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1. Introduction 

Enhanced precision in astronomical observations and their reasonable mathe- 
matical treatment underlie observational astronomy. Beginning with BRADLEY, 
the need for regular series of observations had become generally accepted 1, 
and after the work of  GAUSS and BESSEL it became common to analyse astronomical 
instruments and to allow for instrumental errors. It is no surprise that precisely 
the requirements of astronomy (and geodesy) gave rise to the classical theory of  
errors and to the method of  least squares. 

In an earlier work I have considered the mathematical treatment of astronom- 
ical observations up to the middle of the 18 th century [145] 2. Together with my 
other contributions [142-144; 148; 149] this paper provides the ground-work 
for a history of  error theory. My aim here is to describe the penetration of  the 
statistical method itself into astronomy. 

LAPLACE'S theory of probability 3 grew largely from astronomy. In discussing 
the application of  the theory to natural philosophy in his Essai philosophique 
[105], LAPLACE enumerated a number of  astronomical facts whose existence he 
first determined by a stochastic examination of the data and then ascertained 
deductively.* Regrettably, it seems that LAPLACE in his published works never 
produced the preliminary stage of the investigation. Only two stochastic astronom- 
ical studies by LAPLACE are known, viz, his calculation of the mean inclination 

1 At the same time the volume of work in compiling catalogs, determining astro- 
nomical constants and so forth sharply increased, thus enhancing the role of the pre- 
liminary treatment of data and their adjustment. 

2 NOEL SWERDLOW (Math. Rev., vol. 56, No. 8262) severely criticized this paper. 
I do not accept this criticism. 

3 LAPLACE also applied probability theory to population statistics and to juris- 
prudence. 

4 I have used one of his relevant statements as an epigraph [147], thus emphasizing 
the trend of LAPLACE'S theory of probability towards natural science and, specifically, 
towards astronomy. 



Statistical Method in Astronomy 153 

of planetary and cometary orbits (see my §8 5.1 and 5.10)and his reasoning on 
the absence of comets with hyperbolic orbits [155, § 925]. 

A statistical approach to the system of the world is evident even in the works 
of  KEPLER [146, § 8.1] and NEWTON [139, p. 225]. Referring to the wonderful 
uniformity in the planetary system and regarding the planets as elements of a single 
statistical population, NEWTON asserted that the system must be allowed the effect 
of choice [not randomness]. 

HERSCHEL was the first to use the statistical method in stellar astronomy. 
He attempted to determine the extent of the stellar universe, constructed a model 
of the spatial arrangement of stars and studied the motion of  the sun. De facto, 
if  not de jure, HERSCHEL allowed randomness to play an important role in his 
model. Subsequent astronomers continued to study the distribution of stars and 
the sun's motion. 

I describe here the application of the statistical method to investigations of 
the solar system (planetary distances, minor planets, sunspots) and in stellar 
astronomy. Roughly speaking, my investigation terminates in the middle of the 
19 th century when, on the one hand, star parallaxes were still largely unknown 
and ray velocities of stars had not yet been measured, but, on the other hand, 
stellar astronomy had already opened up the new field of determining the proper 
motions of large groups of  stars. I outline also the essence of the statistical method 
as used by KAPTEYN and I sketch the prehistory of the penetration of mathematical 
statistics into astronomy. Some special features of my paper are a first attempt 
to describe STRUVE'S investigation of the completeness of star catalogs (see my 
§ 7.1), a description of PEARSON'S efforts to introduce the theory of correlation 
into astronomy (8 9.2.2); and of KAPTEYN'S 'astronomical' definition of the coef- 
ficient of correlation (8 9.2.1). 

Since authors usually begin the history of stellar statistics with KAPTEYN 
and SEELIGER 5, there is no general literature on my subject. 

As regards the general history of the statistical method [151, § 1.1] my study 
pertains to its second stage, which is distinguished by the availability of statistical 
data and the nonexistence of  quantitative tests to check the inferences made. 

The main body of my paper clearly reveals the insufficient level of prob- 
ability theory in the second half of the 19 th century. 

2. The Titius-Bode Law 

Beginning with KEPLER, modern astronomers attempted to discover numerical 
regularities in the structure of the solar system. The best known regularity, called 
the TITIUS-BODE law, characterizes planetary distances. Many authors have 
described its history; I shall confine myself to NIETO'S contribution [116]. 

The first to formulate the law was C. WOLFF (in 1723) and, in 1766, TITIUS 
followed WOLFF. However, the law became generally known as a result of the 
works of BODE that were published in the late 18 th century. 

5 PAUL'S unavailable thesis [118] seems to fall in this category. 
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According to the TITIUS-BODE law, planetary distances, or, rather, quantities 
proportional  to them, can be represented by the formulas 

,4 (n = 1), 

a n = 1 4 + 3 . 2  n-2 ( n - - - - 2 , 3 , 4 , 6 , 7 , 8 )  

(the value n = 5 roughly corresponds to the minor planets). 

Table 2(1). Planetary distances measured in arbitrary units 

Planets Planetary distances according to 
actual data [59, p. 635; the Tmus-  

60, p. 362] BODE law 
2 3 4 

1 Mercury 4.06 4 
2 Venus 7.58 7 
3 Earth 10.4 10 
4 Mars 16.0 16 
6 Jupiter 54.5 52 
7 Saturn 100 100 
8 Uranus 201 196 

Note: Number 5 corresponds to the minor planets. 

Table 2(1) gives the actual planetary distances and the distances derived from 
formulas (1). Of  course, BODE had no way of  estimating the accuracy of the law, 
but at any rate the fit should have seemed quite admissible to any astronomer. 6 

Opinions about  the physical meaning of  the Tmus-BooE law differ greatly 
to this day [116, chap. 1] but the mere fact that it is the subject of  a special book 
testifies to the lasting importance of the law. I shall restrict myself to GAUSS'S 
view, which the source just referred to does not mention. Incidentally, this 
view is characteristic of  GAtJSS'S attitude towards empirical formulas in general; 
see also my § 7.6. 

In a letter to YON ZACH, GAUSS wrote [84]: 

Sonderbar ist es, class man vom ... Titius angegebene sogenannte Gesetz als 
ein Argument gegen die beyden Planeten [Ceres und Pallas] gebrauchen wollte. 
Dieses Verhiiltniss trifft bey den iibrigen Planeten gegen die Natur aller Wahrheiten, 
die den Namen Gesetze verdienen, nur ganz beyliiufig, und, was man noch nicht ein- 
mahl bemerkt zu haben scheint, beym Mercur gar nicht zu. Es scheint mir sehr ein- 

6 BODE [61] alSO investigated the orbits of planets and comets. Thus, studying comets, 
he compared the distribution of each parameter of their orbits, one by one, with the 
uniform distribution and made qualitative conclusions. Quantitative investigations of 
this kind became possible only in the context of mathematical statistics by means of 
the KOLMOGOROV test. See also my §§ 3,1 and 5.4-5.8. 
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leuehtend, class die Reihe 

4, 4,1,3,  4.1.'6, 4.1.12, 4,1,24, 4,1,48, 4-I-96, 4-1-192 

womit die Abstiinde iibereinstimmen sollten, gar nicht einmahl eine continuirliehe 
Reihe ist. 

Referring to KEPLER, GAUSS nevertheless continued: 

Es ist gar nicht zu tadeln, wenn man dergleichen ungefiihre Ubereinstimmungen 
in der Natur aufsucht. 

In his approving opening remark, VON ZACH called GAUSS a seharfsinnige Mess- 
kiinstler. 

3. Minor Planets 

3.1. Newcomb 

NEWCOMB devoted a few papers to the study of minor planets. Here is a 
passage from his first contribution [22]: 

Another method [of testing a theory relating to the common origin of the minor 
planets] is furnished by the method [!] of probabilities, and might, perhaps, i f  the 
asteroids were sufficiently numerous, approach very nearly to certainty in its results. 
It is founded on the supposition, that the hypothesis examined will imply a high 
probability of  some general relationship among the orbits of the asteroids . . . .  

Referring to a previous note, NEWCONB [26] soon derived the distribution 
laws of the perihelia and nodes of the orbits of the small planets. 

In 1869 he [27] compared the theoretical parameters (calculated according 
to uniform distribution) and the actual parameters of the orbits of the minor 
planets, but of course he was unable to evaluate the results obtained. NEWCOMB 
studied the possibility that the empirical density of distribution might diverge 
from the parent uniform distribution. Only in 1900 did NEWCOMB [31] return 
to the same subject, this time studying the motions of the asteroids: 

It was, I believe, first pointed out by Kirkwood, that i f  the mean motions of 
the minor planets are arranged in the order of magnitude, gaps will be found at 
the values which would have a simple relation of  commensurability with the mean 
motion of Jupiter. 

NEWCOMB selected m (in ---- 354) planets with mean motions # (600" ~ # ~ 1,000") 
and divided them into n (n = 40) groups with # = 600-610, 610-620 . . . . .  
990-1,000". Assuming a law of distribution 

m! 

(which, true, he did not write down), NEWCOMB asserted that nq)(x) is the probable 
number of groups having x planets each. Actually, it is the mean number of 



156 O.B. SHEYNIN 

g roups .  7 In a qualitative study of  the differences between the observed and 
probabl e [mean] numbers of  groups with x planets each, NEWCOMB agreed to 
a certain extent with KIRKWOOD (.9) and he concluded that 

these inequalities o f  distribution couM [not] have arisen in a group o f  such [asteroids] 
once uniformly distributed. 

See also my § 5.8. 

3.2. Poincard 

POINCAR~ estimated the total number of minor planets (N) [130, pp. 163-168]. 
Supposing M planets out of N are known, let the number of planets observed 
during a certain year be n, of which rn planets were known before. Denote the 
probability of the existence of  planet i (i = 1, 2 . . . . .  N) by coi. Then POINCAR~ 
asserted that the probable value of the unknown N would be 

~ol -+-2~o2 + ... + N¢oN. 

Actually, this sum is the mean value of N, i.e. EN;  see also my § 3.1. 
I fp i  i s the probability of  observing n planets, provided their total number is i, 

the posterior probability of the existence of  N planets is 

cONPN 

~ o)iPi 
i=n 

Introducing the probability (p) of  the observation of a planet if it does exist, 
and writing q = 1 - - p ,  POINCARt~ got 

it __ pnqi-n. 
Pi n! (i - -  n)! 

Assuming co i = Const, he then easily arrived at 

n -k q 
E N - - - -  

P 

Giving only the right-hand side of  this formula, POINCAR~ wrongly called it the 
probable value of N. Finally, he extended his derivation to the continuous case. 

POINCAR~ did not say a single word about the possible deviation of  N from 
its 'probable'  [mean] value. On this point he departed from LAPLACE who, for 
example, not only estimated the population of France but calculated the probability 
of  a certain error in his estimate [147, § 2.5.5], See also my § 7.1. 

I shall not study POINCAR~'S investigation [130, pp. 6 and 150-152; 131, pp. 
227-233; 132, pp. 592-596] regarding the uniform distribution of the longitudes 
of  minor planets. 

7 Evidently, even at the beginning of this century the mean value of a random quan- 
tity was not properly distinguished from its probable value.See also ANGER [52, p. 22], 
KLEIBER (my § 5.8) and POINCAR~ (§ 3.2). 
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Thus, stochastic considerations regarding the major planets (see my §§ 5.1 
and 5.10) were extended to include asteroids; there really seems to be a point 
in assuming a random character for the parameters of their orbits (§ 3.1) and even 
for the very existence of one or another minor planet (see above). 

4. Sunspots 

4.1. Periodicity 

The first to suspect the periodicity in the number of sunspots was HORREBOW 
who, in 1776, entered a remark about it in his diary. In 1859 THmLE published this 
note [158, p. 654]. Reasonably considering his investigation to be preliminary, 
and drawing on data pertaining to 1650-1717, HERSCHEL [8] attempted to deter- 
mine the relationship between sunspots and the price of wheat. It is more natural 
to compare the solar activity with its direct, e.g., meteorological, consequences; 
and for this reason alone hardly anyone approved of either HERSCHEL'S or CHAM- 
BERS' [67] findings. LITTROW [106, p. 851; 68, p. 156] made a cautious step in 
the right direction remarking that 

sieht man sie [the sunspots] gew6hnlich in grosser Anzahl und gleichsam periodisch 
kommen, wiihrend wieder zu andern Zeiten die Sonne lange yon ihnen frei  bleibt. 

In 1838 SCHWABE [136] published his observations of sunspots during 1826-1837. 8 
Neither then nor in his subsequent yearly reports published in the same journal 
did he say anything about periodicity in the number of sunspots. In 1843 he [137, 
p. 283] even stated that 

noch viele genaue Beobachtungen angestellt werden miissen, ehe man zu einem 
einigermassen sichern Schluss auf  ihr [the sunspots'] Wesen [including their possible 
periodicity ?] kommen kann . . . .  9 

Only in 1844 did SCaWABE [138, pp. 233-234] publish his findings: 

Schon aus meinen friiheren Beobachtungen [!] ... scheint sich eine gewisse 
Periodicitiit der Sonnenflecken zu ergeben und diese Wahrscheinlichkeit gewinnt 
durch die diesjiihrigen noch an Sicherheit. 

Summarizing all his observations between 1826 and 1843, he gave the period 
as being approximately equal to ten years. However, he prudently qualified his 
conclusion (p. 235): 

Die Zukunft  muss lehren, ob diese Periode einige Bestdndigkeit zeigt . . . .  

8 His astronomical and geophysical observations had appeared in print since 1830. 
In all, he published 109 contributions including papers on physics and geology (Cat. 
Roy. Soc. Lond.). 

9 Note SCHWABE'S general attitude towards scientific research (ibidem): 
lch war bemiiht hiebei so unpartheiiseh wie m6glich zu verfahren und keiner Hypo- 

these einen Einfluss zu gestatten. 
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SCHWABE'S yearly data included the number  of  days of  observation, the number  
of  days when no sunspots were seen at all, and the number of  groups of  sunspots; 
see Table 3.1(1). Perhaps the absence of  a formal mathematical analysis in 
SCHWABE'S note [138] was quite proper:  it was hardly worth deriving rigorously 
a ten-year period f rom data covering 18 years. 

Table 3.1(1). The number of groups of sunspots [138, p. 234] 

Year Number of groups Year Number of groups 
of sunspots of sunspots 

1826 118 1835 173 
1827 161 1836 272 
1828 225 1837 333 
1829 199 1838 282 
i830 190 1839 162 
1831 149 1840 152 
1832 84 1841 102 
1833 33 1842 68 
1834 51 1843 34 

SCHWABE'S work passed unnoticed. At any rate, even in 1847, when J. HER- 
SCHEL [95, p. 435] advocated the study of sunspots, he did not mention SCHWABE 
at all. This is what he wrote: 

The great importance of  a systematic and continuous series o f  observations o f  
the solar spots cannot be too strongly insisted on. One observer ...  is not enough. 
Many are necessary . . . .  

As CLERKE [68, p. 156] testified, the reality and importance o f  the discovery were 
simultaneously recognized only after HUMBOLDT [99, p. 401] described SCHWABE'S 
work. 1 o 

The best known student of  sunspots after SCHWABE was R. WOLF. Not  later 
than 1856 he introduced the "relative number  of  sunspots" [156, p. 12] 1~ 

R = k ( f +  10g). 

Here f is the total number  of  all spots and g is the number of  their groups. I do 
not think that this function possesses any special statistical significance. 

In 1859 WOLF [157] collected all observations of  sunspots beginning with the 
middle of  the 18t%entury, determined the epochs of their extreme numbers and 
derived the periodicity of  their occurrence (11.1 years). Returning to this problem 

~o Note however that GALILEO had used observations of sunspots to determine the 
period of rotation of the sun on its axis. SPOERER [152 ]and, quite probably, other astro- 
nomers of the 19 th century continued to investigate this phenomenon. 

11 Observations in this source are collected in chronological order. Those pertaining 
to 1856 are mentioned on p. 27. BRAY ~; LOUGHHEAD [66, § 1.4] maintain that WOLF 
introduced the function R in 1848, but they do not supply any supporting reference. 
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once more, WOLF [77] put on record observations covering 120 years and calculated 
the period (T), testing, in the course of  doing so, nineteen (sic !) hypotheses (T = 9 
years 6 months;  9 years 8 months;  9 years 10 months; . . . ;  12 years 6 months). 
He considered the deviations of  the mean yearly data f rom the general mean num- 
ber of sunspots and applied as a test the range of the deviations or, alternatively, 
the root of  the sum of their squares divided by T. WOLF concluded that there were 
two periods: T~ = 10 years, and Tz = 11.3 years, their least common multiple 
being, as he himself noticed, 170 years. 

Contemporary authors [66, § 6.3.2] assume that  T ~ 1 ! years, but a rigorous 
periodicity is not thought to exist ( c f  SCnWABE'S prudent remark above !). Even 
so, the attempts of  previous astronomers to determine T have not been fruitless. 

4.2. The Influence on Terrestrial Magnetism and Climate 

As early as 1850 HUMBOLDT [99, p. 388] described the first (unsuccessful) 
attempts to correlate the air temperature with extreme values of  the number  of  
sunspots. Weather fluctuations, as he noted, obscure the general picture. 12 A 
contemporary author [111] pointed out that investigations of  that kind were really 
difficult. 

The influence of sunspots (or, generally, of  solar activity) on earth magnetism 
is now undeniable, 13 but at one time it did cause doubts. FAYE'S articles are 
significant in this connection. In 1837 he [75] mentioned the periodicities in the 
origin of  sunspots and in magnetic declinations, obviously regarding their coin- 
cidence as a well established fact?  4 In 1878 FAYE [76] stated that in actual fact 
the periods differed by 0.66 years? s Moreover, he stated that 

. . .  2 ° les deux phdnomOnes sont sans rapport entre eux; 3 ° un ensemble de 

circonstances favorables, qui se reproduit tous les  176 ans [!], a fa i t  croire gt la 
connexion de ces deux ph~nomknes . . . .  

12 These are his words: 

Die Endresultate geben aber fiir die erkiiltende Kraft, die hier den Sonnenflecken zu- 
geschrieben wird, kaum 0 °, 42 Cent. : welche . . . den Fehlern der Beobaehtung und der Wind- 
richtungen eben so gut als den Sonnenflecken zuzuschrieben sein k6nnen. 

13 SAmN~ [134, p. 121; 68, p. 158] seems to have been the first to direct attention 
to the 

most striking coincidence, that the period, and the epochs o f  minima and maxima ... [of 
the number of sunspots] are absolutely identical with those which have been here assigned 
to the [variations of magnetic declination]. 

1~ Ces concordances frappantes, he added, ... ne justifient-elles pas pleinement le 
titre de Mdtdorologie cosmique que j 'ai  donnd ?; eette Note, pour rendre hommage, gt 
la fois, aux travaux de M. Wolf  et glla mdmoire de Donati . . . .  

DONATI is mainly remembered because of a comet named after him. I do not know 
which of his memoirs FAY~ had in mind but at least DONATI published a number of 
papers on meteorology. 

is This being a result of his calculations which consisted in a separate treatment, 
by the method of least squares, of the data pertaining to the two phenomena. 
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Finally, in 1882 FAYE [77] did not mention the connection between sunspots 
and terrestrial magnetism at all. 

WOLF [159] also studied the same connection. He derived an empirical relation 
between the changes in the relative number of sunspots (see my § 4.1) and magnetic 
declination, and he stated that his formula was in remarquable agreement with the 
data. 

In 1872 MELDRUM [112] took notice of a possible correlation between cyclones 
and sunspots. Without asserting that any such connection does exist, he never- 
theless wrote: 

it is difficult to avoid the conclusion that ... meteorology, magnetism, and solar 
physics are closely connected. 

In a later work [113] MELDRUM extended his investigation and indicated (p. 218) 
that 

not only the number o f  cyclones, but their duration, extent, and energy were also 
much greater in the [years of  maximum] than in the [years of  minimum sunspot 
frequency], and ... there is a strong probability that this cyclonic fluctuation has 
been coincident with a similar fluctuation of  the rainfall over the globe generally. 

Almost at the same time LOCKYER [107], an eminent amateur astronomer, 
voiced a similar opinion regarding cyclones, while BLANFORD [58] pointed out 
a connection between atmospheric pressure and sunspots. 

The essential influence of  solar activity on at least sortie elements of terrestrial 
magnetism and on meteorological phenomena was thus ascertained. Regrettably, 
the authors mentioned above merely gave a qualitative comparison of the data 
concerning sunspots with those pertaining, for instance, to cyclones. Neither 
uttered a single word on the need for a new statistical theory, i.e., the theory of  
correlation. 

5. Miehell's Problem 

Even MAIMONIDES [133, p. 123], stated that the positions, measures and num- 
bers of  the stars are by no means fortuitous. 

5.1. Michell 

MICHELL was the first modern astronomer to attempt to calculate the probabili- 
ty of  two stars being close to each other. Supposing that n stars are scattered by 
mere chance over the sky, the probability that two stars be situated not farther 
than 1 ° apart would be [114, p. 429] p ---- 1: 13,131, while the probability that 
no such pair be present would be [(1 --pn)n] (see below). MICHELL similarly 
concluded (p. 428) that 
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there is the highest probability, that .. .  [the stars] are collected together in great 
numbers in some parts o f  space, while in others there are either f e w  or none. 

MICHELL also used qualitative stochastic reasoning. Thus [following HALLEY], 
he supposed (ibidem) that the brightest stars are the nearest ones and, without 
elaborating, assumed (p. 431) that the twinkling of the stars can be explained by 
random oscillations of a relatively small number of particles of light. Similarly, 
MICHELL began his second paper [115] by stating that visual binaries are mostly 
real double stars. HARDIN [93] described MICHELL'S scientific work in general 
(not only in astronomy), put on record his influence on HERSCHEL, and outlined 
the subsequent history of his problem. 

Consider now MICHELL'S calculations. Suppose the distance between two 
stars is 1°; then the surface area of the corresponding spherical segment is 

1 
S = ~ R  2 -  

57,2962. 

The surface area of the whole (celestial) sphere is S = 4~R 2, and so 16 

s 1 1 

P - -  S - - 4 "  57,2962 -- 13,131" 

MICHELL'S subsequent computations are wrong, a fact noticed by many commen- 
tators (see for example my § 5.4). Following FISHER [81, p. 38], who analyzed 
one of MICHELL'S examples, using POlSSON'S distribution I shall calculate the prob- 
ability sought. See also my § 5.5. 

In the earlier notation the expected number of  stars situated not farther than 
1 ° apart from each other is a = pn and the probability that there is at least one 
binary is 

a ° a 

P : 1 ---6-(e -a ----~.e -a : 1 - - e - a ( 1  + a). 

For n = 5,000, it turns out that a-----0.3808 and P----0.056. This probability 
is rather small (though not negligible), but HERSCHEL was to discover a few hundred 
visual binaries closer to each other than in MICHELL'S example. MICHELL could 
not foresee HERSCHEL'S findings, but at any rate MICHELL was in agreement with 
his final conclusion (see above) concerning the small probability of star clusters. 

Did a given phenomenon occur by design or was it produced by chance? 
At least from ARISTOTLE onwards, scholars asked this question again and again 
[146, p. 113]. In modern times, philosophers (ibid., p. 134), population statisticians 

26 It is well worth noting that MICHELL used geometric probabilities. Though they 
occurred in applications of probability theory even earlier, they came to be generally 
accepted only in 1777 [147, p. 152]. 
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[143, § 5], and astronomers (D. BERNOULLI [142, pp. 106--107]) have encountered 
the same problem. Here is BERNOULLI'S reasoning: 

Let the inclination of the orbit of planet i be equal to ai, 0 ° < ai < 90 ° and 
i = 1, 2 . . . .  ,5.  If  the values of ai are independent and uniformly distributed, 
the probability of ai < A (A < 90 °) for each of the five planets would be equal 
to A/90; with a small A, the probability of the whole series of inequalities, (A/90) s, 
becomes insignificantly small. Consequently, the quantities ai could not be in- 
dependent. 

After MICHELL, LAPLACE argued in a similar fashion regarding the planets 
and their satellites (see my § 5.10). Still, MICHELL'S problem seemed more inter- 
esting; no wonder it attracted more attention than the problems due to D. BER- 
NOULLI and LAPLACE. Note that, following an old tradition [146, § 9.1], MICHELL 
identified randomness with the uniform distribution. I shall show (see subsequent 
subsections of § 5) that for a long time this point of view held its ground in 
astronomy. 

5.2. Herschel 

HERSCHEL [9, p. 203] attempted to solve a similar problem. 

The surface o f  the globe contains 34036131547 [ ~  3.404.101°] circular spaces, 
each o f  5" in diameter, he noted . . . .  each o f  the 686 stars [of the seventh magni- 
tude] will have 49615357 [m 4.961 • 107] of  these circles in which it [?] might be 
placed; but, o f  all that number, a single one would only be the proper situation in 
which it could make up a [particular] double star with one o f  the 450 given stars 
[between the sixth and fifth magnitudes]. 

Therefore, HERSCHEL maintained, the probability of a 'random' existence of this 
star whose components possess the magnitudes indicated above, is less than 
1/(75.5. 106). And, in general (p. 204), 

casual situations will not account for  the multiplied phenomena o f  double stars ...  
their existence must be owing to the influence o f  some general law o f  nature . . . .  

His conclusion is sound, but his calculations are wrong. Indeed, first, the 
number of surfaces with a diameter of 5" that make up the celestial sphere equals 

(6060)  
zrR---- ~ • 57.296 z - -  

{60 • 6 0 ]  2 
=13,131 [ ~ ]  = 2 . 7 2 2 8 . 1 0  l° -- 

3.4036.101° 

1 .25  

I cannot explain the absence of the coefficient 1/1.25 (or even of an approxi- 
mately equal factor I/2/z~ = 1/1.2533). Second, the fraction 1/(75.5. 10 6) is 
the quotient of 450 divided by 3.404. 101°; thus HERSCHEL did not allow for 
the number of stars of seventh magnitude. 
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5.3. Forbes (1849) 

FORBES [82] called in question MICHELL'S conclusions. He noted that 

(1) An equable spacing of  stars over the sky would seem to me to be far more 
inconsistent with a total absence of  Law or Principle, than the existence of  spaces 
of  comparative condensation ... as well as of  regions of  great paucity of  stars. 

(2) He regarded with doubt and hesitation an attempt to assign a numerical 
value to the antecedent probability of  any given arrangement of  grouping whatever. 

(3) No bad representation of  stars and their distribution may be made by 
sparking viscid white paint ... upon a dark ground . . . . . . .  such an artificial galaxy 
will present every variety o f  grouping, with double and treble points innumerable 

5.4. Forbes (1850) 

FORBES [83] repeated his previous arguments. He (p. 420) also asked himself 
what distributions might be called random. Of course, owing to the insufficiently 
high level attained by probability theory at that time, he was unable to produce 
an intelligible answer. Referring to a mathematical friend, FORBES also remarked 
(p. 425) that MICHELL'S calculations were wrong and that, in a throw of n dice 
with p faces each (p > n), the probability of all dice without exception showing 
faces different from one another is 

p(p -- 1) (p -- 2 ) . . .  (p -- n + 1) p =  pn 

Suppose, FORBES continued, n = 230 is the number of stars of some magnitude, 
and p = 4,254,603 (m 4.255 • 10 6) is the number of spherical surfaces each with 
a diameter of 3.'2 situated on the celestial sphere. Then the probability that there 
would not be even one double star having a distance of 3.'2 between its compo- 
nents is 1 -- P. (FORBES estimated P.) Actually (see my § 5.1) the number of 
surfaces is 

60]  z 
13,131 ~3-~'] = 4.617.106 ---- 1.085p. 

Finally, FORBES (pp. 411-415) studied the distribution of grains of rice falling 
from a sieve onto the squares of a chessboard. He maintained that this experiment 
confirmed his previous conclusion in this matter (see my § 5.3), and that 
therefore M~CrrELL had proved nothing at all. 

FORBES need not have experimented; he could have referred to BUFEON'S 
celebrated trial of  the Petersburg game [155, § 648]. 

5.5. Newcomb 

NEWCOMB [21, 1860, pp. 137--138] calculated the probability that some 
surface with a diameter of  1 ° would contain s stars out of  N scattered at random 
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over the celestial sphere. Using POISSON'S distribution, he arrived at 

( ~ )  s e -  Nl/h 

P =  s! 

Here, h is the number of surfaces and/ ,  as I see it, is the area of any one of them. 
At any rate, according to NEWCOMB, 

l 1 1 
_ _ _ _  1 7  

h 41,253 13,131~z" 

The probability for at least one such surface to contain s stars is then naturally 
41,253P. NEWCOMB concluded that MICHELL wrongly solved a problem concerning 
the particular case o f s  = 6 and that, from a logician's point of view, his reasoning 
was imperfect. As to FORBES'S experiment (see my § 5.3) it was (p. 138) 

about as decisive as an attempt to disprove the Pythagorean proposition by measuring 
the squares described on a triangle without knowing whether it had or had not a 
right angle . . . .  

NEWCOMB (p. 139) also solved a methodical problem on the scattering of stars 
once more using the POISSON distribution; 

we shah ... determine, he noted, what law a random distribution may be expected 
to follow. 

He maintained that a random distribution is an arrangement of mutually 
independent elements (stars). 

5.6. Newcomb (Continued) 

Some of the arguments described above are also contained in another of 
NEWCOMB'S contributions [23]. Here he formulated (p. 436) the same op in ion  
about the relation between randomness and independence, pointing out (p. 438) 
that 

A certain calculable amount o f  irregularity, or grouping, is to be expected as 
the result of  a random distribution 

and explained (p. 439) how to calculate this irregularity by means of  the POISSON 
distribution. He also noted (p. 437) that FORBES (see my § 5.4) actually 

objects [to] the very mathematical definition of  the word probability. 

17 The appearance of an additional multiplier, 1/~r (see my § 5.1), is a mystery. 
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NEWCOMB devoted a considerable portion of his article to the logical aspect of  
the application of  probability theory, but, just as in another of his writings (see 
my § 10), the exposition is not clear enough? 8 

5.7. Proctor 

In connection with MICHELL'S problem, PROCTOR [41, p. 99] wished to 

determine what peculiarities o f  distribution might be expected to appear among a 
number o f  points  spread over a plane surface perfect ly  at random. 

Opening a table of  logarithms at random, PROCTOR brought down the point  o f  
apenci l  upon t h e p a g e . . ,  and recorded the digit he had hit. 19 Each four digits of the 
series thus obtained determined the coordinates of a point situated in a unit 
square, l~or example, digits 7, 3, 2, and 4 corresponded to point (0.73; 0.24). In 
all, PROCTOR (p. ]00) got more than a thousand points distributed perfect ly  at 
random in the unit square. He therefore maintained that the regularities which 
he had discovered in a system of about a thousand stars could not be explained 
away by a freak of chance. His approach, with no reference to any theorem of  
probability theory, seems rather amateurish. See also my § 9.1. 

5.8. Kleiber 

KLEIBER [101] refuted some of FORBES'S conclusions (see my § 5.4). 

I t  is a common error, he remarked on p. 440, to confound random scattering 
with uniform distribution . . . . . . .  the most  probable distribution o f  points  on a surface 
i f  scattered at random, is a uniform one, but this is very improbable. 

KLEIBER also analyzed the results of FORBES'S experiment incidentally explaining 
the passage just quoted. Suppose n points (grains) are scattered over m congruent 
squares (n > m). Then the probability for exactly i points to be found inside some 

18 In 1904 NEWCOMB [34, p. 13] indicated that 
a chance distribution [of stars] will always, in practice, differ more or less from a uniform 
one . . . .  

He also used here the expression a purely accidental distribution. In this respect it 
is possible to recall BOOLE'S remark [62, p. 256] which he formulated in connection with 
]V[1CHELL'S prob!em: 
a "random distribution", meaning thereby a distribution according to some law or manner, 
o f  the consequences o f  which we should be totally ignorant; so that it would appear to us 
as likely that a star should occupy one spot o f  the sky as another. Let  us term any other 
principle o f  distribution an indicative one. 

19 Did he exclude the first digits of the mantissas? This is unclear. 
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square will be 

p _ 
n,  )ni 

i! (n --  i)! 1 -- ~ P i .  

Comparing the 'probable' (actually, the expected) numbers of such squares, 
mpi, with FORBES'S observed outcomes, KLEIBER suggested (naturally, without 
producing any numerical estimates) that the discrepancies were permissible. 
(See also my § 3.1.) Uttering an incomprehensible statement (p. 443) about 
obtaining experimentally a more uniform rather than an accidental distribution, 
KLEIBER described his own investigation into the distribution of the two last digits 
of a seven-place logarithmic table. He concluded by stating that 

The [theory of probability] gives a sufficient account o f  the possible irregularities 
o f  distribution such as those observed by ... Forbes in his experiments, or those 
presented by the stars in the sky. 

5.9. Struve 

STRUVE'S contribution to the study of double stars is widely known. He used 
simple stochastic arguments in estimating the number of multiple stars in visual 
systems [44, pp. 36-39]. Elsewhere [46, p. 212] he formulated his opinion about 
this kind of reasoning: 

The physical connection in double stars we have so far  deduced f rom two argu- 
ments, one o f  which was drawn f rom the slight probability o f  a purely optical con- 
nection, and the other f rom the proper motion common to the group. These arguments, 
although very strong, are nevertheless indirect. 2° 

STRUVE [43, pp. Xxxvii--xxxix] also determined the probability that two or three 
stars be situated near one another. In particular, he calculated the probability 
that the distances of a star from two other closely placed stars be not greater than 
specified. 

5.10. The Distance Between Two Random Points on a Sphere 

The problem concerning the distance between two such points, which is 
methodologically related to the one under discussion, can be traced back to 
LAPLACE [105, p. 261; 155, § 987; 143, pp. 286--287] and even to D. BERNOULLI 
(see my § 5.1). LAPLAC~ assumed that 

pour chaque orbite, toutes les inclinaisons depuis zdro jusqu'& l'angle droit soient 
dgalement possibles. 

20 Somewhat later, GAUSS [149, p. 56] expressed a similar idea on the stochastic 
proof of the diurnal rotation of the earth. 
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He introduced this assumption in order to ascertain whether or not the orbits 
of  planets were situated randomly in relation to one another. 

Consider two randomly placed great circles of a sphere. According to LA- 
PLACE, the probability for the distance between their poles (~, ~ < 90 °) to belong 
to the interval [n °, m °] is 

m - - n  

P{n <= ~ <= m} -- 90 

COURNOT [70, § 148] took for granted that the probability of the distance 
was proportional to its sine, i.e. that 

P{o~ ~ ~ ~ ~ + dc~} = q~(o 0 ~ sin o~ do~. 

He apparently thought P proportional to the length of  the corresponding circum- 
ference of a small circle, the locus of poles situated at a distance o~ from the first 
of the two given poles. 

For  his part, NEWCOMB [24], who maintained that LAPLACE'S formula was 
wrong, thought that 

P = cos n -- cos m. 

The right-hand side of his formula, as he himself indicated, was the ratio of  the 
corresponding zone to the surface area of the semisphere. The formula means 
that the density of distribution of  distance ~: is 

q~(x) = sin x 

and it follows that cos o~ is distributed uniformly over the interval [0 °, 90°]. 
NEWCOMB himself said so many years later [34, p .13]. 

Without referring to anybody, BERTRAND [57, pp. 6--7] gave the solutions due 
to LAPLACE and COURNOT. He used this problem along with other ones to argue 
that the notion 'at random' should be introduced more precisely. For BERTRAND, 
LAPLACE'S solution could have been wrong only from the point of view of concrete 
applications of probability theory. BERTRAND (pp. 170--171) also expressed doubts 
about the possibility of solving MICHELL'S problem. What should we consider 
to be unlikely, he asked. Small distances between stars, the small area of a circle 
circumscribed about a star cluster etc, or, perhaps, the existence of  an equilateral 
triangle formed by three stars? Besides, BERTRAND continued, randomness 
did not play an important part in the creation of the universe and it is therefore 
meaningless to estimate the probability of  the existence of regularities in the 
distribution of stars. 

Analyzing a few more problems, including his celebrated one on the length 
of  a chord of a given circle, BERTRAND (pp. 4--7) reasonably asserted that 

Les probabiIitds relatives dt la distribution des dtoiles, en les supposant semdes 
au hasard sur Ia sphOre edleste, sont impossibles d assigner si la question n'est pas 
prdeisde davantage. 



168 O.B. SHEYNIN 

BERTRAND'S argument is evidently addressed more to astronomers than to mathe- 
maticians. BOREL [63, § 42], who did not agree with his remarks, 21 maintained that 
the difficulty in contrasting design with randomness lies in the separation of 
events into remarkable and usual ones. See my article [146, p. 125, note 119]. 

6. Herschel 

See above subsection 5.2, also devoted to HERSCHEL. I also refer to him in 
§4.1. 

6.1. The Ex t en t  o f  the Sidereal Sys t em 

HERSCHEL was the first to study the spatial distribution of stars. Being 
equitable elements of a statistical population, the stars in his investigation were 
either indistinguishable or different only in magnitude. 22 But of course HERSCHEL 
had no possibility of  applying methods of  mathematical statistics, 2a which did 
not yet exist. 

In 1784 HERSCHEL [3, p. 162] first reported upon his study of the starry heav- 
ens" 

I t  [the method of gaging the Heavens,  or the Star-Gage] consists in repeatedly 
taking the number o f  stars in ten f ie lds  o f  view . . .  very near each other, and by 
adding their sums, and cutting o f f  one decimal on the right, a mean o f  the eontents 
o f  the heavens, in all the par ts  which are thus gaged, is obtained. 

Besides gages, HERSCHEL also mentioned sweeps (ibid., p. 159) explaining this 
term elsewhere [5, p. 261]: 

I drew the [telescope] ... so as to m a k e  it . . .  per form a k ind  o f  very slow oscillations 
o f  12 or 14 degrees in breadth . . . .  24 A t  the end o f  each oscillation I made a . . .  
memorandum o f  the objects I chanced to see . . . .  [Then] the instrument was . . .  
either lowered or raised about 8 or 10 minutes, and another oscillation was then 
per formed . . . . . . .  thus I eontinued generally f o r  about 10, 20, or 30 oscillations . . .  
and the whole o f  it was then called a sweep . . . .  

21 Elsewhere (§ 35) BOREL accused BERTRAND of unwarranted scepticism. 
22 Witness DE SITTER'S opinion [71, p. 35]: 

W. Herschel is the first to have the idea that the f ixed stars form a system having a 
certain structure . . . .  

23 Only elements of the then nonexistent error theory occur in his works. HERSCHEL 
compiled three catalogs of binaries and discovered and ordered more than 2,500 new 
nebulas and star clusters. Undoubtedly this immense work bore a statistical mark. 

24 Subsequently, as HERSCHEL remarked (ibidem), he turned to the use of sweeps 
with a vertical motion. 
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Oscillations were evident ly  c o m p o s e d  o f  separa te  gauges. Several  quest ions  ar ise:  
Is i t  poss ib le  tha t  HERSCHEL dis t r ibuted  the gauges o f  a cer ta in  osci l la t ion at  
r a n d o m ?  Tha t  he for tu i tous ly  a r ranged  his sweeps over  the s k y ?  Or,  in short ,  
can we a s s u m e  tha t  the me thod  o f  gaging the Heavens was a pa r t i cu la r  vers ion 
o f  s ampl ing?  " 

I th ink  tha t  the answer should  be negative.  Firs t ,  HERSCHEL wanted  to  cover  
the whole  sky [the visible p a r t  o f  it], or  at  least  the entire M i l k y  W a y  with dense 
gauges [3, p. 163; 4, p. 223]: 

(1) It  would not be safe to enter into an application o f  these ,. .  gages . . .  till 
they are sufficiently continued and carried all over the heavens. 25 

(2) I have now viewed and gaged [the M i l k y  Way]  in almost every direction 

Second,  i t  appea r s  tha t  only  in one instance HERSCHEL employed  an  e lement  
o f  r andomness  in his invest igat ion.  26 As to  gauges proper ,  he ind ica ted  [4, p. 227] 
tha t  

in gaging, a regular distribution o f  the fields, f r o m  the bottom o f  the sweep to the 
top, was always strictly attended to. 

O f  course,  HERSCHEL could  have combined  a regular  d i s t r ibu t ion  o f  fields (gauges) 27 
with a r a n d o m  selection o f  the first one o f  them, but  then he would  have cer ta inly  
men t ioned  this fact. 

25 At  least once HERSCHEL [7, p. 51] even used overlapping sweeps. 
26 In one section of the Milky Way measuring 30 square degrees the brilliance of a 

glorious multitude of stars prevented HERSCHEL from counting them [3, p. 158]. He 
therefore counted the stars in six fields selected promiscuously and assumed the mean 
number of  stars as an estimate for the whole section which, as he concluded, could not 
well contain less than fifty thousand stars. The six fields included 110, 60, 70, 90, 70, and 
74 stars respectively their mean content being 79. The diameter (d) of the fields was 15' 
(d = 15'), and so 

30 square degrees 
= 661.2; 79" 611.2 = 48,285. 

~rd2/4 

But, then, even if we set aside the obvious rounding-off of  the observed number 
of stars and assume the counts to be precise, the standard deviation of the mean (about 
which HERSCHEL knew nothing) is 7.4. Multiplying it by 6I 1.2, I get 4,522. This means 
that the section hardly contained less than forty thousand stars. Note that HERSCHEL 
additionally counted the number of stars in a most vacant place [field]. It contained 
63 stars and 63 • 611.2 m 38,500. HERSCHEL did not give this latter figure. It is important  
to repeat that a random selection of  fields was not at all characteristic of his work in 
general. 

27 Cf. J. HERSCHEL'S opinion [95, p. 374]: 

it was desirable to ensure an absolute impartiality in the Selection of  the gauge-pohzts, 
which couM only be don e by determining beforehand where they shouM occur . . . .  

The standpoint of H~RSCHEL the elder seems to have been much the same. 
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Third, even in 1817 HERSCHEL [12, p. 575] thought that 

The construction o f  the heavens, in which the real place o f  each celestial object 
in space is to be determined, can only be delineated with precision, when we have the 
situation o f  each heavenly body assigned in three dimensions . . . .  

It  is well worth considering two additional circumstances. 

(1) Where the stars happened to be uncommonly crowded, no more than half 
a fieM was counted, and even sometimes only a quadrant ... [4, p. 227]. 

Obviously, HERSCHEL doubled, or quadrupled, the counts. It is well known that 
he used his counts to derive the distances to the bounds of  a finite (as he originally 
thought) universe. Supposing the stars to be uniformly distributed over the heavens, 
he calculated the cube roots of the number of  stars, thus arriving at quantities 
proportional to the distances sought. It is therefore natural to assume that HER- 
SCHEL tolerated a less accurate determination of larger distances. 

(2) In one instance (ibidem, p. 246) HERSCHEL dropped a none-too-clear 
remark: 

wherever the stars happened either to be uncommonly crowded or deficient in number 
. . . .  the gages were reduced to other forms, such as the border-gage, the distance- 
gage & e. which terms, and the use o f  such gages, I shall hereafter f ind an opportunity 
o f  explaining. 2s 

I have been unable to find any explanation of these terms but in any case a special 
procedure for the study of particular sections of  the sky was also envisaged in the 
plan o f  selected areas now being carried out. See also my § 9.2. 

As time went on, HERSCHEL deviated from his original belief in the uniform 
spatial distribution of  stars and in his later years he did not regard the star- 
gauging method as sufficiently accurate. Moreover, he came to understand 
that his telescope did not penetrate to the bounds of  the sidereal system, i.e., 
that his calculation of the distances to these bounds was simply wrong [98]. 

6.2. The Arrangement o f  Stars in Space 

In 18i7 HERSCHEL [12, p. 577] introduced a model of  uniform spatial distri- 
bution of stars. He placed the stars of each given magnitude (i -- 1), i ----- 2, 3 . . . . .  8, 

:s In the same memoir, HERsCnEL(p. 223) vividly described the relation between facts 
and hypotheses in astronomy (actually, in experimental science in general): 

I f  we indulge a fanciful imagination and build worlds of  our own, we must not wonder 
at our going wide from the path of truth and nature . . . .  On the other hand, i f  we add obser- 
vation to observation, without attempting to draw not only certain conclusions, but also 
conjectural views from them, we offend against the very end for which only observations 
ought to be made. I will endeavour to keep a proper medium; but i f  I should deviate from 
that, I could wish not to fall into the latter error. 
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between two corresponding concentric spheres (i and i - -  1). Table 6.2(1) shows 
the actual number of  stars and quantities proportional to the volume of  shells 
situated between the spheres. 

Table 6.2(1). A model of a uniform spatial distribution of stars [12, p. 577] 

Number Radius Stellar Number The difference Discrepancies 
of shell of external magnitude of stars between the (4)-(5) 

(i) sphere (i -- 1) according cubes of 
(ri) to BODE'S radii 

catalog (r/3 -- r/a- 1) 

1 2 3 4 5 6 

2 3 1 17 26 --9 
3 5 2 57 98 --41 
4 7 3 206 218 --12 
5 9 4 454 386 68 
6 11 5 1 161 602 559 
7 13 6 >_--6103 866 _-->5237 
8 15 7 6146 1 178 4968 

Notes. 1. Shell (sphere) No. 1 has radius rl = 1, this being an arbitrary unit, and 
includes only one star: the Sun. 

2. Nonallowance for 4~/3 in column (5) is tantamount to the introduction of stellar 
space density 3/(4~). 

HERSCHEL selected the radii of  his spheres in accordance with a law he postulat- 
ed earlier [1, p. 52]: he indicated that stars of  the second,  third, fourth, etc. 
magnitudes are twice, thrice, four times, etc. farther away than those of  the first 
magnitude. HERSCHEL understood well enough that this law was at best true only 
in the mean; moreover,  he actually violated it in his model which merely fixed the 
bounds for star distances allowing the stars to be randomly distributed within 
these bounds. 

HERSCHEL did not search for a better fit by changing the radii of  the spheres 
(and thus complicating his model). Neither did he introduce a stellar space density 
differing from 3/(4~r) (see note 2 to Table 6.2(1)), which would have resulted in 
a worsening of the fit for stars of  the first four magnitudes without any essential 
improvement for subsequent stellar magnitudes. He remarked that his model 
provided a fair approximation for the whole set of  stars of  the first four magnitudes. 
Indeed, the corresponding sum of discrepancies is only six, 29 but the individual 
discrepancies are too large and HERSCHEL'S model is hardly satisfactory. How- 
ever, the very idea of stars of  a definite kind being situated at random in a certain 
shell proved fruitful since both STRUVE (see my §§ 7.2-7.4) and KAPTEYN were to 
use it. 

29 Thus HERSCHEL referred to a condition reminiscent of the main condition of the 
method, due to BOSCOVICH, of adjusting redundant systems of linear algebraic equations 
[144, § 1]. See also my § 6.4. 
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6.3. Variations among Stars  

HERSCHEL repeatedly mentioned variations among individuals of  a species; 
he most likely supposed the variations to be random and insignificant. Indeed, 
he also referred to variations in order to explain small and, as he might be under- 
stood to mean, random differences between stars; for example [6, p. 331], between 
the luminosities of  stars of  the identical magnitude belonging to the same cluster. 

Elsewhere [4, p. 225] HERSCHEL assumed that 

we ought perhaps to look upon . . .  clusters, a n d  the destruction o f  now and then a 
star, in some thousands o f  ages, as  perhaps the very means by which the whole is 
preserved and renewed. 

This argument is vague, but at any rate similar to, and, for that matter, not more 
obscure than some ideas pronounced in biology. In 1772 ADANSON, a famous 
botanist, asserted [150, p. 334] that 

monstruositds & variations ont une certaine latitude, ndcessaire sans doute pour 
l'~quilibre des choses . . .  , 

while in 1775 KANT (ibidem) also maintained that randomness was necessary in 
the organic world. 

6.4. The Movemen t  o f  the Solar Sys t em 

HERSCHEL was the first to determine the apex of  the sun's motion. Explaining 
his approach to the problem, he wrote [2, p. 120]: 

We ought . . .  to resolve that which is common to all the stars . . .  into a single 
real motion o f  the solar system,  as f a r  as that will answer the known fac ts ,  and only 
to attribute to the proper motion o f  each particular star the deviations f r o m  the 
general law the stars seem to fo l low . . . .  

Such, HERSCHEL added, were the rules o f  philosophizing. 3° He then (pp. 120-127) 
applied his principle to adjust the proper motions of  seven, and then twelve, stars. 
Using graphical methods, he managed without calculations. 31 In 1805 he returned 
to the same problem [10]. Drawing on his own data, he arrived at a redundant 

ao C f  NEWTON (Math. principles nat. philos., Book 3, Rules o f  reasoning in philo- 
sophy, Rule 1): 

We are to admit no more causes o f  natural things than such as are both true and suffi- 
cient to explain their appearances. 

In 1805 HERSCHEL put forward similar arguments [10, p. 324]. 
zl In 1783, in the memoirs of the Berlin Academy, PREVOST published his study of 

the movement of the sun. Since he referred to HERSCIJEL'S work of the same year, his 
own research must have appeared somewhat later. From my point of view, PREVOST 
offered nothing new. 
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system of (nonalgebraic) equations and solved it by  a method  of successive 
approximation. At each step he determined the apex by a graphical procedure 
securing a decrease in the residual motions for almost each star so as to minimize 
the sum of  the motions. 

After a few approximations, when the apex is almost reached, the equations 
of the system to be solved may be linearized, at least in principle. This fact sug- 
gests that HERSCHEL'S criterion can be put into correspondence with the main 
condition of BoscovIcH's method for the solution of redundant systems of linear 
algebraic equations; see also my note 29. Attempting to determine the velocity 
of  the sun's motion, HERSCHEL [1 1, p. 362] had to choose between the arithmetical 
mean and the median of a series of observations. 

There are two ways of  taking a mean of  the siderial motions, he noted, one of  them 
may be called the rate and the other the rank. For instance, a number equal to the 
mean rate o f . . .  2, 6, 13, 15, 17, 19, would be 12; but one that should holda middle 
rank between the three highest and three lowest ... would be 14. 

Remarking that the difference between the two numbers is not large, he indicated 
that the rank should be chosen. Once more (p. 358), this time mentioning the 
doctrine o f  chances, but still without producing any proof, he stated that a (?) 
middle rank [the median] must be the fairest choice . . . .  

I think that HERSCHEL followed LAPLACE, who at that time, considering the 
case of  a small number of observations, preferred the median rather than the 
arithmetical mean [148, pp. 3 and 8-9]. 

6.5. The Size o f  the Stars 

In 1817 HERSCHEL [12, p, 579] formulated an assertion about the size of the 
stars. It seems that he was guided by an intuitive notion which was later put into 
mathematical form as CHEBYSHEV'S inequality. Since, HERSCHEL wrote, there :are 
more than fourteen thousand stars of the seven magnitudes, 

it may be presumed that any star promiscuously chosen .,. out o f  such a number, 
is not likely to differ much from a certain mean size o f  them all. 

In regard to their size, stars are so extremely different that HERSCHEL was 
completely wrong. His mistake is an excellent illustration of the fact that the theory 
of probability, like any other scientific discipline, cannot lead tO concrete results 
in the absence of positive knowledge (in this instance, in the total absence of  
data). 

7. Struve 

STRUVE was one of  the most eminent astronomers of  the 19 th century, a2 He 
also was one of those responsible for an immense meridian arc measurement 

32 See also my §§ 5.9 and 8.3. 
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and an active participant in it. Finally, STRUVE was one of  the first in Russia and, 
perhaps, in Europe, to deliver lectures on probability theory. My source of  infor- 
mation is an article whose author asserts [117, p. 187], without adducing any 
references, that STRUVE delivered his lectures while in Derpt  (Tartu), i.e., before 
1839. 

STRUVE'S main work is his Etudes [49]. Here he described in detail the research 
of  HERSCHEL and subsequent astronomers a3 as well as his own work [48] then 
just published. It  seems that the t~tudes were written somewhat hastily; at any 
rate, it is rather difficult to follow the general exposition, and the explanations 
of  particular statements are not always sufficient. For  the most part  I shall restrict 
myself to a description of this source. 

7.1. The Completeness o f  S tar  Catalogs 

Comparing three 'overlapping'  star catalogs with each other, STRUVE [49, 
pp. 51-57] estimated the completeness of  one of them, thus establishing the total 
number  of  stars of  the ,first eight magnitudes in the zone he had investigated. He 
did not calculate the error of  his estimate due to the incompleteness of  the two 
other catalogs. STRUVE treated the same subject even before 1847 [48, pp. x x v -  
xxvii], and he subsequently [49, pp. 54-55] used the results of  this earlier investiga- 
tion to estimate the number  of  stars of  the ninth magnitude in the same zone. 34 

Let [48] a certain zone contain z stars of  brightness/z and z '  stars of  brightness 
/z' (z is known while z '  is not); suppose that among r (r ')  observed stars of  bright- 
ness /z (#')  al (a~), a2 (a2) . . . .  ; a5 (a~) stars were observed once, twice . . . .  , five 
times. Then 

p p p r 
a~ + a2 + . . .  + a s  = r, al + a 2 -~- . . .  + a s  = r . 

(Here and below I have partly changed STRtrVE'S notation.) 
Finally, suppose the zone is divided into five sections, the first, second . . . . .  

fifth of  which were surveyed once, twice . . . . .  five times with the number  of  stars 
of  brightness/z being a l ,  a2 . . . . .  as ,  respectively and oq -]- 0~ 2 - [ -  . . .  "-[- 0¢ 5 = Z. 
Stars of  this brightness observed five times can only belong to the fifth section; 
those observed four times, to the fifth or the fourth sections, etc. (STRUVE assumed 
a l ,  a2, . . . ,  as  to be unknown.) As to stars of  brightness # ' ,  he wrote their numbers 
in the five sections xa l ,  xa2, ... ,  xa5 so that  z ' =  xz .  He also introduced 
the coefficient of  completeness p (0 < p ~ 1) and denoted 1 - -  p = q. 

Quantities al ,  a2 . . . . .  a5 and a l ,  a2 . . . . .  as  satisfy equations 

5 

ai = p i  ~ C ~ q k - i ~ ,  i = 1, 2 . . . . .  5. (1) 
k = i  

33 STROVE also reported (pp. 94-108) on the fundamental not yet published investi- 
gation of star parallaxes by PETERS [127] and paid special attention to studies of solar 
motion. M. S. EI~ENSON, the  translator of the l~tudes into Russian, and A. A. MIKHA~- 
£OV, the editor of the Russian edition, justly consider STROVE a beginner in the history of 
stellar astronomy [49, 1953, p. 124]. 

a, l ie did not publish the data necessary for this estimation. 
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Thus 

a 2 = p 2 ( ~ 2 + 3 q ~ 3 + 6 q 2 ~ 4 + l O q a ~ s ) .  

Solving system (1) with respect to ~1, 0~2 . . . . .  as (I omit the relative formulas), 
STRUVE introduced the linear forms 

f = a l  q-2a2 + 3 a 3  -J-4a4 + 5as, k = a 4 + 5 a s ,  

g = a2 + 3 a a  + 6 a 4 + l O a s ,  l =  as, 

h =  a 3 +4a~-k - lOas  

and, denoting by f ' ,  g', . . . .  l' and p '  the corresponding quantities for stars of 
brightness # '  obtained the equations fxp '  = f ' p ,  gxp  ~2 ~g,p2, h x p , a =  h,p3, 
kxp ' 4 =  k'p 4, lxp '5 = l'p 5 in two unknowns, x and p'/p. Since aa, a4, and as 
were too small (h, k, l e t  h', k', l' valde exiguus esse), STRUVE used only the first 
two of  the equations to get 

(I']2 g 
x = \ f ]  g , ,  

z , =  2 L  
z k f ]  g . 

I can repeat the remark I made at the end of § 3.2 concerning a formula due to 
POINCAR~. 

STRUVE once again formulated the above problem in his ~tudes [49, Note 71], 
where he gave the final answer with no derivation whatsoever. Furthermore, he 
did not say he had published the derivation before and he did not even explain that 
different sections of the zone were surveyed an unequal number of times. 3s 

7.2. Maximal Distances of  Stars 

Basing his analysis on an inexact, as he himself acknowledged [49, Note 72], 
assumption of  uniform spatial distribution of  stars, STRUVE calculated the maxi- 
mal relative distances of  stars of given magnitudes. Suppose for example (ibidem) 
that a certain portion of  the sky contains a stars of the first five, and b stars of 
the first six magnitudes. Then the sphere of fifth-magnitude stars has radius 

1 

r = (a/b) T , unity being the radius of the sphere for stars of the sixth magnitude, a6 
Like HERSCHEL (see my § 6.2), STRUVE thus left room for randomness in the spatial 
arrangement of stars. Indeed, in his model, stars of a given magnitude can be 
situated at random within a sphere of  a certain radius. Nothing prevents me from 
maintaining a similar opinion in regard to the conclusions of§§ 7.3 and 7.4 below. 

as At best, readers of the main text of the Etudes could suspect this fact. 
a6 In those times it was customary to calculate an obviously excessive number of 

significant digits. GAuss himself did so in his geodetic work [87, §§ 23-25] and STRUVE 
followed suit calculating r ----- 0.7126. In this respect his attitude was the same throughout 
the l~tudes. 
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7.3. The Distribution o f  Stars in Space 

Drawing on HERSCHEL'S data, STRUVE [49, pp. 59 and 70] assumed certain laws 
for the spatial arrangement of stars. Accordingly, h e  (pp. 71-72) introduced an 
empirical function of  the type 

a ~ bl cos.2~ -~ ca cos 499 : 
z = (1) 

1 + b2 cos 2~ -~- c2 cos 4q0 

for the number of  stars visible in HERSCHEL'S 20 foot telescope at an angle q~ 
from the principal plane of  the stellar system. To a large extent the conditions 
imposed on function (1) (p. 33 of  the Notes) determined its form; still, STRUVE 
did not explain why the function was so involved. Indeed, one would  think he 
would have been satisfied by the numerator alone. 

Using formula (1), STRuVE (p' 73) also derived a relation for the relative density 
of  stars as a function of  their distances from the principal plane 

1 -~ el X2 -~ f l  x4 -~ g l x  6 + h l x  8 
0 ~ x --< 0.8660 

--  (1 ÷ e~x z -¢- f 2 x ' )  2 ' 

(0.8660 = sin60°). ERPILEV [74, p. 113] remarked that the integral equation 
which STRUVE had to solve numerically so as to determine ¢ was the first of its 
kind used in stellar statistics. 

Conducting a similar study of  stars included in WEISSE'S catalog, STRUVE 
compared his results and concluded that his formulas were plausible enough. 
Still, he evidently strove to show only the  most general picture of  the stellar 
system. Moreover, he calculated the coefficients of function (1) taking into account 
five points with abscissas ~ = 0(15)60 ° which was hardly enough. Empirical 
formulas had been in use long before STRUVE. In 1772 LAMBERT [140, p. 247] 
used an empirical function of mortality, and C. WOLFF formulated the 'Tmus-  
BODE' law as early as 1723 (see my § 2). 37 Nonetheless, in STRUVE'S time the tradi- 
tion of introducing empirical formulas had hardly been established. 

7.4. Mean  Distances o f  Stars 

Later on STRUVE [49] recalculated the maximal and mean star distances 
allowing for stellar density. As before [43, pp. xxxiv-xxxv], he [49, p. 80] took 
the mean distance of stars of  a certain magnitude to be the radius of the sphere 
that included all brighter stars and half the stars of  the given magnitude. Suppose 
that the estimated number of stars of  magnitude i is 2n. Denote their distances 
by 

rl, rE . . . . .  r2, (ri ~ r2 ~ . . .  ~ r2,). (1) 

37 In theoretical astronomy, epicycles "attached" one by one  to the PTOLEMAIC 
system of the world were tantamount to empirical correction terms. 
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Then, in principle (i.e., without allowing for the change in stellar density with 
distance), the mean distance of these stars, according to STRUVE, is equal to the 
distance of star n or, actually, to the median of numbers (1)? 8 

PETERS [126, p. 201] made an important critical remark on STRt3VE'S model: 

Man hat gegen Struve's Ableitung der Entfernungen der Fixsterne die Einwen- 
dung gemaeht, dass die ihr zum Grunde liegende Hypothese, die Sterne yon gleieher 
Helligkeit seien aueh gleich weit yon uns entfernt, sehr unrichtig sein k6nnte ... 
(see also my note 53 and § 9.2.2). 

Accordingly, PETERS proved that, if all luminosities from the interval [0, a], 
a ~ 0, are supposed equally probable for each star, and if the spatial distribution 
of stars is supposed 'random' [uniform], the mean distance of stars of magnitude 
i is proportional to the cube root of the total number of stars up to and including 
that magnitude. 

The conditions of this theorem were strong, but it was at least a few decades 
ahead of its time in spirit. 

7.5. The Extinction of  Light 

Drawing on statistical data, STRUVE attempted to prove [49, pp. 83-93] that 
interstellar space absorbs light. His proof  was not convincing [25, p, 377] (al- 
though the existence of the phenomenon was in the end ascertained) because it was 
based on essential assumptions concerning the structure of the stellar universe. 39 

7.6. Opinions about the ffAudes [49] 

ENCKE [73] was the first to comment on the ffAudes. He asserted: (1) that 
STRUVE did not formulate his assumptions concerning the structure of the stellar 
system and, furthermore, that STRUVE even denied introducing any hypotheses; 
(2) the assumptions made were far-fetched and the work as a whole was therefore 
a failure. 

I shall comment on the latter item. As to the former, STRUVE did point out at 
least some of his hypotheses (for example, those underlying his empirical formula 
(7.3.1)). STRUVE'S statement [49, p. 81] 

38 Without referring to S/RUVE, KLEIBER [102] calculated the mean distance (ro) 
of stars situated 'at random' inside a sphere -Q of radius R: 

3 
ro = f f f  r dr: f f f  dv = -~- R. 

g2 ~2 

He applied this result to estimate the mean star parallax. 
a9 STRUVE (p. 87) thought that these assumptions could scarcely fail to be true. 
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Le tableau [des distances relatives] renferme tout ce que notre recherche nous a 
fourni par rapport aux distances des ~toiles . . . .  par une recherche uniquement bas~e 
sur l'observation, sans y employer aucune hypothOse arbitraire, 

which ENCKE referred to, seems to be rather unfortunate. 
On October 23, 1847, in a letter to GAUSS, SCHUMACHER [89, p. 379] informed 

his correspondent about ENCKE'S forthcoming review [73] of the Etudes: 

Encke sucht zu zeigen class Struve's ganzes Gebiiude ein Kartenhaus sei auf nicht 
hinliinglich begriindeten Hypothesen aufgefiihrt. 

Answering him on October 27 th and referring to the review which he had obviously 
seen in manuscript form, GAUSS pointed out (p. 384): 

Sie wissen, dass ich yon jeher kein Freund davon gewesen bin, schwaeh begriin- 
deten Hypothesen einen Platz in der Wissensehaft einzuriiumen . . . .  

Finally, on November 7 th GAUSS continued (p. 394): 

Im Allgemeinen wiirde ich gegen dergleichen Phantasiespiele naehsichtig sein, 
und ihnen nur [!] die Aufnahme in die wissensehaftliche Astronomie ... nicht ein- 
riiumen. Geh6ren doch auch Laplaee's Cosmogenisehe Hypothesen in jene Classe. 

Clearly, GAUSS had not yet read the ff~tudes. Still, STRUVE'S work exerted a strong 
influence on astronomy in the 19 th century. Of course, STRUVE could not apply 
methods, or propound ideas, peculiar to some future period. His time might be 
characterized by saying that parallaxes were then only known for an insignificant 
number of stars, the measurement of stellar radial velocities had not yet begun 
and the notion of the mean distance of stars of a given magnitude was still in use 
(cf  my § 9.2.2). It was therefore inevitable that fresh findings superseded STRUVE'S 
estimates and results rather soon. At the end of the 19 th century, KAPTEYN [13, 
p. 129] maintained that the 

arrangement der sterren in de ruimte [according to STRUVE] ist niet in overeen- 
stemming met de werkelijkheid. 

Roughly twenty years later SCHOUTEN [135, p. 6] even stated that STRUVE'S 

merit consists in making use for the first time of  countings o f  catalogues o f  stars. 
His method and his results however are only of  historical value. 

Insofar as SCHOUTEN mentioned nothing else, his is of course an extreme opinion. 
An opposite extreme pronouncement is due to DE SITTER, who thought [71, p. 49] 
that, in the J£tudes. 

The discussion of  the material is very careful and a model of  sound scientific 
criticisms. 
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DE SITTER raised no objections to STRUVE'S assumptions and he even noted (p. 50) 
that HERSCIJEL could not manage without hypotheses either. 

8. Proper Motions of Stars 

Investigation of the spatial arrangement of stars continued to be a most 
important subject of astronomy after HERSCHEL. For  example, STRUVE'S Etudes 
[49] were centred precisely on this topic; see my §§ 7.2-7.4. However, during the 
1830's and 1840's, stellar astronomy took a new direction, viz., study of proper 
motions of stars. In part, this trend was due to a desire to confirm HERSCHEL'S 
discovery of the sun's motion (see my § 6.4) and to determine it more accurately. 4° 

8.1. Argelander 

ARGELANDER [54, p. 581] considered 560 stars with a perceptible proper 
motion. Because of  difficulties in calculation he divided the stars into three classes 
according to the magnitude of their motion (p. 586) and assumed that stellar 
distances are on the whole inversely proportional to their motions. His aim was 
to determine the direction of the sun's motion and he calculated it for each class 
separately. 41 

8.2. O. Struve 

O. STRUVE [153; 154] determined the mean proper motion of four hundred 
stars of  the first seven magnitudes; see Table 8.2(1). 

8.3. Subsequent Work  

Thus O. STRUVE attempted to prove that on the whole brighter stars possess 
larger proper motions. Nevertheless, referring to BESSEL and ARAGO, HUMBOLDT 
[99, p. 267] formulated an opposite opinion: 

Die leuchtenderen Sterne haben groflentheils . . .  sehw?ichere Bewegung als 
Sterne 5ter bis 6ter und 7ter Grb'fle. 

40 Obviously, astronomers understood well enough the fundamental scientific 
importance of studying the sun's motion. STRtJVE described the findings of his contempo- 
raries precisely from the standpoint of this problem; see note 33. Elsewhere [50] (see 
my § 8.3) investigating the proper motions of stars, he also calculated the velocity of 
the sun's motion. 

4,  Cf. J. HERSCHEL'S remark [96, p. 585]: 

two courses onIy present themselves, either, 1st, To class the distances o f  the stars according 
to their magnitudes, or apparent brightnesses, and to institute separate and independent 
calculations for each class . . .  or, 2dly, To class them according to the observed amount 
o f  their apparent proper motions, on the presumption that those which appear to move fastest 
are really nearest to us. 
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Table 8.2(1). Proper motions of stars [153, pp. 54-56; 154, pp. 71-72] 

Stellar Relative distances Proper motions of stars Discrepancies 
magnitudes of stars during 70 years (3)-(4) 

Observed Calculated 

1 2 3 4 5 

1 1 36."1 43:'2 --7."1 
2 1.71 10.9 25.3 --14.4 
3 2.57 11.0 1 6 . 8  --5.8 
4 3.76 8.4 11.5 --3.1 
5 5.44 6.7 8.0 --1.3 
6 7.86 5.5 5.5 -- 
7 11.34 4.5 3.8 0.7 

Notes. 1. O. STRUVE took stellar distances according to F. G. W. STRUVE [43, 
p. xxxv], i.e. as being proportional to the cube root of the number of stars; see my 
§§ 7.2 and 7.4. 

2. He assumed that for stars of the most numerous group, Le. for those of the sixth 
magnitude, the calculated proper motion should coincide with the observed motion. 
For stars of other magnitudes, motions in column 4 are derived from their distances; 
thus, for magnitude 5, 8.0 = 7.86 • 5.5 : 5.44. 

3. He partly explained the existence of considerable discrepancies [(3)-(4)] by a non- 
uniform spatial distribution of stars. 

In a note included in his translation of HUMBOLDT'S work into Russian, GUSSEW 
(pp. 555-557) pointed out the mistake committed by the great naturalist. He 
referred to F. G. W. STRUVE (see below) and to his own nearly completed study 
which he had undertaken in 1852 on STRUVE'S advice. He published a second 
version of  his note in German [92]. 

STRUVE investigated the proper motions of 1662 stars. I explicate his results 
[50, pp. clxxxii-clxxxv] in Table 8.30). STRUVE als0 estimated the velocity of  
the sun's motion (p. clxxxvii) as being equal to 0.5-0.8 of  the mean peculiar motion 
of  736 single stars. No wonder that ERPILEV [74, p .  177] believed that the study of 
proper motions had actually begun with STRUVE. FEDORENKO [78, p. 84] stated 
that 

die mittleren Sternbewegungen sind den mittleren Sterngr6ssen nach der Schiitzung 
der Astronomen umgekehrt proportional. 

Table 8.3(1). Proper motions of stars [50, p. clxxxii] 

Number Stellar magnitudes; Proper motion during 30 years 
of stars mean stellar magnitudes c~ 

180 1-4.5 (3.15) 4:'64 4:'58 
206 4.5-7 (5.66) 1.87 1.41 

1276 > 7 (7.34) 1.12 0.82 
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He repeated his assertion elsewhere [79; 80, p. 13]; in one instance [79] he referred 
to MXDLER (Dorpater Beobachtungen yon 1856). FEDORENKO [80, p. 7] calculated 
the proper motion of 2,590 stars of magnitudes ranging from 4.5 to 9.25. Apparent- 
ly, this quantity was not enough, and his conclusion was wrong. 42 And, of course, 
neither he, nor his predecessors including STRUVE had any possibility of con- 
sidering the ray velocities of  stars. However, the main Objection to the findings 
of FEDORENKO and other astronomers (see § 8.2 and above) concerning the mean 
proper motion of stars of a given magnitude is that this concept seems to be of 
slight importance. 

PETERS [127, p. 50] sought to determine the mean parallax of stars of the 
second magnitude. He was able to take into account 35 stars with magnitudes 
up to 4.5, but he calculated the parallaxes of stars of magnitudes 1(0.5)6, which 
was rather unjustifiable. His investigation made it possible to calculate [49, 
p. 102] (true, only to a first approximation) the sun's motion in terms of the 
radius of the earth's orbit. 

8.4. Peculiar Motions and the Normal  Law 

In adjusting the proper motions of stars while studying the sun's motion, 
astronomers, beginning with HERSCHEL (see my § 6.4), considered peculiar motions 
to be random quantities. In particular, STRUVE [47, pp. 132--133] pointed out: 

Quant au mouvement particulier des ~toiles, il est comme aeeidentel pour nous 

AIRY [51, p. 147] remarked that the probability of a peculiar motion of a certain 
star following any direction is constant, while FEDORENKO [80, p. 8] even main- 
tained without proof  that proper [peculiar?] motions are distributed according 
to the law o f  accidental errors. 43 

Much later, in a popular lecture, KAPTEYN [15, p. 400] introduced a funda- 
mental hypothesis 44 concerning peculiar motions: 

The peculiar motions o f  the stars are directed at random, that is, they show no 

4-2 GUSSEW [92] was the first to come out against him. 
43 As far back as 1842 O. STRUVE had formulated a similar assertion more accurately. 

According to his evidence [153, p. 51], 

Bisher hat man den Werth der Praecessionsconstante abgeleitet in der Voraussetzung 
dass siimmtliche eigene Bewegung gleichsam als zufiillige Beobachtungsfehler in die Rech- 
nung hineinkdimen und deshalb ihr Einfluss sich bei einer gehOrig grossen Anzahl yon Sternen 
aufheben miisste. 

However, O. SXRUVE continued, the same assumption still (i.e., even after ARGE- 
LANDER published his study [54]) persisted, though in regard to peculiar motions. 

44 Quite in LAPLACE'S spirit [147, p. 176], he remarked (p. 412) that this provisional 
hypothesis was to be used for want o f  a better. 
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preference f o r  any particular direction. I shall fur ther  on refer to this hypothesis 
as the fundamenta l  hypothesis. 

A s  a consequence, he continued (ibidem), the sum o f  the projections [of these 
motions] on any line . . .  must  be zero (see below). KAPTEYN (p. 418) even called 
the distribution of  motions satisfying his hypothesis normal. 45 In a later work 
[20, p. 310] KAPTEYY assumed that the motions corrected f o r  both the solar and 
the stream motions [see note 45] with some crude approximation are Maxwel -  
lian . . . .  

Consider KAPTEYN'S statement regarding the projections of  peculiar motions. 
Denote these motions by 

1)1, V 2 . . . . .  Un; (1) 

then their projections on an arbitrary axis L would be vi cos oq, where ~i, i = 
1, 2 . . . . .  n, are the angles between the directions of  motion and L. For  random 
errors (1), the classical error theory beginning at least with MAEVSKY [108, p. 62], 
assumed that, according to the law of  large numbers, 

v, + v 2  + . . .  q -v ,  
lim = 0. (2) 

n--~-oo n 

MARKOV [109, p. 249] noticed that equality (2) also holds for linear functions 
of  vi (and thus for Ve cos o@ 46 It  seems that KAPTEYN actually thought of  the 
mean, rather than the sum, of  the products vi cos 0q as being equal to zero. 

NEWCOMB [32, p. 166] assumed that the projections of  stellar motions on an 
arbitrary axis are distributed according to [proportional to] the normal law: 

~(X) = e -x2/a2 . 

Then, as he stated, regrettably without proof, the projections of  these motions 
on an arbitrary plane follow the density law [proportional to] 

~(x)  = xe  -::~/b~, (3) 

where b is a simple function of a, while the motions themselves are distributed 
according [proportional] to the law 

~(x) = x 2 e  - ~ / ~  (4) 

a5 In the same lecture KAPTEYN (pp. 416, 418, and 419) reported that a graphical 
study (by means of star charts and a celestial globe) of the peculiar motion of the stars 
led him to believe in the existence of two star streams. At present, astronomers do not 
accept this statement. 

• 6 Exactly for this reason MARKOV opposed substantiation of the method of least 
squares by appeal to the law of large numbers. Earlier BOUNIAKOWSKY [64, pp. 269-- 
270] derived equality (2). He commenced from the central limit theorem as proved (non- 
rigorously) by LAPLACE. However, BOUNIAKOWSKY'S derivation contained an error. 
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(NEwCOMB did not specify c). Note that the transition f rom the normal law to 
functions (3) and (4) is explained elsewhere [141, p. 328]; the latter functions are 
connected with the chi-square distribution. 47 

Thus an intuitive feeling that peculiar motions might be treated as a random 
quantity prevailed. Some astronomers, without even a heuristic substantiation 
of  their belief, thought that the motions were subject to the normal law. 

9. The Statistical Method 

For HERSCHEL (see my § 6.1), individual stars (or stars of  the same magnitude) 
were equitable elements of  a statistical population, while his model of  the spatial 
distribution of stars (§ 6.2) left room for randomness. The same can be said about  
STRUVE (§§ 7.2-7.4) who also applied the statistical method to the solution of special 
problems (§§ 7.1 and 7.5) and whose model of  stellar distribution was more elab- 
orate than the one due to HERSCHEL. But then, almost all the conclusions which 
he arrived at in his Etudes [49] were of a determinate nature. 48 Consider for ex- 
ample the maximal and mean distances of stars of  some magnitude i. Allowing 
for the stellar density that he determined, using HERSCHEL'S data, STRUVE calculated 
the distances drawing on the number of  stars up to and including the i th magnitude. 
And it really seems that  he considered all his initial information to be deter- 
minate. At any rate, he did not mention any laws of distribution of stellar distances 
or even possible errors in the mean distances. I think that this fact is justified. 
Indeed, astronomers of  that time studied stars only of the first few magnitudes 
and the estimation of distances was only preliminary. Besides, astronomers, and 
even natural scientists in general, did not then use empirical laws of distribution; 
it would have been unnatural to expect STRUVE to describe the stellar system in 
terms of distributions, as KAPTEYN did about fifty years later. 

47 I do not know why NEWCOMB did not refer to his own study [30] in which he, 
unlike FEDORENKO or KAPTEYN, compared the distribution of centennial proper motions 
in declination with the normal law and noted considerable disagreement between the 
two. He actually used the terms normal law o f  error, normal curve o f  errors. On the 
history of these expressions I should mention the following: 

In 1905 PEARSON [120, p. 189] indicated: 

On the whole my custom o f  terming the curve the Gauss-Laplacian or normal curve 
saves us from proportioning the merit o f  discovery between the two great astronomer 
mathematicians. 

PEARSON'S contributions to probability theory started to appear in 1893 and even in 
1894 he [119, p. 72] wrote: 

A frequency curve, which.. ,  can be represented by the error curve, will for the remainder 
o f  this paper be termed a normal curve. 

In 1873 PEIRCE [125, p. 206] used the term normal least-squares curve and NEWCOMB 
possibly followed suit. KRUSKAL [103, p. 99] discovered PEIRCE'S expression and also 
credited GALTON with subsequent use of the terms normally and normal in shape. 

48 This fact is true even in regard to the calculated completeness of stellar catalogs 
(see my § 7.1), and consequently, in respect to STRUVE'S (obviously methodological) 
estimation of maximal stellar distances based on the derived completeness. 
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A new feature of stellar astronomy in the second half of  the 19 th century was 
the study of  statistical regularities inherent in stellar ensembles (see my § 8) 49 
though no fitting substantiation of the approach had been offered. 

COURNOT, to whom the first pronouncement on the statistical method in 
astronomy is due [70, § 145], did not notice this fact. He merely remarked that 

S'il est une branche de la philosophic naturelle d laquelle ce genre de recherches 
puisse s'approprier avec chance de succds, c'est assurdment l'astronomie. 

COURNOT continued: 

la statistique des astres (s'il est permis de recourir d cette association de mots) 
doit servir un jour de moddle gl toutes les autres statistiques. 

His work, partly popular science and not addressed specifically to astronomers, 
appeared at a time when the development of the classical (pre-CI4EBYSHEV) 
probability theory had just ended. COURNOT could not have influenced astronomy 
appreciably, in particular because he himself only applied stochastic reasoning 
to the study of planetary and cometary orbits without even mentioning investiga- 
tions in stellar astronomy. 

Only towards the end of the 19 th century appeared statements correctly formu- 
lating the (statistical) aims of this discipline. CLERKE [69, p. 9] noted that 

The stars in their combinations demand inquiry no less than the stars in them- 
selves . . . .  statistics are wanted of  the distances and movement of  thousands, 
nay millions of  stars. 

In the sequel (p. 311) she referred to HILL & ELKIN [97, p. 191] who expressed 
themselves even more directly: 

The great Cosmical questions to be answered are not so much what is theprecise 
parallax o f  this or that particular star, but: 

1. What are the average parallaxes o f  those o f  the first, second, third, and 
fourth magnitude respectively, compared with those of  lesser magnitude? 

2. What connection does there subsist between the parallax o f  a star and the 
amount and direction of  its proper motion or can it be proved that there is no such 
connection or relation ? 

9.1. Proctor 

PROCTOR denied the statistical method. In 1872 he [38] compiled charts of  
stars of the first six magnitudes showing their proper motions. By means of  

49 In this sense astronomy overtook physics, which the statistical method did not 
penetrate until the middle of the 19 ~h century and even then at first only because it was 
impossible to study the motion of individual molecules. 
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these charts PROCTOR claimed (pp. t47-148) to have discovered stellar streams. 5° 
He obviously had no possibil i ty of  checking his finding by analytic methods. 
Elsewhere [40, p. 544] PROCTOR contrasted his graphical procedure with statistical 
studies: 

I can conceive no general statistical process absolutely free f rom hypothetical 
considerations. Statistics can be satisfactorily applied to inquiries suggested by other 
and less deceptive processes; but at the beginning we cannot count except on accord- 
ance with some prearranged plan, and such plan must necessarily be based on 
hypothesis. 

For  example, PROCTOR continued, STRUVE [49, p. 56] 

counted the number o f  stars in given hours of  right ascension; but the result was 
meaningless, except on the assumption that the distribution o f  stars over a given 
hour ... possessed a certain significance. 

PROCTOR plotted 324 thousand stars on his charts and thus he got along with- 
out any theories on the structure of the stellar system (pp. 545 and 547) ...  
These obscure utterances are unconvincing. PROCTOR could not have studied star 
distances by means of his charts; besides, their very compilation was evidently 
founded on a serious, even if elementary, statistical study. PROCTOR was right 
only insofar as fundamental difficulties are indeed inherent in sampling. 51 But 
without statistics, without sampling, astronomy could not have developed in any 
case. PROCTOR himself actually spoke out in favor of  sampling [39]: 

Great exactness in enumeration is by no means necessary . . . .  What is required 
is a complete but rapidly effeeted survey bearing the same relation to the actual 
charting o f  stars, that the reconnaissance o f  a land region bears to trigonometrical 
survey. 

A few decades before PROCTOR started his work, French physicians hotly 
debated the expediency of applying the statistical method in medicine. PROCTOR'S 
opinion corresponded to the standpoint of  the proponents of  the so-called numeri- 

5o He reported on the streams even in 1869 [36], long before KAeTEYN (see my 
note 45). PROCTOR [38, p. 147] also concluded that the average proper motion of the 
brighter orders of stars is barely equal to that of  the three lower orders (see my § 8.3). 

PROCTOR was an. active advocate of popular science. In particular, he published a 
lot of popular articles on probability theory and its applications [42]. At the sa.me time, 
his knowledge of the theory was slight. Thus studying the difference between the number 
of lucid stars in the northern and southern parts of the sky he [37] directly estimated 
the sum of the corresponding binomial coefficients of the development of (1 + 1)" where 
n was the total number of lucid stars. He did not apply the normal approximation to 
the binomial distribution. 

51 Cf. NEWCOMB'S remark [33, p. 303]: 
All scientific conclusions drawn from statistical data require a critical investigation 

of  the basis on which they rest. 
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cal method [151, § 4]. In a more general way PROCTOR'S attitude illustrates the 
fact that  statistics always seems to be at odds with the specific branch of science 
to which it is applied. To illustrate, advances in surgery such as the introduction 
of  anesthesia and antiseptics [151, § 6.1] made useless all previous studies of  the 
mortality of  amputat ions;  in turn, the investigation of anesthesia led to the need 
for a statistical study of  deaths f rom bronchitis after amputation, etc. Being 
restricted by my upper chronological boundary, I am not in a position to offer 
an astronomical example as telling as the one pertaining to surgery. See however 
§ 9.2.2, 

9.2. Kapteyn 

KAPTEYN'S scientific activity was in essence directed towards a statistical de- 
scription of  the stellar system as a whole. In his popular  reports [15; 18] s2 he 
vividly depicted the stellar universe describing it by means of the laws of distri- 
bution of parallaxes and peculiar motions of  stars. He thus regarded both par- 
allaxes and motions as random quantit ies? 3 KAPTEYN [15, p. 397] explained 
his standpoint thus: 

Just as the physicist .. .  cannot hope to follow any one particular molecule [of gas] 
in its motion, but is still enabled to draw important conclusions as soon as he has 
determined the mean o f  the velocities o f  all the molecules and the frequency o f  
determined deviations o f  the individual velocities f rom this mean, so ... our 
main hope will be in the determination o f  means and o f  frequencies. 

He could have added that neither the physicist, nor even the astronomer, had any 
need to study the isolated objects of  their systems; ef. § 9. 

NEWCOMB [33, p. 302] offered a generally correct estimate of  KAPTEYN'S 
work: 

In recent times what we may regard as a new branch o f  astronomical science 
is being developed, showing a tendency towards unity o f  structure throughout the 
whole domain o f  the stars. This is what we now call the science o f  stellar statistics. 
.. .  In the f ield o f  stellar statistics millions o f  stars are classified as i f  each taken 
individually were o f  no more weight in the scale than a single inhabitant o f  China 
in the scale o f  the sociologist. 

The statistics o f  the stars may be said to have commenced with Hersehel" s gauges 
o f  the heavens . . . .  The subject was first opened out into an illimitable f ield o f  re- 
search through a paper presented by Kapteyn to the Amsterdam Academy o f  seienees 
in 1893 [137]. 

52 He continued his work for a good twelve years more during which stellar astro- 
nomy experienced essential progress. Thus the connection between absolute magnitudes 
of stars and their spectra was established. 

5a In particular, KAPTEYN concluded [18, p. 310] that no real meaning could be at- 
tached to the notion of the mean distance of stars of a given magnitude. Owing to want 
of  other data, KAI'TEYN maintained, STRUVE saw himself compelled to place all the stars 
of the fifth magnitude [why only the fifth ?] at one and the same [mean] distance. 
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And, further (p. 303): 

The outcome o f  Kapteyn' s conclusions is that we are able to describe the universe 
as a single object . . . .  

NEWCOMB could have well referred here to STRUVE. 
One of KAPTEYN'S important  achievements in stellar statistics was the initia- 

tion of an international plan for a study of the stellar universe [16] by sampling. 
Explaining his point of  view, he wrote (p. 14): 

whereas all the astronomers consulted agree in the demand for  a uniform distribu- 
tion o f  a good part o f  the areas, some would absolutely restrict them to such uni- 
formly  arranged positions, on the ground that only such a plan might be expected 
to lead to the knowledge o f  the general laws governing the structure o f  the sidereal 
system and that these must be found out before divergences f rom the rule are to be 
studied. Others urged that in this way just the most interesting parts o f  the sky ...  
would be excluded. 

KAPTEYN (p. 67) also published a letter he received in 1904 from PICKERING in 
which the distinguished astronomer maintained: 

As in making a contour map, we might take the height o f  points at the corners 
o f  squares a hundred metres on a side, but we should also take the top o f  each hill, 
the bottom o f  each lake . . . . .  and other distinctive points. 

KAPTEYN did not mention sample surveys of  population which had come 
into general practice at the turn of the 19 th century. 

Determining the characteristics of  faint stars is now basically done in some 
areas uniformly distributed over the sky and additionally at places of  special 
interest. In other words, faint stars are studied according to (PICKERING'S) scheme 
of  stratified sampling. 

9.2.1. Coefficient of Correlation. KAPTEYN [19] was not satisfied with GAY- 
TON'S definition of the correlation coefficient 54 which Came to be used, for ex- 
ample, by biologists. He aimed at a quantitative estimate of  the connection 
between two functions depending on partly coinciding measured arguments. 
Suppose, KAPTEYN reasoned, 

x = q~(a~, a2 . . . . .  ak, bl, b2 . . . .  ), 

y = ~o(al, a2 . . . .  , ak, cl, c2 . . . .  ) 

24 In 1865-1866, the astronomer and mathematician L. SEIDEL [151, § 7.4], in a study 
of the occurrence of typhoid fever, quantitatively estimated the connection between 
the prevalence of the disease and meteorological factors. SEIDEL also published a few 
articles on the theory of errors. I could not find any trace of his contribution Uber das 
Wahrseheinliehkeitsgesetz der Fehler bei Beobaehtungen which he proposed to publish 
in einer Faehzeitsehrift (Sitz. Ber. Bayer. Akad. Wiss., Math.-Phys. KI., Bd. 14, 1884 
(1885), p. 194). 
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are the coordinates of  a moving point on a plane with elements a~, b~, and c~ 
being characterized by normally distributed errors ~ ,  fli, and 7;, respectively. 
Taking into account only the first terms of the corresponding power series and 
appropriately translating the system of coordinates, KAPTEYN got  

X ~--- G10¢ 1 -1- G20¢ 2 -]- . . .  + Gko¢ k @ Bl f l  1 + Bzf l  2 + . . . .  

y = H~x~ + H2~x2 + . . .  + H~O~k + C171 + C272 + ...  

so that x and y also became normally distributed errors. Passing on to mean 
[square] errors, he arrived at 

4 = o~d + c~4 + . . .  + a ~  + B ~  + BM + .... 

4 = H~d + H~4 + . . .  + Hg4 + C1~1 ~ + Cg,~ + . . .  

The joint probability for quantities x and y to belong to intervals Ix, x + dx] 
and [y, y + dy] respectively is equal to  

P --  exp - -- 2r + , 
2~r ]/i --  r z 2(1 r 2) exey exey 

(1) 
1 

r = - - [ G , H 1  e2 @ a2H2e~ + . . .  -+- akHke2]. 
exey 

BRAVIAS [65] knew an equivalent formula though he did not introduce quantity r. 
Recording this fact, KaPTEYN nevertheless called BRAVAIS the originator of the 
correlation theory. 

Continuing his exposition, KAPTEVN assumed without loss of generality 
that 

e x = e y  = l .  

He then noticed that distribution (1) persisted if, first, 

x = ¢o11~ ~ + C o r m  ~ + ... + ¢ ~  + . . . .  

y = C o , H ,  ~ ,  + ¢ ~  ~ + . . .  + C a k H ~  + .. .  

where the dots stand for errors produced by independent elements and if, second, 
the coefficient of  correlation (r) is defined as the common part of the mean square 
error: 

r = 61Hld + 62H2~ + . . .  + akHk4. 

Finally, KAt'TEYN considered the case 

x = f l  -t-fz + . . .  + f k - } - m l  + m 2  + . . .  + m s ,  

Y = f l  + f 2  @ ...  -]-fk -t- nl + n2 + ...  -}- ns 

with the errors of  each element being equal to e. Then 

4 = @ = (k + s) e z = l, r = ke  2 = k / (k  + s).  
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Thus, the coefficient of correlation was here equal to the ratio of the number 
of common elements to the total number of elements, a fact which KAVTEYN 
regarded as especially interesting. 

KAVTEYN'S contribution evidently remained unnoticed. I think it is extremely 
important and for this reason I shall describe the corresponding ideas of GAUSS 
and PEARSON. GAUSS had repeatedly stated that observations should be indepen- 
dent [85, § 175; 86, §§ 15 and 18; 87, § 22]; 55 he resolutely spoke out on this 
point in a posthumously published work  [145, p. 112]. In two instances [87, § 3; 
88] he noted that the dependence between observations was caused by conditional 
equations. 

Consider an elementary example. Let the observed values of angles A, B, 
and C of a plane triangle be o~, /3, and 7 respectively, so that 

+ (~) = A, /3  + (/3) = 8 ,  7 + (7) = C 

where (o¢), (/3) and (7) are the errors of observation. The conditional equation is 

(~,) + (/3) + (~,) = 180 ° - (A + B + c )  ~ w 

whence, according to the method of least squares (as well as following common 
sense), the errors are 

w 

(o0 = (/3) = (~,) = T "  

GAUSS'S remark should be understood in the sense that, in contrast to the ob- 
served angles ~, /3, and 7, the adjusted angles o~ -k w/3, /3 -k w/3, and 7 -k w/3 
are mutually dependent. 

Finally, GAUSS [86, § 18] formulated two more statements: 
(1) Two linearized functions of the same [independent] errors werden often- 

bar nicht mehr yon einander unabhiingig sein . . . .  
(2) The same functions wiirden ...  nicht mehr von ein ander unabhiingig i f  

[at least] one of the errors is common to both of them. 
KAVTEVN might have mentioned GAUSS as his precursor. Though errors of 

observation need not follow the normal law, KAPTEYN'S definition of the corre- 
lation coefficient (2) would remain valid even in this general case. 

PEARSON devoted one of  his articles [123] to the history of  the correlation 
theory.  PEARSON maintained that GALTON, not BRAVAIS, originated this theory. 
He also noted (p. 187) that, according to GAUSS, observations are independent 
[only if they do not contain common errors; see above], while f o r  us they are 
correlated. 

LANCASTER [104] seems to have supported this point of  view. For  my part, 
I simply do not understand it. . . . .  

25 Astronomers and geodesists undoubtedly adhered to the same opinion long be- 
fore GAuss, but it was precisely GAuss (and LAVLACn [148, p. 11]) who expressly indi- 
cated it. 
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9.2.2. Kapteyn and Pearson. In 1904 KAPTEYN published a booklet [14] on 
the application of skew distributions in biology 56 and statistics. In the Introduction 
he asserted that the PEARSONIAN theory of skew curves was imperfect and, more- 
over, since it was purely empirical, did not connect the shape of the curves with 
the action of corresponding [random] causes. Further on in the Introduction 
KAPTEYN explained the action of the central limit theorem. Apparently he was not 
sufficiently acquainted with probability theory; at least, he did not mention 
LAPLACE (or POISSON, or CHEBYSHEV) even once and his explanations were only 
qualitative. KAPTEYN also described his skew-curve machine which functioned 
like GALTON'S well-known device for the demonstration of the normal distribution. 

Except for two short remarks, I shall not dwell any more on KAPTEYN'S 
contribution. The second edition of his booklet does not contain the statements 
dealt with above; and KAPTEYN was not the only one who failed to recognize 
PEARSON'S achievements. In a letter to CHUPROV, dated 1910, MARKOV [110, 
p. 12] maintained that PEARSON accomplished nothing which deserves attention. 
Only later, possibly under the influence of  CHUPROV, did he relax his stance 
somewhat (p. 154). 

PEARSON [120] was quick to criticize KAPTEYN [14]. Answering him, KAPTEYN 
[17, p. 216] admitted unintentionally following EDGEWORTH without acknowledging 
his priority. In substance, however, KAPTEYN did not repent and in his turn (p. 218) 
accused PEARSON of an inaccurate description of  his (KAPTEYN'S) work [14] re- 
marking that his opponent has largely profited by the exposition of the theory 
which he refutes. 

I shall leave the matter at that. It is more important to note that precisely the 
same period (the very beginning of  this century) witnessed an unsuccessful attempt 
to establish correlation theory in astronomy. 57 WINIFRED GIBSON, whose contri- 
bution [90] was communicated by PEARSON, applied elements of this theory 
to the study of the relation between some stellar characters. Later on GIBSON 
& PEARSON [91, p. 415] referred to this contribution, pointing out that 

modern statistical methods were used [by GIBSON] for the first time to determine 
the numerical relationships between various star characters. The object of the present 
paper is to deduce further similar relationships, and to deal with some of the same 
relationships on the basis of wider data. 

In about two years GIBSON, this time together with PEARSON, returned to the 
same subject aiming [91, pp. 447-448] to indicate the directions in which closer 
relationships [between star characters] may be found . . . .  GIBSON'S paper [90] 
became the subject of discussion between PEARSON and the astronomer A. H. HINKS. 
PEARSON [121, pp. 517--518] maintained that 

astronomers have been guilty of a considerable amount of circular reasoning. They 
start from the hypothesis that magnitude is very closely related to parallax, and 

26 About ten years later he published an article on the growth of trees in response 
to meteorological factors. 
., s7 Qualitative studies of star distribution [72] were still being published in 1895, 
just when PEARSON started his scientific career. 
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when the stat&tician shows that the ... parallaxes show no continuous relationship 
between parallax and magnitude, they turn round and say: "Yes, but our stars were 
selected because they had big proper motions." They thereby screen entirely the 
fact that the fimdamental hypothesis that the brighter stars are much the nearer 
as yet awaits statistical demonstration. 

And, further: 

I would venture to ask whether it may not be that the mass, the chemical constitution, 
and the life-history of  a star, as evidenced in its spectroscopic character, have 
sensibly more to do with the magnitude than its mere distance? 

PEARSON'S conclusion seems reasonable. However, he was not sufficiently ac- 
quainted with astronomical literature. Thus he failed to point out that astronomers 
had started to doubt the connection between stellar distances and stellar magnitudes 
long before him (see my § 7.4 and note 53). 

Continuing the discussion, PEARSON wrote (pp. 613-615): 

I have learnt from experience with biologists, craniologists, meteorologists, and 
medical men (who now occasionally visit the biometricians by night!) that the first 
introduction of  modern statistical methods into an old science by the layman is 
met with characteristic scorn; but I have lived to see many of  them tacitly adopting 
the very processes they began by condemning. 

From 1908 to 1910 PEARSON, partly in collaboration with JULIA BELL, published 
six papers in astronomical periodicals (Monthly Notices Roy. Astron. Soc. and 
Observatory) applying correlation theory and elucidating its essence. Two of 
the articles were written in response to critical comments due to PLUMMER [128; 
129]. In his first note the latter stated (p. 349) that 

[The astronomer] will certainly not be attracted by modern methods in statistics 
i f  they lead to results from which no useful deductions can be made . . . .  

In his second contribution PLUMMER (p. 5) asked a rhetorical question: 

Do they [the results attained by statisticians] give us new and useful information 
which would otherwise have escaped us? ... Does the method of  derivation give 
them a rigorous certainty which would otherwise be lacking? 

BELL herself studied the connection between the colors of stars and their 
spectral classes [55] and magnitudes [56]. In the first instance she noted that 

correlation is only a single and not very long chapter in the complete theory of  
association: the chapter on contingency may often be of  greater service. 

BELL [56] was probably one of the first to use the PEARSONIAN test for goodness 
of fit. 
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In 1910 PEARSON [122] derived a test for checking uniformity in the spatial 
distribution of stars. Suppose the stars of  a certain population possess magnitudes 
up to and including m. Then (p. 61), if the distribution is uniform, the standard 
deviation of the magnitudes does not depend on m. Also (p. 69), the nonuniformity 
of  distribution increases with m; uniformity may persist, but then either a connec- 
tion between stellar distances and stellar luminosities takes place, or extinction 
of light [really] exists. 

PEARSON and his associates often used non-GAusStAN curves of  density (at 
least in one  instance [124, p. 534], a PEARSONIAN curve of type vii). It can only 
be regretted that their work, at least initially, remained unnoticed. In particular, 
the remark due to GmSON & PEARSON (see above) to the effect that statistics can 
indicate direction for further study [in astronomy proper] proved barren of results. 
KAPTEYN, for one, did not support PEARSON: as shown above, he criticized the 
latter's work while his own definition of the correlation coefficient suitable for 
application in the mathematical treatment of  observations was patently unfit 
for studying connections between stellar characters (see § 9.2.1 above). After 
1910 PEARSON, who was then 53 years old, left astronomy for  good. Of course, 
he always had his own extremely wide field of scientific activity. 

10. Appendix: Newcomb and the Theory of Probability 

In the field of probability theory, even without considering its application 
to astronomy (see §§ 3.1 and 5.10 above), NEWCOMB published 

1. A popular article on the theory. 5s 
2. A lengthy methodological paper [21], which included an explanation of 

the principles and ideas of the theory and its application to the study of  testimonies, 
to the solution of  urn problems and life insurance. 

3. Two popular notes on life insurance. A specialist in the field levelled cri- 
ticism at the second note, maintaining that NEWCOMB based his conclusions on 
insufficient data. 

4. A note on the frequency of different digits [28]. Noticing that the first pages 
of  logarithmic tables wear out faster than the last ones, NEWCOMB formulated and 
solved a problem pertaining to the stochastic branch of  number theory. The distri- 
bution of  digits in numbers is such, he concluded, that all the mantissas of  their 
logarithms are equally probable. 59 

5: A contribution on the ratio of male and female births [35]. NEWCOMB 
wanted to show how to apply the statistical method so as to reach conclusions on 
questions which elude all direct investigation. In essence, he (p. 21) explained 
qualitatively the origin of one or another sex by the action of  a random process. 

58 References which I did not supply here may be readily found in ARCHIBALD'S 
bibliography of NEWCOMB'S works [53]. 

59 This note is too short and some of its passages remain obscure. (I made a similar 
remark in § 5.6.) Though he did not say so, the author evidently had in mind numbers 
expressing the results of measurements. Supposing that each such number must provide 
the same information, NEWCOMB'S conclusion seems to be correct. 
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Finally, NEWCOMB formulated a problem in the theory of urns. A mathema- 
tician solved it in 1907. 

In regard to the mathematical treatment of observations NEWCOMB is known 
primarily in connection with his 'generalized' theory of  the combination of  
observations [29; 100, pp. 298-305; 94, p. 74]. NEWCOMB assumed that the errors 
of observation follow a normal law with an unknown parameter of precision. 
Introducing a mixture of such laws and basing his conclusions on a quadratic loss 
function (this, of  course, is a later term) he got a certain posterior estimator in- 
stead of the usual arithmetical mean. NEWCOMB'S theory demanded complicated 
calculations and found little practical application, but subsequent astronomers 
have followed up his general ideas. NEWCOMB'S contribution could have helped 
incorporate error theory into mathematical statistics earlier. That this occurred 
only about half a century ago was, I suppose, due to the slow development of 
the theory of probability in the second half of the 19 th century. 

As NEWCOMB himself remarked [29, p. 344], difficulties inherent in dealing 

with . . .  abnormal errors prompted the appearance of his article. STIGL~R [160] 
briefly discussed NEWCOMB'S contributions on least squares. NEWCOMB also 
offered mechanical devices for calculations by least squares. Finally, I remark 
that [53, p. 54] 

Among his M S S  there is considerable material on least squares. This seems to 
be preparatory to a text  . . . . .  
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