental 
components:  namely, a uniform, ideal progression of R according to constant 
increments, offset by a constant regression in those increments. The beauty of  
this solution is that, with only the subtlest violence to the raw data, it fits the 
"observat ions" perfectly. 

Having arrived with no small ingenuity at a rational and simple pattern of  
variation between R and r, PTOLEMY then had to find a way of reconciling i and 
r according to it. The easiest way of accomplishing this was through the mediation 
of R, so that the apparently inconstant relation between i and r could be resolved 
into two constant sub-relations between i and R and between R and r. Easy 
enough in theory, this resolution proved to be virtually impossible in practice, 
primarily because of the limitations of  Euclidean proportionality theory. The 
major  stumbling-block would have been the problem of relating the expression 

n 2 - -  n 
R = r + ~- d2 directly to i, which would have barred him from any effective 

statement of  law in the ideal i : r :: il : r~ form. Hence, as a result of his understand- 
able fixation on the direct i : r relation, PTOLEMY was not only incapable of  "find- 
ing" the sine-law; he was forced faute de mieux into the weak generalization 
that i is invariably disproportional to r. 
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Ironically enough, it was precisely because PTOLEMY'S approach to refraction 
was so eminently sensible and logical that he strayed so far from the sine-law. 
Actually, he took a fatally wrong turn at the beginning, when he assumed (quite 
correctly) that refraction is a special case of reflection and, therefore (quite in- 
correctly), that its salvation must lie in a direct relation between angles i and r. 
Once he had battened onto that idea, he pursued it with logical singlemindedness 
along a path of  impeccable reasoning that led inexorably to failure. As it turns 
out, the anomaly of refraction was not just more complex than he had originally 
thought; it was more complex than he could have imagined. 

At a somewhat superficial level, then, PTOLEMY'S failure can be imputed 
to his procedure, which misled him into focusing too narrowly upon direct an-  
gular relationships. But the real source of failure can be traced even deeper, to 
the basic assumption upon which that procedure rested: that the visual act is 
ultimately intelligible in terms of simple, fixed spatial relationships between viewer 
and object. As the final arbiter of  these relationships, the visual ray was therefore 
conceived of as a fundamentally spatial ent i ty--a  real line through which the geo- 
metrical reality behind the visible appearances could be immediately construed. 
And the rectilinearity of that line was presumed to be a function of its absolute 
spatial brevity. 

We have already seen how successfully the ray-as-least-distance was employed 
in the salvation not only of direct vision but, far more important,  of  reflection. 
HERO'S demonstration of the contingency of the equal-angles law upon the Prin- 
ciple of  Least Lines is a clear testament to that success. In the case of refraction, 
though, the same sort of  analysis will not work. The sine-law simply cannot be 
established on the basis of least distances but, as FERMAT eventually showed, must 
be grounded upon least times. In other words, if it is to save refraction, the ray 
must be understood to represent a temporal, not a spatial, path. 4° The inadequacy 
of PTOLEMY'S analysis of  refraction was therefore due to the inadequacy of his 
ray-concept. Like the extremal principle (i.e., the least-lines principle) upon which 
it pivoted, it was too limited to be extended to the salvation of dioptrics. 4~ 

Thus PTOLEMY'S failure was at bot tom systematic, a function less of his limi- 
tations than of the inherent limitations of the conceptual framework within 

4o Both FERMAT'S proof and DESCARTES' earlier "demonstration" of the sine-law 
depend upon the mathematical ray's representing not distance but velocity (cf. A . I .  
SABRA, Theories of  Light from Descartes to Newton [London: Oldbourne, 1967]). Conse- 
quently, the ray as they finally conceived it represented not a spatial but a .temporal (or 
spatio-temporal) entity. Moreover, by grounding his ray-analysis on least times, FERMAT 
established that the perfect spatial brevity of the ray was a function of its even more 
fundamental temporal brevity. 

41 The basic flaw in PTOLEMY'S refraction-analysis consists in the fact that the terms 
of his analysis are too concrete and specific. The spatial brevity that he supposed to be 
the fundamental governing principle of visual radiation is actually a function of a more 
profound temporal brevity. Likewise, the angular relationships that he thought governed 
refraction are actually functions of a more profound sine relationship. Thus, PTOLEMY'S. 
failure overall was due to his inability to conceive the phenomena more abstractly, to 
transcend the limitations of the simple spatial intuitionism that dictated his scientific 
approach. 
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which he operated. The heart of  the problem lay in the cardinal supposition that 
underpinned the whole appearances-saving enterprise: that the true and final 
measure of  any spatio-temporal process--be it visual/visible radiation or celestial 
mot ion- - i s  its spatial extent. Accordingly, the visible appearances and their sal- 
vation were conceived to be essentially spatial and at best only accidentally tem- 
poral. 42 As a consequence, while the mathematical lines used in the classical 
and early modern analysis of  optics are identical, what they represent are decidedly 
not. I t  is this crucial difference between the ray, understood as a real line in space, 
and the ray, understood as an imaginary line in time, that separates classical 
Euclidean-Ptolemaic f rom early modern mathematical optics. In short, the means 
of  discovery available to PTOLEMY were not the same as those available to his early 
seventeenth-century successors, because his conceptual grasp of the phenomena 
was radically different from, and far less abstract than, theirs. 
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42 Thus, "saving the appearances" in general was predicated on the same spatial 
intuitionism that vitiated PTOLEMY'S analysis of refraction. In both classical optics and 
classical astronomy, this led to a fundamentally static approach: the appearances were 
assumed to be frozen in space and, in a sense, frozen out of time. Change was thus seen 
as a basically spatial rather than temporal phenomenon. It was this failure to incorporate 
time effectively into the analysis of change that constituted the fatal flaw of the appear- 
ances-saving endeavor, and as far as mathematical optics is concerned, that flaw persisted 
until the static approach of EUCLID and PTOLEMY gave way to the kinetic approach of 
DESCARTES and FERMAT. 


