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Summary. A simple method for detecting non-random patterns of distribu- 
tion of the boundaries of species is described. The method uses transects 
running across a community, where the number of upper and lower bound- 
aries of species in each quadrat is recorded. The expected number of 
quadrats containing one or more boundaries can be calculated from the 
binomial distribution. The mean deviation of observed from expected num- 
ber of such quadrats, for a set of transects, can be tested for departures from 
zero. Significant departures greater than zero indicate regular dispersion of 
boundaries. A mean deviation significantly less than zero indicates clustering 
of the boundaries. The method is unbiased and thus corrects previously 
published methods. 

Introduction 

Pielou (1975a, b) has devised a test to detect non-random patterns of distribu- 
tion of species along an environmental gradient. The technique has been used to 
investigate the structure of salt-marsh communities (Pielou and Routledge, 
1976) and is theoretically of great value for other communities. There has been 
much discussion of the arrangement of species' boundaries, particularly with 
respect to the grouping of plant species into natural communities (for example, 
the discussion in Whittaker, 1967). Pielou's (1975a, b) test was designed to 
distinguish between random, regular and clumped patterns of distribution of the 
boundaries of coexisting and overlapping species. If the species were grouped 
into definable communities, their boundaries should coincide, giving a clumped 
pattern. If assemblages of species were haphazard, however, their boundaries 
should be spatially distributed at random. The alternative arrangements were 
illustrated by Pielou and Routledge (1976, Fig. 2). 
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Here,  I show tha t  the  s ta t is t ical  test  deve loped  by  P ie lou  (1975a, b) is biased,  
a n d  further ,  tha t  the  p r o b a b i l i t y  d i s t r i b u t i o n  used  was n o t  correct .  These  two 
c o n s i d e r a t i o n s  m a k e  the  t e c h n i q u e  u n s u i t a b l e  for the  de t ec t i on  of n o n - r a n d o m  

pa t t e rn s  of  d i s t r i b u t i o n  of  b o u n d a r i e s  of  a set of  species. 
Accord ing ly ,  I have  deve loped  a n e w  m e t h o d  of de tec t ing  such pa t te rns ,  

wh ich  is based  o n  s imi la r  p remises  to the  o ne  deve loped  by  P i e lou  (1975a, b) 
a n d  which  uses s imi la r  s ample  data .  De ta i l s  of  the  use of this m e t h o d  in  a n  
analys is  of  i n t e r t ida l  c o m m u n i t y  s t ruc tu re  will  be  p resen ted  e lsewhere  ( U n d e r -  
wood ,  1978). 

The Pielou Method 

Pielou and Routledge (1976) sampled salt-marsh plants in belt transects of 50 cm width, divided into 
contiguous quadrats of length 1 m. The transects ran from the landward to the seaward ends of a 
marsh and were placed at least 10 m apart, to ensure the independence of samples. In each transect, 
the species present in each quadrat were recorded. The upper and lower boundaries of each species 
were thus determined as the upper and lower quadrats in which the species occurred. 

Consider only the upper boundaries of the species. In any one transect, there are Q quadrats and 
k species whose upper boundaries are determined. This excludes any species which extends above 
the uppermost quadrat, Let the number of quadrats containing at least one upslope boundary be U. 
Pielou (1975a, b) determined that, under the null hypothesis that the upper boundaries are 
distributed at random to the quadrats, the probability of any value of U is given by: 

u= 1, 2 .... rain (Q, k) (1) 

Using this distribution, a sign test was constructed to determine departures from random 
allocation of boundaries to quadrats. For any transect, the median value of U, say Umo a, given Q and 
k, was calculated as follows: 

U~<U,~a<Ua, and G - G = 1  (2) 

where 

Ul u2 

G<0.50 and ~ p,>0.50. 
L / = I  H = I  

For a collection of transects, U is the number of times U exceeded the expected median Um~ d. 
Then, given random dispersal of upper boundaries in each transect, the distribution of U was 
considered to be binomial with P=0.5. A significantly low value of U indicates that the upper 
boundaries were clustered, whereas a significantly high value of U indicates regularity of spacing of 
upper boundaries. The same procedure can be applied to the lower boundaries of the species in each 
transect (for the full details and examples, see Pielou and Routledge, 1976). 

Bias and the Probability Distribution of U 

The  b i n o m i a l  test  devised by  P i e lou  (1975a, b) is biased.  The  bias  s tems f rom the  
discre teness  of  the d i s t r i b u t i o n  for va lues  of  U [Eq.  (1), above] .  F o r  example ,  in  
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a transect with Q=23 quadrats and k=14 upper boundaries, it is found from 
Equation (1) that: 

8 9 
pu=0.3737 and ~ p,=0.6508. 

u = l  u = l  

Thus, the expected median of U is between 8 and 9, say 8.5. This example 
was taken from Pielou and Routledge (1976, p. 315). The binomial probability 
for U observed to exceed or be less than Ume d is not P=0.5. It is obvious that: 

Pr(U<8)=0.3737 and hence Pr(U>9)=0.6263 

and, thus, there is a bias in the binomial test. This bias always favours 
significance in the direction of regularity, from the definition of Ume a. The 
cumulative probability of any value of U less than or equal tO U t [-in Eq. (2), 
above] is always less than 0.5. Thus, the probability of exceeding the expected 
median, Ume d, is always greater than 0.5. This bias was recognized by Pielou 
(pers. comm.) and was assumed to be small. 

The distribution of U in Equation (1) is, however, incorrect and attempts to 
devise alternative, unbiased tests using Ume a are therefore pointless. I have tested 
the probability distribution of U by computer simulations, generating k variates 
from a uniform distribution between 0 and Q. The number of such variates in 
each unit interval 0-1, 1-2 ... .  ( Q - 1 ) - Q ,  thus corresponds to the random 
allocation of k boundaries to Q quadrats. The number of quadrats containing at 
least one of the k variates is U. Numerous combinations of Q (over the range 
10 80) and of k (over the range 3-40) were simulated 100 times, which represents 
100 transects of each condition, and gives an observed frequency distribution of 
U for each combination of (2 and k. Results of two such simulations are given, 
as examples, in Table 1, with tests of the agreement with expected frequencies 
from Pielou's (1975a, b) derivation [as in Eq. (1), above]. In all combinations of 
Q and k tested, there were significant departures of the frequency distribution of 
U from that expected. 

Pielou (pets. comm.) considered that the distances between boundaries are 
distributed as random variates from a negative exponential distribution, and 

Table 1. Frequency distributions of numbers of boundaries in quadrats, in 100 simulations (U is the 
number of quadrats containing at least one boundary in each simulation) 

Q=20, k=10 
U= <5 6 7 8 
Observed frequency in 100 simulations 2 7 21 35 

Expected frequency [from Eq. (1)] 12.0 24.4 32.5 22.6 

X 2 (4d f )  = 114.6, P < 0.001 

0=20, k=5 
U= <3 4 5 
Observed frequency in 100 simulations 9 32 59 
Expected frequency [from Eq. (1)] 17.9 45.6 36.5 

Z 2 (2dr) = 22.4, P < 0.01 

9 10 
29 6 

7.5 0.9 
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that the number of species in a transect (k) is a random variate from a Poisson 
distribution. This definition of random dispersion of boundaries along a gra- 
dient can be shown to be mathematically identical to the simulations using 
variates from a uniform distribution, as described above. The simulations using 
variates from a uniform distribution should therefore have given the probability 
distribution of U derived by Pielou (1975a, b), if this were correct. 

The probability distribution in Equation (1) is incorrect because it is based 
on the probabilities of random distribution of indistinguishable balls into boxes 
derived from Bose-Einsein combinatorial formulae (see Feller, 1968, p. 20). 
These are inappropriate, and the alternative combinatorials for distinguishable 
events (the Maxwell-Bolzmann formulae in Feller (1968)) should be used. The 
reasons for use of the Maxwell-Bolzmann formulations are illustrated in Fig- 
ure 1, where the possible results of independent distribution of 3 balls into 3 
boxes are illustrated. When the balls are indistinguishable, there are 10 possible 
results (Fig. 1A). The probability of arriving at any value of U is, however, 
identical to that when the balls are distinguishable (Fig. 1B), except in the very 
rare set of natural phenomena to which the Bose-Einstein formulae apply. In the 
case of distinguishable balls, there are more possible results (Qk=27, in the 
example illustrated). Even when the balls are indistinguishable, the probabilities 
of arriving at any value of U should be based on the number of results possible 
for distinguishable balls. Equation (1) assumes that each possible result has the 
same probability, according to Bose-Einstein theory. Even in this small example, 
there are large discrepancies between the two theoretical distributions of U. 

The Probability Distribution of U 

Any attempt to formulate the correct probability distribution of U based on 
Maxwell-Bolzmann combinatorial formulae involves a large repetitive set of 
calculations. In general, the probability of getting a particular set of results in a 
transect is much easier to calculate, but is considerably less useful. Consider k 
boundaries in Q quadrats, where U is the number of quadrats containing at least 
one boundary, and u i (i= 1, 2 . . . .  Q) is the number of boundaries in the i-th 
quadrat. 

The number of ways of arranging k boundaries in Q quadrats is Qk. The 
number of ways of arranging k boundaries in Q quadrats with occupancy 
numbers u 1 . . . .  u~ ... uQ is given by: 

k! 

u~! Uz! ... ui! ... uq!" 

Hence, the probability of getting exactly that set of values of u i, in the 
observed order, is given by: 



Distr ibut ion of Species along a Gradient  321 

k! 

(/21 ! . . .  Ui ! . . .  UQ !) Qk " 

Let the number of different values of u~ such that u~> 1 be G. The frequency 
of quadrats containing each of the G different values is gi, J =  1, 2 . . . .  G. The 
number of empty quadrats is go (i.e. go = Q -  U). Thus, 

G 
Q= 2g~. 

j=O 

The number of different ways of ordering the observed set of u~ values is then 
given by: 

Q~ 

go! g~! ... gj! ... ga!" 

The probability of attaining the observed set of u~ values is thus given by: 

k~Q! 
P r ( R ) - ( u l !  ... ui! ... uQ!)(go! g,!  ... gJ! ... gG !)Qk" (3) 

For a set of T transects, the probability of getting a particular set of u~ values 
in each transect can be calculated, using Equation (3). These probabilities could 
be combined, using Fisher's (1958) summation, as follows: 

T 

P = - 2  ~ logr (Pr(Rt)) (4) 
t 

where Pr(R,)  is that for the t-th transect, calculated from Equation (3), and t 
=1 ,2 ,  ... T. 

This combined probability, P, over all T transects, is distributed as ;(2 with 
2 T degrees of freedom. It would be necessary to use Equation (3) for all possible 
sets of values of u~ which deviate, from random allocation of boundaries to the 
quadrats, more than the observed set, in order to construct a significance test for 
each transect..The sum of such a set of probabilities would then serve as R t to 
calculate P in Equation (4). This would provide a test for random distribution of 
boundaries. A significantly high value of P [from Eq. (4)] compared with the 
tabled value of Z 2 would demonstrate that the species' boundaries were not 
distributed at random to the quadrats over a set of sampled transects. It is not, 
however, clear whether the departure from a random distribution is in the 
direction of clustering or in the direction of regularity. The use of such a statistic 
is obviously severely limited. 

Alternatively, the formulations leading to Equation (3) could be used to 
generate the probability distribution of U in any transect. This is, however, 
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difficult to do in practice. For  each value of  U (U = 1, 2 . . . .  min (Q, k)), there are 
several possible values of  G, several different sets of  u i and several possible sets 
of  Gj. These would have to be calculated for any set of  U, Q, and k. The general 
formula for the probabil i ty distr ibution of  U, given Q and k, was derived by 
Feller (1968, p. 64) as follows: 

Q! " u! 
Vr(U=U)-u!(Q_u)  ! Qk v~o ( -  1) v v!(u-v)! ( u -  v) k 

where v = 0 ,  1 ... u; u = l , 2  ... rain (Q, k). 
An  example of  the calculations necessary for the simple case of Q = t0, k = 5 

is given in Table 2. As k increases, the calculations become more  laborious, but 
they do fit the observed distribution of U from computer  simulations. This is 
demonstrated,  in Table 3, for two examples. The goodness-of-fit  in each example 
should be compared  with those in Table 1, where the Pielou (1975a, b) for- 
mula t ion was used. 

An  alternative approach  to the whole problem is used below, to avoid the 
necessity of  repetitive and tedious calculations based on Maxwel l -Bolzmann 
probabilities. 

T h e  E x p e c t e d  V a l u e  o f  U 

The expected value of  U, given Q and k, can be calculated, using the binomial  or 
Poisson distributions. For  each quadrat ,  the probabil i ty of getting each species' 
boundary ,  by chance, is Q -  a. F r o m  the binomial  distribution, the probabil i ty of  
getting none of the k boundaries  in a single quadra t  is: 

Table 2. Example calculation of the probability distribution of U (the number of quadrats containing 
at least one species' boundary) when Q (the number of quadrats)= 5, and k (the number of species) 
=5 

U No. of boundaries No. of Frequency of each Pr(R) Pr(U) 
in each quadrat different of the G values [-from 
(ul) values, Eq. (3)] 

ui=>l 
U 1 g 2 U 3 U 4 U s G go  g l  g2  

1 5 0 0 0 0 1 4 1 - 0.0016 0.0016 
~4 1 0 0 0 2 3 1 1 0.0320) 

2 k a 2 0 0 0 2 3 1 1 0.0640f 0.0960 
~ 1 1 0 0 2 2 2 1 0.1920~ 

3 l ~ 2 1 0 0 2 2 1 2 0.2880J 0.4800 
4 2 1 1 1 0 2 1 3 1 0.3840 0.3840 
5 1 1 1 1 1 1 0 5 - 0.0384 0.0384 
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Table 3. Frequency distributions of numbers of boundaries in quadrats, in 100 simulations (U is the 
number of quadrats containing at least one boundary in each simulation) 

Q=20, k=10 
U=  <6 7 8 9 
Observed frequency in I00 simulations 9 2i 35 29 
Expected frequency [using Eq. (3)] 7.5 22.3 37.1 26.7 

;(2(4d f ) =  0.72, P >0.90 

Q=20, k=5 
U=  <3 4 5 
Observed frequency in 100 simulations 9 32 59 
Expected frequency [using Eq. (3)1 5.5 36.3 58.1 

7Z(2df)= 2.75, P>0.25 

10 
6 
6.4 

er(O) = (1 - l/Q) k. 

Thus, the probability of getting at least one boundary is: 

Pr(  > 1) = 1 - (1 - l/Q) k. 

Thus, the expected number of quadrats containing at least one boundary, 
E(U), is: 

E ( u )  = Q (1 - (1 - 1 /Q)~) .  (5) 

This is in agreement with the expected value from the probability distribu- 
tion for U, given Q and k, derived by Feller (1968) which was presented earlier. 

In any transect, the deviation between the observed number of quadrats with 
at least one boundary (U obs) and the expected number (E(U)) can be calculat- 
ed. For  a set of transects, there is a sample of deviations from expected values. If 
the species boundaries are distributed at random, the mean deviation of the 
sample should be zero. 

I have examined the distribution of the deviations from expected values, in 
computer simulations. Two different conditions were simulated, firstly where the 
number of quadrats (Q) and species (k) were kept constant over 100 simulations, 
thus representing 100 transects. The second set of conditions was the more 
realistic field situation, where the number of quadrats will vary fi'om transect to 
transect, because of topographical variations in the substratum. The number of 
species may also vary, particularly if the species have a patchy horizontal 
distribution. Simulations were done with combinations of Q in the range 10-80, 
and k over the range 3-40. In most cases, except where Q and k were both small, 
deviations from the binomial expected values [i.e. Eq. (5)] were normally 
distributed. Two examples are illustrated in Figure 2. Thus, in a set of T 
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Fig. 1A and B, The random allocation of k=3 balls to Q=3 boxes. A Indistinguishable balls, Bose- 
Einstein probability formulae give each possible result the same probability of occurrence. This is 
incorrect for boundaries of species in quadrats. B The balls are distinguishable. Maxwell-Bolzmann 
probability formulae give each possible result the same probability of occurrence. These probabili- 
ties also apply to the results with indistinguishable balls (as in A) 

Fig. 2. Frequency distributions of deviations from expected values in computer simulations. E(U) 
was calculated from the binomial distribution [as in Eq. (5)], for each of 100 simulations. The 
number of quadrats (Q) and the number of species (k) varied, at random, over the ranges given for 
each set of simulations. The distributions are approximately normal 

t ransec ts ,  the  e x p e c t e d  n u m b e r  of  q u a d r a t s  c o n t a i n i n g  at  leas t  one  b o u n d a r y  is: 

E(gl) = Qi(1 - (1 - 1/Qi) k~) 

whe re  Q~ is the  n u m b e r  of  q u a d r a t s  a n d  k~ the  n u m b e r  of  species in t he  i- th 

t r ansec t  (i = 1, 2 . . . .  T). T h e  o b s e r v e d  n u m b e r  o f  q u a d r a t s  c o n t a i n i n g  a t  leas t  one  
b o u n d a r y  is U obs  i for  the  i - th  t ransec t .  H e n c e ,  the  d e v i a t i o n  f r o m  e x p e c t e d  is: 

d i = U obs  i-E(Ui). T h e  m e a n  d e v i a t i o n  is: 

T 

Z d~ 
~ i=1  

T 
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with standard error: 

SEd= .: di2 

The null hypothesis that the boundaries of the species are distributed at 
random can be tested by a t-test, where: 

t = with ( T - 1 )  degree of freedom. 
SEd 

If d is significantly greater than zero, the species' boundaries are distributed 
more regularly than would be expected by chance. In contrast, if d is less than 
zero, the species' boundaries are clumped. 

This test is unbiased and has the advantage that information on the size of 
the deviation in each transect is used to estimate the mean deviation. Any test 
using only the sign of the deviation in each transect ignores the magnitude of 
departure from the expected, random distribution of species to quadrats. Alter- 
native, nonparametric tests could be used to determine if the median deviation 
in a set of transects differed significantly from zero. Because my simulations 
show that the deviations from expected are distributed nearly normally, I favour 
the use of the simple t-test. 

Use of the Method on Data from Transects 

An example of the use of this method is given in Table 4. The data come 
from a survey of intertidal rock platforms in Britain and will be discussed in full 

Table 4. Data from transects run across an intertidal rock-platform 

Transect No. of No. of upper No. of quadrats containing Deviation from 
(0 quadrats boundaries at least one upper boundary expected 

(Q) (k~) d, = Uo~- E(u~) 
Expected a Observed 

E(u,) Uob~ 

1 31 20 14.91 15 0.09 
2 34 21 15.83 17 1.17 
3 35 21 15,96 14 - 1.96 
4 40 21 16,49 16 -0.49 
5 20 19 12,45 15 2.55 
6 19 19 12.20 14 1.80 
7 22 21 13.72 14 0.28 
8 24 20 i3,75 15 1.25 
9 24 21 14.18 13 - 1.18 

10 30 20 14.77 16 1.23 

E(UI) calculated using Equation (5). 
Mean deviation (d)= 0.47; standard error (SEd)= 0.44; t = 1.07; P > 0.20 
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elsewhere (Underwood,  1978). Ten transects o f  cont iguous quadrats,  each 
0 . 5 m  square, were sampled at Dunollie,  Scotland, in July 1977. The 
transects were approximately  1 0 m  apart  horizontally,  to ensure their inde- 
pendence, and ran from the highest levels reached by intertidal organisms, to 
low water level (below the upper limit of  the kelp Laminaria). The presence in 
each quadra t  o f  all the species of  algae, barnacles, and sea-anemones was 
recorded. The shore rose monotonica l ly  f rom low water level, so that  every 
quadra t  was vertically higher than those quadrats  nearer to low water level. The 
number  of  quadrats  varied from 19~40, and the number  of species f rom 19-21. 
The mean deviation of  observed from expected numbers  of quadrats  containing 
at least one upper boundary  was not  significantly different from zero (Table 4 
shows the data  for the upper boundaries  of species in the ten transects). Thus, 
there is no evidence that  the upper boundaries  of  species on that  shore were 
distributed other than randomly.  

The technique described here provides a relatively simple, and unbiased 
method  of  detecting non- random spatial patterns of  dispersion of  boundaries  of 
species in any communi ty  which can be sampled by belt transects of  cont iguous 
quadrats.  
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