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Abstract  The systematics of the genus Sepia is not yet 
clear. Morphological evidence has led to S. officinalis 
Linnaeus, 1758 being considered as belonging to the 
subgenus Sepia sensu stricto, and S. orbignyana F6rus- 
sac, 1826 and S. elegans Blainville, 1827 as belonging to 
the subgenus Rhombosepion. Samples of 30 individuals 
of S. officinaIis and S. orbignyana from both sides of an 
oceanographic boundary off the north-west Iberian 
Peninsula, and a sample of S. elegans from the northern 
side, were collected in 1993-1994. Allozyme elec- 
trophoresis for 32 presumptive loci revealed low levels 
of genetic variability for the three Sepia species (mean 
expected heterozygosity estimates were < 0.052). No 
significant differences in allozyme frequencies were de- 
tected among populations of either S. officinalis or S. 
orbignyana. The genetic identities (I) of S. officinalis and 
S. orbignyana (I = 0.12) and of S. eIegans (I = 0.13) 
were significantly different from that of S. orbignyana 
and S. elegans (I = 0.49). The former are typical of 
values for confamilial genera, and a new generic status 
is proposed for the latter two species, which become 
Rhombosepion orbignyana (F6russac, 1826) and R. ele- 
gans (Blainville, 1827). 

Introduction 

The commercially exploited Sepia officinalis, S. orbig- 
nyana and S. elegans are nektobenthic cephalopods 
with a limited migratory capacity (Mangold-Wirz 1963; 
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Boucaud-Camou and Boismery 1991; Wurtz et al. 
1991; Guerra 1992). The three species exhibit different 
ecological characteristics, especially in relation to their 
bathymetric distribution (Mangold-Wirz 1963; von 
Boletzky 1983; Ward and von Boletzky 1984; Guerra 
1985a, 1992; Guerra and Castro 1988, 1989; Castro and 
Guerra 1989, 1990). S. officinalis lives and spawns 
throughout the Galician rias (50 m maximum depth; 
north-west Iberian Peninsula), whereas S. orbignyana 
occurs only on the Galician continental shelf and slope 
between 50 and 450 m depth (Guerra and Castro 1988; 
Guerra 1992). S. elegans inhabits the central and outer 
parts of the rias and the continental shelf waters be- 
tween the littoral zone and 430m depth (Guerra 
1985b). An oceanographic boundary of two sub-surface 
water masses, North Atlantic Central Water and Bay of 
Biscay Central Water, separates the northern and west- 
ern sub-surface Galician waters (Fig. 1), which exhibit 
distinct ecological characteristics (Fraga et al. 1982; 
Estrada 1984; Gonzfilez-Gurriarfin and Olaso 1987). 
Therefore, some degree of genetic differentiation be- 
tween northern and western Sepia spp. populations 
could be expected. Moreover, this differentiation may 
vary between species because of their different habitat 
preferences. 

There are some problems with the systematics of the 
genus Sepia. Khromov (1987), on the basis of its intern- 
al cone structure and the shape of its cuttlebone, con- 
sidered S. officinalis to belong to the subgenus Sepia 
sensu stricto, whereas S. orbignyana and S. elegans were 
classified in the subgenus Rhombosepion Rochebrune, 
1884. The validity of these and other subgenera has 
been discussed by Khromov et al. (1996), who sub- 
divided the genus Sepia into six taxa, including Sepia 
sensu stricto and Rhombosepion. 

Allozyme electrophoresis has several advantages 
over more conventional systematic criteria (e.g. 
morphology), because allozymes are primary prod- 
ucts of the genome (Avise 1974, 1994; Ayala 1983). 
Allozyme polymorphisms have proved to be effective 
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Fig. 1 Map of Galician coast (north-west Iberian Peninsula, A) 
showing northern (Burela and Celeiro) and western (Ribeira and 
Vigo) fishing ports where samples of Sepia officinalis, S. orbignyana 
and S. elegans were collected from commercial catches [Arrows 
show general circulation of central waters between 100 and 400 m 
depth; hatching lateral contact between North Atlantic Central 
Water (NACW) and Biscay Bay Central Water (BBCW)]. Redrawn 
from Fraga et al. (1982) 

for detect ing p o p u l a t i o n  differences in commerc ia l ly  
exploi ted fish and  c e p h a l o p o d  species ( W h i t m o r e  1990; 
H a t a n a k a  et al. 1993; C a r v a l h o  and  H a u s e r  1994; 
C a r v a l h o  and  Nigmatu l l in  1996). There  have been 
app rox ima te ly  twen ty  such studies on  cepha lopods ,  
bu t  a l lozyme e lec t rophores is  has  no t  yet been 
appl ied to assess genetic var ia t ion  in the o rder  
Sepioidea (Ka tug in  1993; Y e a t m a n  and  Benzie 1994; 
Y o k a w a  1994; Brierley et al. 1995; C a r v a l h o  and  
Nigmatu l l i n  1996, and  references therein). The  aims of  
the present  s tudy  were to use a l lozyme e lec t rophores is  
to describe the genetic s t ruc ture  of  Gal ic ian  popu l a -  
t ions of  Sepia officinalis and  S. orbignyana, and  
to evaluate  the sys temat ic  re la t ionships  a m o n g  three 
Sepia species. 

Materials and methods 

Samples of 30 individuals were collected in 1993-1994 from com- 
mercial catches in fishing ports of the north-west Iberian Peninsula 
(Fig. 1): Sepia officinalis Linnaeus, 1758 from Burela, Celeiro (north- 
ern area, N) and Vigo (western area, W), and S. orbignyana F6russac, 
1826 from Burela (N) and Ribeira (W), which display large differ- 
ences in their ecological characteristics, and S. elegans Blainville, 
1827 from Celeiro (N). Specimens had been caught by fishing 
boats using bottom trawls, and also traps for S. officinalis. The 

collected specimens were immediately sorted, frozen in dry ice, 
transported to the laboratory, and stored at - 72 ~ until required. 

Horizontal starch-gel electrophoresis was carried out based on 
the method of Murphy et al. (1990). Mantle tissue was cleaned by 
removing the skin and by rinsing off any ink residues, and a piece of 
mantle (~-60 mg) was homogenised with a similar volume of 
0.01 M dithiothreitol solution. The homogenate was centrifuged 
at 12 000 x g for 10 min at 4 ~ and the supernatant was absorbed 
with Whatman strips. The 12% hydrolysed starch (Sigma S-4501) 
gels were run at constant voltage at 4 ~ Of a total of 47 assayed 
enzymes, 25 displayed adequate enzyme activity and good resolu- 
tion, and were routinely examined (see P6rez-Losada et al. 
1996 for details): aspartate transaminase (AAT; E.C. 2.6.1.1), 
acid phosphatase (ACP; E.C. 3.1.3.2), adenylate kinase (AK; E.C. 
2.7.4.3), arginine kinase (ARK; E.C. 2.7.3.3), dihydrolipoamide trans- 
aminase (DDH; E.C. 1.8.1.4), carboxylic ester hydrolase (EST; E.C. 
3.1.1.-; substrate: ~-naphthyl acetate), methylumbelliferyl-acetate 
deacetylase (ESTD; E.C. 3.1.1.56), fructosebiphosphate aldolase 
(FBALD; E.C. 4.1.2.13), glycerol-3-phosphate dehydrogenase 
(NAD § (G3PDH; E.C. 1.1.1.8), glutamate dehydrogenase 
(GLUDH; E.C. 1.4.1.2), glucose-6-phosphate isomerase (GPI; E.C. 
5.3.1.9), L-iditol 2-dehydrogenase (IDDH; E.C. 1.1.1.14), isocitrate 
dehydrogenase (NADP +) (IDHP; E.C. 1.1.1.42), L-leucyl aminopep- 
tidase (LAP; E.C. 3.4.11.1), malate dehydrogenase (MDH; E.C. 
1.1.1.37), malate dehydrogenase (oxaloacetate-decarboxylating) 
(NADP +) (MEP; E.C. 1.1.1.40), mannose-6-phosphate isomerase 
(MPI; E.C. 5.3.1.8), D-octopine dehydrogenase (OPDH; E.C. 
1.5.1.11), cytosol non-specific dipeptidase (PEP& E.C. 3.4.13.18; 
substrate: gly-leu), tripeptide aminopeptidase (PEPB; E.C. 3.4.11.4; 
substrate: leu-gly-gly), X-pro dipeptidase (PEPD; E.C. 3.4.13.9; sub- 
strate: phe-pro), phosphogluconate dehydrogenase (decarboxylat- 
ing) (PGDH; E.C. 1.1.1.44), phosphoglucomutase (PGM; E.C. 
5.4.2.2), pyruvate kinase (PK; E.C. 2.7.1.40), superoxide dismutase 
(SOD; E.C. 1.15.1.1). The Tris-citrate, pH 8.0 buffer system (gel- 
buffer dilution 1:9) of Ward and Beardmore (1977) was used for 
ACP and FBALD running at 4.6 V cm- 1, and for AAT, AK, ARK, 
EST, ESTD, IDDH, IDHP, LAP, MDH, PGDH, PGM, PK and 
SOD at 5.4 V cm- 1. The Tris-borate-EDTA, pH 8.7 buffer system 
(gel-buffer dilution 1:4) of Boyer et al. (1963) was used for DDH at 
l0 V cm - 1, and for G3PDH, GLUDH, GPI, MEP, MPI, OPDH, 
PEPA, PEPB and PEPD at 12.3 V cm- 1. The enzymes were stained 
according to recipes in Murphy et al. (1990), with the exception of 
ACP, DDH, MPI and PK (Harris and Hopkinson 1976), ESTD, 
LAP, PEPA, PEPB and PEPD (Ahmad et al. 1977), and AAT, 
IDHP, PGDH and PGM (Shaw and Prasad 1970). These 25 en- 
zymes resolved 32 putative enzyme-coding loci (Table 1). Banding 
patterns of the presumptive loci have been interpreted according to 
the current subunit structure of each enzyme. Terminology and 
notation for allozymes are based on recommendations by Shaklee et 
al. (1990) and IUBMB (1992). Arabic numerical suffixes (1, 2,..) for 
multiple loci and lower-case letters (*a, *b,..) for alleles are presented 
in order of decreasing and increasing anodal mobility, respectively. 

Tests for goodness-of-fit of genotype frequencies to Hardy-Wein- 
berg equilibrium expectations were assessed by means of an F- 
statistic developed by Robertson and Hill (1984). This statistic is 
unbiased for F = 0 and a significance test for F = 0 is more powerful 
than the usual chi-squared test (Robertson and Hill 1984; Sanjuan et 
al. 1990). Heterogeneity of allele frequencies among samples was 
tested using a chi-squared test for homogeneity. The probability of 
the null-hypothesis was estimated using a Monte Carlo simulation 
(Roff and Bentzen 1989) because expected numbers were small. After 
establishing that no genetic differentiation occurred within each 
species, data were pooled and estimates of unbiased mean expected 
heterozygosity (H), mean number of alleles, and proportion of poly- 
morphic loci were calculated for each species (Nei 1987). The num- 
ber of loci ( > 30) and individuals ( _> 30) for each species was 
sufficient to accurately estimate the levels of genetic variability and 
divergence (Nei 1978, 1987; Archie 1985). Difference in mean hetero- 
zygosity between two species was tested using a Student's t-test 
(Archie 1985; Nei 1987, p. 183). Unbiased genetic identity (I) and 
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distance (D) values among species were calculated (Nei 1987). A den- 
drogram was constructed using the unweighted pair-group method 
using arithmetic averages (UPGMA: Sneath and Sokal 1973). Most 
of the genetic statistics were calculated using the GENET2 program 
(Quesada et al. 1992). Chi-squared statistics using the Monte  Carlo 
procedure were computed using Zaykin and Pudovkin's  (1993) pro- 
grams. Unbiased genetic identities of Nei (1987) and their bootstrap 
confidence estimates, were carried out with the Dbot  program 
(Zaykin, Tatarenkov and Pudovkin personal communication). The 
bootstrap method used loci as the units to be resampled, and the 
95% bootstrap confidence limit on I was constructed by the percen- 
tile method (Felsenstein 1988). 

Results 

Allele frequencies of the 32 enzyme loci are shown in 
Table 1. One locus exhibited activity only for Sepia 
officinalis (IDHP-I*), another only for S. orbignyana 
and S. elegans (MEP-2*). Of the remaining 30 loci, 

9 were completely diagnostic of the three Sepia species 
(AAT-I*, ACP*, FBALD*, GPI-I*, GPL2*, LAP*, 
MDH-I*, PGM*, PK-2*) and 2 were partially diagnos- 
tic (IDHP-2*, PGDH*). Moreover, 14 loci distinguished 
S. officinalis from the other two species, whereas 
a single locus (IDDH*) distinguished S. elegans and 
a single locus (PEPD*) S. orbignyana from the other 
two species. No significant deviation from 
a Hardy-Weinberg distribution was found at any poly- 
morphic locus (F-statistics, Table 2, and chi-squared 
tests, data not shown). No significant differences in 
allele frequencies at polymorphic loci were found be- 
tween the northern and western populations of either S. 
officinalis or S. orbignyana (Table 2). Using Monte 
Carlo simulations, estimated probabilities for rejection 
of the null-hypothesis were P > 0.25 for all compari- 
sons. Low levels of genetic variability were detected 
overall (Table 2). S. officinalis and S. eleoans exhibited 

T a b l e  2 Sepia  officinalis, S. orb ignyana  and S. elegans. Estimates of 
F-statistics in each sample (after Robertson and Hill 1984), and 
homogeneity chi-squared values between allele frequencies of north- 
ern and western samples of S. officinalis and S. orbignyana.  Estimates 
of unbiased mean expected heterozygosity and standard error 
(H  +_ SE), mean number  of alleles and standard error ( N a  +_ SE) and 

percentage of loci polymorphic by the 95% criterion (P95) and by 
the 99% (P99) criterion are also shown for each species. No polymor- 
phic locus showed significant differences from the Hardy-Weinberg 
equilibrium-expected proportions for test of F = 0. Estimated prob- 
abilities of homogeneity chi-squares after 1000 runs of Monte  Carlo 
simulations were all P > 0.24 

Locus S. officinalis 

N W )~2 

S. orb ignyana  S. e legans 

N W X 2 N 

A A ~ 2 *  - 
A C P *  - - 
D D H *  - - 
E S T D *  - - 
G 3 P D H *  
GPI  1" - 
G PI -2*  - - 
I D D H *  - 0.15 0.04 
I D H P - I *  - 0.04 - 
1 D H P - 2 *  
O P D H - I *  0.34 0.14 
O P D H - 2 *  
P E P B *  
P G D H *  
P G M *  
P K  1" 

H _+ SE 0.030 + 0.019 
N a  +_ SE 1.10 + 0.05 
P95 6.45 
P99 9.6 

0.14 
1 . 0 4  

0.41 

0.09 0.14 0.05 
0.15 0.09 2.00 
0.10 - 0.06 2.16 

- 0.02 - 0.02 0.00 

0 . 0 2  0.00 1.33 
0.06 - 0.08 1.91 
0.00 1.01 

- 0.02 2.03 

0.040 _+ 0.017 
1.29 + 0.09 

12.90 
22.58 

0.08 

- 0.06 
- 0.04 
0.00 
0.00 
- 0.02 

0.06 
0.00 
- 0.06 

0.00 
0.00 

0.052 _+ 0.020 
1.42 _+ 0.10 

19.35 
38.71 

T a b l e  3 Sepia officinalis (Sf) ,  S. orb ignyana  (So) and S. elegans (Se). 
Unbiased genetic identities (I, Nei 1978) and unbiased genetic dis- 
tances (D, Nei 1978) between Sf, So and Se. 95% confidence interval 

(95% CI) and bootstrap estimates for Nei's similarities are shown; 
number  of bootstrap samples for each pair was 1000 

Species I (SE) 
pairs 

D 95% CI Bootstrap 

(5%) (95%) 

S f S o  0.117 (0.057) 
S f S e  0.132 (0.061) 
S o - S e  0.492 (0.089) 

2.145 0.006 - 0.228 0.033 0.223 
2.022 0.012 - 0.253 0.036 0.234 
0.708 0.318 0.fi66 0.352 0.649 
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Genetic identity (Nei 1978) 
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Fig. 2 Sepia officinalis (Sf), S. orbignyana (So) and S. elegans (Se). 
UPGMA dendrogram plot upon unbiased genetic identities (Nei 
1978) 

least and most variability, respectively, as indicated by 
the estimates of unbiased mean expected heterozygos- 
ity (0.03 and 0.05), the mean number of alleles (1.1 and 
1.4), and the percentage of polymorphic loci (6.5 and 
19.4%). Mean heterozygosities, one of the most in- 
formative indicators of the genetic variability of popu- 
lations (Nei 1975), showed no significant differences 
among the three Sepia species [Student's t-tests: 
t(ss-so) = 0.392; t(ss-se) = 0.797; t(So-Se) = 0.457, 
where Sf So, Se represent S. offlcinalis, S. orbignyana, 
and S. legans, respectively]. 

Unbiased genetic identities (I, Table 3) displayed 
greater similarity between Sepia orbignyana and S. elegans 
(I = 0.49) than between S. officinalis and either of the 
other two species (I < 0.13). Non-overlap of the bootstrap 
confidence intervals indicated significant differences 
between the I values for S. orbignyana and S. elegans 
(I = 0.49) and those for S. officinalis and S. orbignyana 
(I -- 0.12) and for S. officinalis and S. elegans (I = 0.13). 
The U P G M A  dendrogram of Nei's I summarises these 
results, grouping S. orbignyana and S. elegans closer to 
each other than to S. officinalis (Fig. 2). 

Discussion 

Estimates of genetic variability in the present study 
(mean heterozygosity < 0.05, Table 2), the first re- 
ported for the order Sepioidea, fall below the average 
for invertebrate species (0.10, Nevo et al. 1984; 0.15, 
Ward et al. 1992) and within the range for most 
cephalopods. These results seem to confirm that low 
levels of genetic variability are apparently character- 
istic for most cephalopods, with the exception of 
Berryteuthis magister , Nautilus belauensis and Photo- 
logiIo edulis (see Carvalho et al. 1992; Brierley et al. 
1993a; Katugin 1993; Yeatman and Benzie 1994; Car- 
valho and Nigmatullin 1996 for discussions of possible 
causes of low variability for various cephalopods). 

Partial geographic isolation of northern and western 
Galician Sepia spp. populations, with restricted gene 
flow and subsequent genetic divergence, might have 
been expected on the basis of oceanographic features 
(present Fig. 1, and Fraga et al. 1982). However, no 
significant genetic differences between the northern and 

western Galician populations of either S. officinalis or 
S. orbignyana were detected (Tables 1 and 2). Intra- 
specific allozyme homogeneity is known for many 
cephalopod species (Ally and Keck 1978; Carvalho and 
Pitcher 1989; Yeatman and Benzie 1993, 1994). This 
absence of intraspecific genetic differentiation in 
cephalopods may possibly be related to low apparent 
levels of genetic variability detected by allozyme elec- 
trophoresis. However, electrophoretic studies on 
cephalopods have also demonstrated major intra- 
specific genetic structuring (Garthwaite et al. 1989; Car- 
valho et al. 1992; Brierley et al. 1993b, 1995; Carvalho 
and Nigmatullin 1996), as well as cryptic speciation or 
species' misidentification (Smith et al. 1981; Augustyn 
and Grant 1988; Carvalho et al. 1992; Brierley et al. 
1993a; Yeatman and Benzie 1994). Consequently, more 
extensive allozyme studies and more samples from dis- 
tant areas may possibly detect more genetic variability 
and differentiation within Sepia species. Alternatively, 
the application of DNA techniques could provide gen- 
etic markers able to detect intraspecific genetic differen- 
tiation (Hatanaka et al. 1993; Carvalho and Hauser 
1994; Skibinski 1994). 

Genetic identity (I) between Sepia officinalis and 
each of S. orbignyana and S. eIegans (I < 0.13) differed 
significantly from that between S. orbignyana and S. 
eIegans (I = 0.49) (Table 3). Estimates of genetic diver- 
gence based on allozyme polymorphisms are generally 
well correlated with taxonomic categories based on 
morphological analyses, as would be expected if both 
are functions of evolutionary time (Avise 1974, 1994; 
Thorpe 1982, 1983). Generally, an I value of-~ 0.35 
distinguishes congeneric species of confamilial genera 
(Thorpe 1982, 1983). However, the correspondence be- 
tween the genetic divergence of species and their taxo- 
nomic category may vary between animal phyla or 
classes (Avise and Aquadro 1982; Avise 1983, 1994; 
Thorpe 1983). Focussing on the Cephalopoda, the sim- 
ilarity of congeneric species usually falls within the 
range I = 0.3 to 0.8, and, with some exceptions, con- 
familial genera have I values of < 0.4 (see Augustyn 
and Grant 1988; Levy et al. 1988; Garthwaite et al. 
1989; Brierley et al. 1993b; Yeatman and Benzie 1993; 
Brierley and Thorpe 1994; Yokawa 1994). In general, 
the relationship between genetic divergence and taxo- 
nomic categories in cephalopods seems to agree well 
with those for other invertebrates (Thorpe 1982, 1983; 
Brierley et al 1993b). Consequently, the I values for S. 
officinaIis and S. orbignyana (I =0.12) and for S. 
officinalis and S. elegans (I = 0.13) are clearly typical 
values for distinct genera. These results are in line with 
morphological (Khromov 1987) and mitochondrial 
DNA (Bonnaud et al. 1994) differences among Sepia 
spp. On the basis of morphology, Khromov (1987) and 
Khromov et al. (1996) have suggested that S. officinalis 
belongs to the subgenus S. sensu stricto, and S. orbig- 
nyana and S. elegans to the subgenus Rhombosepion. It 
has been suggested that where conventional studies 
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leave taxonomic status in doubt, an estimate of genetic 
divergence from allozyme polymorphisms could pro- 
vide an objective and useful criterion (Thorpe 1983). 
According to the genetic results presented here and the 
reported morphological and mtDNA data, we propose 
that S. orbignyana and S. eIegans should be considered 
as belonging to a different genus than S. officinalis. 
Consequently, their specific names should be S. of_ 
ficinalis Linnaeus, 1758, Rhombosepion orbignyana 
(F6russac, 1826) and R. elegans (Blainville, 1827). 
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