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Summary. 1. The seasonal variations in time of daily onset and end of locomotor activity 
are described for 3 species of mammals and 5 species of birds kept in captivity at the arctic 
circle and at lower latitude. These variations are most pronounced at high latitude. 

2. The duration of daily activity plotted versus the photoperiod can be described as an 
S-curve in all species studied so far, both in nature and in captivity. In  both male and female 
fringillid birds activity times were longer before the summer solstice (spring) than after the 
summer solstice at equal photoperiods. 

3. The seasonal changes in activity time result from roughly mirror-image changes in the 
times of onset and end of activity relative to sunrise and sunset, cancelling out each other. 
Therefore the midpoint of activity stays relatively stable; remaining minor changes in the 
midpoint of activity do not produce a general seasonal pattern. 

4. At high latitude, a large seasonal fluctuation in the day-to-day variability (or precision) 
of activity timing is detected. These patterns of precision of the rhythm cannot be attributed 
to a single Zeitgeber property without complex assumptions. Onset and ends of activity 
become more precise when occurring during the civil twilight, i.e. at times of day with most 
rapid changes in light intensity. This may reflect direct action of light on the rhythm rather 
than a property of the entrainment mechanism. 

5. The data do not give compelling evidence for any formal model of the oscillations 
driving the activity rhythms. Predictions concerning the relation between phase and act ivi ty 
time derived from a single oscillator model are not matched by the data. On the other hand, 
the general seasonal patterns can be easily described in terms of a two-oscillator model. 

6. Seasonal variations in duration of activity are larger in birds than in mammals. Day- 
to-day variations in timing are larger in mammals than in birds. The implications for photo- 
periodic time measurement are discussed. 
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1. Introduction 

The daily cycle of light and darkness is presumably the most powerful Zeit- 
geber entraining the endogenous circadian rhythms of plants and animals. De- 
spite intensive research over the past  decades, the mechanism by which the 
rhythm becomes entrained is still incompletely understood. Although it is not 
our main purpose to discuss the problems of entrainment in great detail, a few 
introductory comments on the principles involved are necessary. 

Among different routes of action of a Zeitgeber one can theoretically dis- 
tinguish between those which depend on its differential and proportional properties 
(Aschoff, 1960). With regard to the entraining mechanism, one can distinguish 
between parametric and non-parametric entrainment. The term "propor t ional"  
implies a continuous action of the instantaneous value of the Zeitgeber on the 
biological oscillation; if this affects one of the parameters of the oscillation, 
especially its angular velocity, the effect is per definition "paramet r ic" .  In  order 
to achieve entrainment by periodic alternations of proportional stimuli, a pre- 
requisite is tha t  the parametric effect changes with the phase of the circadian 
oscillation. In  other words, for parametric entrainment there has to be a response 
curve of parametric effects, i.e. the difference between two values of angular 
velocity measured at  two different light intensities has to be a function of the 
circadian phase. On the other hand, if there is no parametric entrainment but if 
there are nevertheless phase-independent effects on angular velocity measurable 
in constant conditions, proportional stimuli still could influence the "na tura l  
f requency" of an entrained circadian rhythm and hence indirectly determine the 
phase-angle difference between Zeitgeber and oscillation [for technical terms, see 
Asehoff et al. (1965) and also section 2.1 ]. In  contrast to parametric entrainment, 
this will be called the proportional effect. Non-parametric entrainment is based 
on rather abrupt  phase-shifts of the endogenous oscillation (instead of a con- 
tinuous modulation of angular velocity); such phase-shifts are the result of 
differential stimuli of the Zeitgeber. As in parametric entraimnent, a pre- 
requisite for non-parametric entrainment is again tha t  the magnitude of the 
phase-shifts is phase-dependent. 

The possibilities for parametric or nonparametrie entrainment, as well as for 
proportional effects depend on the properties of the daily light-dark (LD) cycle. 
Various characteristics of the LD cycle, its amplitude, the photoperiod and the 
duration of twilight vary  systematically with season and latitude. The question 
can be asked to what extent seasonal and latitudinal variations in the behaviour 
of entrained circadian rhythms reflect common mechanisms in the action of the 
Zeitgeber. The seasonal changes in the natural LD cycle provide a wide array 
of "experimentM conditions ", especially at high latitude, Mthongh the combina- 
tions of photoperiod, twilight and amplitude, are not unlimited. 
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Apart from the mechanism of entrainment there is further reason for interest 
in seasonal and latitudinal patterns of entrMned circadian rhythms. The recogni- 
tion that  circadian rhythms are involved in photoperiodic time measurement 
(Biinning, 1963) and in sun compass orientation (Kramer, 1950 ; yon Friseh, 1950) 
clearly demands a thorough knowledge of general patterns of phase control as 
affected by season and latitude. For instance latitudinal variation in the phasing 
ol circadian rhythms in birds migrating over large North-South distances should 
certainly affect the time compensation in sun compass orientation. And the 
small year-to-year variations in some of the biological phenomena presumably 
under photoperiodie control (for example the dates of arrival of migrating birds 
in spring, see Phillips, 1913) can only be understood on the basis of at least the 
same precision in phasing of the endogenous circadian oscillations involved in 
the measurement of photoperiod. 

Locomotor activity of caged animals is among the easiest assays of circadian 
rhythmicity. In many species the natural activity is more or less restricted to 
either the light fraction (day-active species) or to the dark fraction of the cycle 
(night-active species). In such species, sharp onsets and ends of the daily activity 
often represent well-defined phase points of the rhythm. Yet, in conditions of 
entrainment they are not necessarily a reliable guide to phases of the "driving 
oscillation". Experimentally, one can elicit activity that is out of phase with the 
driving oscillation, a phenomenon called "positive masking" (Aschoff, 1960; 
Hoffmann, 1969). The possibility that to some extent masking--direct action of 
the light-dark-cycle, evoking activity or suppressing activity ("negative mask- 
ing"), as distinct from its entraining effect on the underlying biological oscilla- 
t ion-occurs  in natural conditions as well, should not easily be discarded. Yet, 
the systematic seasonal shifts of the daily onset and end of activity relative to 
given light intensities (Asehoff and Wever, 1962) strongly suggest that  also in 
nature, both the onset and end of activity reflect internally defined phases of the 
driving oscillation rather than externally evoked responses. Locomotor activity 
can, then, be used as an appropriate indicator of phase of the endogenous rhythm. 
In this way, it has indeed been successfully applied to the study of circadian 
rhythms involved in sun-compass orientation (Hoffmann, 1960) and photoperiodic 
time measurement (Hamner and Enright, 1967). 

Systematic seasonal trends in the timing of activity in birds have long been 
known (e.g. Schwan, 1920; Scheer, 1952; Franz, 1949). But it was not until a 
general model of circadian rhythms and their synchronization by light-dark cycles 
was developed that  an at tempt could be made to explain these variations on a 
general basis (Aschoff and Wever, 1962; Wever, 1962, 1963, 1964; Aschoff, 1969). 
This approach has been fruitful. In recent years many investigators (Blume, 1964, 
1965; Corgi, 1966; Daneker, 1966; NMk and Razaek, 1967; I-Iaarhans, 1968; 
Bohnsaek, 1968; Blase, 1971; Hoser, 1971; Vofite, 1972; Laufens, 1972) have 
made systematic field studies on timing of activity, especially in birds and bats, 
and at tempted to explain the patterns found with help of theoretical properties 
of the circadian clocks involved. In a review covering most of the studies accu- 
mulated, it has been concluded that  the patterns of phasing of bird activity found 
in nature can be attributed to variations in both photoperiod and duration of 
twilight (Aschoff, 1969). There were, however, a few cases tha t  did not agree with 
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Fig. i. Definition of onset and end of activity, phase-angle differences (~0onset, ~0midpoint, ~Oend) , 
activity time (=), and rest time (~) for day-active and night-active species 

theoretical predictions. These were especially found among the few birds and 
mammals for which continuous activity records of captives were available at that  
time. This was one reason to extend the recording to turther night-active and 
day-active species at different latitudes nnder natural light conditions both in- 
doors (stabilized temperature) and outdoors. Since 1964, the activity of a large 
number of mammals and birds has been recorded at Erling-Andechs (47~ 
11~ ' E) and later also at two research stations near the arctic circle in Sweden 
and Finland: Messaure (66042 ' N, 20~ ' E) and Oulanka (66027 ̀  N, 29~ ' E). 
Some of the results have been reported earlier (Aschoff et al., 1970, 1972). The 
large material collected now allows a reconsideration of the effects of season and 
latitnde on circadian activity rhythms. 

The recording technique (event recorders) does not allow any statements on 
the amount of activity and its detailed temporal distributions, and the basic data 
analysed are only daily readings of onset and end of activity. Unfortunately, the 
analysis requires some unavoidable jargon. Greek symbols have been used to 
denote different time intervals characterizing the rhythms; and familiarity with 
the definitions is necessary for understanding this report (c/. Fig. 1 and Section 2.1.). 
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Fig. 2. Survey of records of locomotor activity analyzed in this report. Each horizontal line 
indicates the duration of a record for one individual, obtained in Erling-Andechs (solid lines), 

Messaure (dotted lines) or Oulanka (dashed lines) 

2. Methodological Comments 

2.1. Experimental and Analytical Procedures 

In the present paper act ivity records from 57 animals, belonging to 5 species 
of birds (Pringilla coelebs, F. monti/ringilla, Carduelis chloris, C. spinus, Dendro- 
copus major) and 3 species of mammals  ( Tupaja belangeri, Mesocricetus auratus, 
Glaucomys volans), are analyzed. Details of the duration of each record are given 
in Fig. 2. Only records that lasted at least 6 months are included; many  records 
covered 2 or 3 years. 

Most birds and mammals  were kept indoors. The birds were in cages with 
two perches, one of which rested on microswitehes; the mammals  were in cages 
with access to running wheels. The impulses elicited by perch-hopping or wheel 
revolutions were fed into separate channels of an event  recorder. Examples of 
activity records of 4 species of finches in Messaure can be seen in Fig. 3 (for 
further examples see Asehoff et al., 1970). 

The outdoor recordings in Erling-Andechs and Oulanka were made in aviaries 
with 3 compartments housing a great spotted woodpecker, Dendroeopus major, 
and 2 American flying squirrels, Glaucomys volans, respectively. Each compart- 
ment was provided with a nest-box, accessible through a hole with a photocell- 
detector mounted in front. The habit of both species of spending their rest time 
in the nestbox was used in interpreting the data and, in most  eases, onset and 
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Fig. 3 Fig. 4: 

Fig. 3. Examples of activity records of a chaffinch (F. c.), a brambling (F. m.), a greenfinch (C. c.) 
and a siskin (C.s.) in Messaure, Sweden. Each horizontal bar represents perch hopping 

activity of 1 day 
Fig. 4. Example of an activity record of a flying squirrel in Erling-Andechs, as obtained by 

interruptions of a light beam in the entrance of the nestbox 

end of ac t iv i ty  could be unequivoca l ly  read  f rom the  records.  An  example  of a 
f lying squirrel  record is shown in Fig.  4. 

All  exper imenta l  animals  were given wate r  twice or three  t imes  weekly  and  
fed seed and pel let  food, except  for the  woodpeckers  which were given inca]worms. 
The mammal s  add i t iona l ly  got  le t tuce  and apples,  and  the  t ree shrews a newly 
ha tched  chicken f rom t ime  to t ime.  Onset  and  end of ac t iv i ty  were read  da i ly  
from all records.  I n  seasons of noc turna l  restlessness in the  b rambl ing  (Fringilla 
monti[ringilla) only d a y t i m e  ac t iv i ty  was considered, and  onset  and  end of ac t i v i t y  
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were measured only if daytime activity was clearly separated from night time 
activity (see Fig. 3). 

Approximately 70000 readings of daily onset and end of activity, forming 
the basis of this paper, were fed into an IBM 1130 computer together with the 
year-round daily times for local sunrise and sunset as derived from the "Nautical  
Almanac". As units of "seasonal t ime"  we have divided the year into 24 "half- 
months"  [ January  1-15, January 16-31, February 1-14, February 15-28 (29), 
etc. ]. The first step in data reduction was the calculation of individual means and 
standard deviations over semimonthly (14-, 15-, or 16-day) intervals. This was 
done for the following parameters (see Fig. 1): 

onset of activity (local time) ; 
end of activity (local time) ; 
activity time g (in hours) ---- end--previous onset; 
rest time ~ (in hours) ~ onset--previous end; 
phase-angle difference ~p (in hours) : 

YJons~t = sunrise--onset (day-active animals), 
---- sunset--onset (night-active animals), 

~end = sunset--end (day-active animals), 
= sunrise--end (night-active animals), 

1 

In  addition, the correlation coefficient r of ~0onse ~ and ~0en d was determined for 
each half month. 

Examples of the seasonal variation of onset and end of activity, reduced to 
semi-monthly means and standard deviations, are shown in Fig. 5 for 4 individual 
animals. In many of the analyses described in subsequent sections species means 
and standard deviations were calculated as overall estimates from different 
individuals and different years. The term photoperiod is used for the light fraction 
of a day; when photoperiod is measured from sunrise to sunset it is called 
sunlight. 

2.2. Estimation o/the Course o/Light Intensity 
The activity records were collected without simultaneous registration of light 

intensity. Although this presents a serious handicap in interpreting the results, 
we can rely roughly on estimated daily curves of light intensity for some of the 
analyses. Such curves were obtained by calibrating computer-calculated daily 
curves of sun altitude using an empirical daily curve of light intensity. 

The empirical curve (Fig. 6) was established with a photometer directed 
towards the zenith, protected from direct solar radiation and covered with neu- 
tral density filters when necessary, on a cloudless bright day in Erling-Andechs. 
Both the upper and lower limits of light intensity may be underestimated by the 
limitations of the equipment used. Similar curves obtained during twihght at 
other latitudes, at other times of the year, in different circumstances and with 
different equipment by Seheer (1952) and Hjorth (1968) compare well wi th  the 
measurements (Fig. 6). 

19 Oecologia (Berl.), Vol. 18 
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Fig. 5. Semimonthly mean daily onsets and ends of activity in a greenfinch (left) and in a 
flying squirrel (right), in Erling-Andeehs (top) and at the arctic circle (bottom). Horizontal 
lines have a total length of 4 standard deviations. Solid lines show sunrise and sunset; dashed 

lines show times of beginning and end of civil twilight (sun 6 ~ below the horizon) 

Making use of a simplified formula for solar altitude, and of the calibrating 
curve, one can estimate daily curves of "zenith clear sky (zes) light intensities" 
for any day of the year, and any place on earth. Four examples are shown in 
Fig. 7. For each of the locations, 24 curves were computed, estimating the course 
of zcs light intensity on January 8, January 23, February 7, February 21, etc., 
representing the middle days of the semimonthly periods. 

I t  is obvious that  bright, cloudless days are exceptional and that  their fie- 
quency varies among localities on earth and between seasons. Furthermore, the 
experimental animals were never exposed to the same light intensity as the 
photometer directed to the zenith. The absolute values on the ordinate of such 
plots as Fig. 7 are therefore of no direct significance. I t  is, however, assumed that  
the shape of the calculated curves, plotted as they are in log units, approximates 
the shape of the daily curves of light intensity in the experimental rooms. This 
assumption is supported by incidental measurements (Fig. 8). Thus the semi- 
monthly average light intensity to which an experimental animal was exposed 
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Fig. 6. Light intensity measurements taken at 10-min intervals on a clear day at Erling- 
Andechs (47~ ' N, 11~ ' E), plotted as a function of the altitude of the sun. Solid and open 
circles represent measurements in the evening of August 8, 1972, and in the morning of 
August 9, 1972, respectively. Crosses denote intensities beyond the capacity of the photo- 
meter used. The solid curve is eye-fitted. :Dashed lines indicate time of onset of astronomical 
twilight (sun --  18 ~ from horizon), nautical ( --  12 ~ and civil twilight ( -- 6~ and sunrise/sunset 
(0~ Of the 3 dotted lines, the middle one indicates measurements taken by Seheer (1952, 
Fig. 2) at 49052 ' N, 8039" E, while the outer curves are redrawn from the ranges of intensity 

measured by tIjorth (1968, Fig. 12) at 57~ ' N, 14028 ' E 

at ,  say  7 :00  a.m. is assumed to be a cons tan t  f rac t ion  of the  ca lcula ted  zcs l ight  
in tens i ty  for t h a t  s emimonth ly  per iod  a t  7 : 00 a.m. 

I n  the  exper imenta l  room in Messaure, the  t ime a t  which two twi l ight  sensors 
(A and  B) closed a circui t  when the  in tens i ty  of inc ident  l ight  rose above  4.5 lux 
(A; log lux = 0.7) and  0.35 lux  (B ; log l ax  = - -  0.5) respect ively ,  was recorded on 
an  event  recorder  dur ing  the  exper iments .  F r o m  the  average  semimonth ly  t imes  
of those  signals i t  was ca lcula ted  t h a t  t h e y  opera ted  a t  zcs l ight  intensi t ies  (in 
log lux)  of : 

2.71 =[= 0.35 (A, morning) ,  

2.49 =~ 0.27 (A, evening),  

1.78 ~= 0.54 (B, morning),  and  

1.67 J= 0.34 (B, evening).  

The  difference be tween real  l ight  in tens i ty  (0.7 and  - - 0 . 5  log lux, respect ively)  
and  zcs l ight  i n t ens i ty  (averages f rom morning  and  evening) is t hen  e s t ima ted  
a t  1.9 (i.e., 2 .6- -0 .7 )  and  2.2 (i.e., 1.7 + 0.5) log uni ts  b y  the  two twi l ight  sensors. 

19" 
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curves for Messaure, the zes light intensities at sun altitudes of 0 ~ -- 6 ~ (beginning or end of 
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Apparent ly,  zcs light intensities were about  two orders of magni tude larger than  
the real light intensities within the room. This estimate agrees again with the 
difference between the empirical curve and zcs curve in Fig. 8 (lower diagram). 
I f  the zcs light intensi ty curves gave an unbiased estimate of the average daily 
course of light intensi ty in the experimental room for any  t ime of the  year,  the  
points in Fig. 9, indicating the zcs light intensi ty when the real light intensi ty 
had a fixed value of 4.5 lux (circles) or 0.35 lux (dots) should be distributed 
around horizontal  regression lines. This condition is not  entirely satisfied. At  the 
same real light intensities in the experimental  room, zcs light intensities were 
apparent ly  slightly larger in midsummer (with the rising and setting sun in the 
north) t han  in midwinter (with the rising and setting sun in the south). Pre- 
sumably,  the exposure of the experimental room in Messaure to the southwestern 
sky, as well as the mountains  in the northeast ,  have contr ibuted to this effect. 
We believe t h a t  the  difference is of minor importance,  and t h a t  the zcs-light- 
curves give an estimate of the logarithmic rates of change of light intensi ty at  
different t imes of the day  and the year  valid for our purposes. 

I n  Section 6, day- to -day  variat ion in the t iming of onset and end of act ivi ty  
will be discussed in relation to the est imated relative rate  of change of light 
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Fig. 9. Times at which two twilight sensors signaled light intensities in the experimental 
room in Messaure, together with the computed curves of "zenith clear sky" light intensities. 
The 24 drawn curves are taken from Fig. 7 (upper right panel). The mean times which the 
sensors measured light intensities of 4.5 lux (open circles) and 0.35 lux (closed circles) are 
shown for every half month on the appropriate zcs-light intensity curve. The radius of circles 
and dots is the semimonthly standard deviation of signal times. Thin horizontal line = zes 
light intensity at  sunrise or sunset. The 4 heavy lines are linear regressions through open and 

closed circles, respectively 
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were below 0.35 lux 

intensi ty (dlogI/dt). I t  turns  out  to be of interest how a twilight sensor responding 
to  a fixed light intensi ty ra ther  t han  an internal clock entrained by  periodic 
variations in light intensity, behaves in this respect. As can be inferred from 
Fig. 9, the light intensi ty threshold of 4.5 lux (c/. the thin horizontal line) in the 
experimental room is crossed by  a much  flat ter  pa r t  of the daily curve in summer  
than  in other  seasons. Day- to -day  variations in cloudiness cause "ve r t i ca l "  
scatter around the curve. "Ver t i ca l "  scatter is t ransformed into "hor i zon ta l "  
scatter of the times at which a certain light intensi ty is surpassed on consecutive 
days by  the slope (dlogI/dt) of the curve. Taking the s tandard  deviations (s, 
circle radii in Fig. 9) of t imes at which the sensors operated for every half month,  
and the relative rate of change of zcs light intensi ty (dlogI/dt) at the average 
t ime at which the sensors operated, we find correlation coefficients between 
1/s ("precis ion")  and dlogI/dt of: 

0.35 (morning; n----24; P <0.10) ,  and 

0.45 (evening; n = 24; P < 0 . 0 5 ) .  

The rate of change of light intensity around the light intensi ty signalled by  the 
sensors apparent ly  is the cause of a seasonal variat ion in t ime precision of the 
switches (:Fig. 10). Thus, when the sun moves at  a small angle through the  horizon, 
as happens in summer and winter, weather conditions such as cloudiness will have 
a relatively large effect on the t ime of day  when a light intensi ty threshold is 
crossed. At  the  equinoxes, when the  sun passes at  a larger angle th rough  the 
horizon, the t ime of a fixed light intensi ty is less affected by  overcast, and thus 
less subject to day- to -day  variations. 
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(bottom) at l~essaure, Sweden. Semimonthly interindividuM means and standard deviations 
are shown. Solid lines: January-June; dashed lines: July-Dezember. Arrows indicate the 

passing of time 

3. Analysis of the Activity Records 

3.1. Activity Time 

Examples of the individual seasonal course of the onset and end of daily 
activity (Fig. 5) show tha t  the activity t ime (~) follows the seasonal changes in 
duration ol sunlight (greenfinches) or night (flying squirrels), to some extent but  
not completely. The relationships of ~. to the duration of sunlight (measured from 
sunrise to sunset) for all species studied are summarized in Figs. 11-15. 

The 5 day-active bird species studied at the arctic circle (Figs. 11 and 12) 
have the S-curved relationship between ~ and sunlight duration as described 
earlier (Aschoff, 1969; Aschoff et al., 1970). At days shorter than about 5 hrs, 
activity t ime is apparently independent of daylength. At intermediate daylengths 
(5-19 hrs), ~ increases rapidly, but  the slope of the relationship is clearly less 
than  1. At very long days, the curve bends off agMn, and daylength does not 
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Fig. 12. Activity time as a function of sunlight duration in three species of birds at the arctic 
circle (top) and in Southern Germany (bottom). Semimonthly means from January to June 
(solid lines), and from July to December (dashed lines). Arrows indicate the passing of time 

affect ~ when longer than about 19 hrs. The results obtained at lower latitude 
can be considered as a section from the intermediate range of sunlight durations 
(8-16 hrs) at higher latitudes. Similar S-curves were obtained by Asehoff (1969) 
in an analysis of field data from high latitudes on Parus major, Emberiza citrinella 
(both after Franz, 1949) and Dendrocopus major (after Blume, 1964). 

At sunlights shorter than 12 hrs, no consistent differences between activity 
time in autumn and winter appear. In  contrast, there is a general difference between 
activity times of the four species of finches, studied at Messaure, when equally 
long sunlights in spring and summer are compared. In  these species, activity 
time is longer before than after the summer solstice at the same sunlight dura- 
tions. In  the siskins (Carduelis spinus), the difference in mean ~ between the 
second half of May and the second half of July was as large as 2.5 hrs. Activity 
records of captive warblers (Phylloscopus collybita and P. trochilus: Gwinner, 
unpublished results) as well as field data on another passerine bird (Paras major: 
see Asehoff, 1969; :Fig. 12) show the same "hysteresis". On the other hand, the 
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Fig. 13. Activity time as a function of sunlight duration in four species of finches at Messaure, 
Sweden. Sexes separate. Arrows indicate the passing of time 

one great spotted woodpecker, studied in Oulanka, had a longer activity time 
after the summer solstice than before, in agreement with field data from this 
species at high latitude (Asehoff, 1969; Fig. 13). 

The longer activity time of passerine birds in the spring than in summer at 
equally long sunlights, are presumably a result of endocrine influences relating 
to the reproductive state. In male starlings (Sturnus vulgaris), a positive correla- 
tion between testieular growth and activity time is known (Gwinner and Turek, 
1971), and testosterone injections similarly induce an increase in ~ (Gwinner, 
1974). The results obtained with fringillid birds at the arctic circle (Fig. 13) 
suggest such an endocrine effect for both males and females since in both sexes 
of all four species ~ is longer from April till June than from July till September. 
In  spring and summer, females tend to have longer activity times than males. 
The larger e in the great spotted woodpecker (Fig. 12) after the summer solstice 
(dotted line) than before (solid line) may be related to the relatively later breeding 
season of this species (Glutz yon Blotzheim, 1962). 
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(upper curve) and Erling-Andechs (lower curve). Semimonthly means and interindividual 
standard deviations are shown. Solid lines: Januar-June; dashed lines: July-December. 

Arrows indicate the passing of time 

In  the mammal  species, a similar relationship of activity t ime to duration of 
sunlight (or night, respectively) is observed as in the birds (Figs. 14 and 15). The 
S-curves in the nocturnal hamster  (Mesocricetus auratus) and flying squirrel 
(Glaucomys volans) are left-right reversed compared to Figs. 11-14; here activity 
t ime is negatively correlated with duration of sunlight. Again the results obtained 
in Southern Germany in all three species are in close agreement with those at 
equally long sunlights at  high latitude. 

A general difference between birds and mammals  is tha t  the curves of the 
mammals  are less steep than those of birds, as previously reported (Aschoff, 1969). 
The range within which activity t ime changes with duration of sunlight, is 
smaller in mammals  than in birds. A woodmouse (Apodemus flavicoEis) recorded 
by  Erkinaro (1970) in Northern Finland showed a dependence of g on sunlight 
duration similar to the curve of hamsters and flying squirrels. 

When comparing activity t ime with sunlight duration one must  recall tha t  
sunrise and sunset are arbitrarily chosen reference points of the daily light-dark 
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Fig. 15. Activity time as a function of sunlight duration in golden hamsters (left) and flying 
squirrels (right), kept at the arctic circle (top) and in Southern Germany (bottom). Solid 

lines: January-June; dashed lines: July-December. Arrows indicate the passing of time 

cycle to determine photoperiod. One might expect a more consistent relationship 
between activity time and photoperiod, over the whole range of photoperiods, 
if instead of sunrise and sunset a certain angle of the sun below the horizon were 
taken to define photoperiod, for instance - -6  ~ (beginning or end of civil twilight) 
or --12 ~ (beginning or end of nautical twilight). Plots of activity time as a func- 
tion of these alternative measures of photoperiod are shown for some of the data 
from Messaure in Fig. 16. Neither of the two Mtcrnative transformations brings 
the mammal curves close to a 1 : 1 relationship between activity time and photo- 
period. I t  is only in day-active birds (siskins) that  the slope of the curve ap- 
proaches 45 ~ at least for short winter days, when nautical twilight is included, 
but the activity time remains consistently shorter than the photoperiod. Thus, 
in none of the animals studied do the results support the conjecture that  activity 
is limited by a fixed minimum solar altitude, below which darkness suppresses 
activity. 

The general form of the dependence of activity time on duration of sunlight 
in captive animals fully supports the analyses of field data published earlier 
(Aschoff, 1969). The data again contradict ideas that  activity time is directly 
determined by the presence of light within a range between some upper and 
lower limit of activity time set by physiological or ecological restrictions. Such 
considerations would explain a curve where sharp angles between the rising part 
and the flat extremes of the curve were found. The smooth form of the curves, as 
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well as the departure from 45 ~ of the slope of the rising part, rule out such ideas. 
The general slope of the curves, even though subject to minor but  significant 
variations, as between mammals and birds, and between spring and summer in 
birds, demands a general explanation in terms of the underlying timing mechanism. 
In Section 7, the general implications will be discussed in more detail�9 

3.2. Phase 
3.2.1. Onset and End of Daily Activity 

The analysis of activity time (~) as a function of sunlight duration in the pre- 
vious section showed that  ~ follows the seasonal variation only to a limited 
extent. This implies that  the light intensities at which animals become active 
and terminate activity undergo significant changes in the course of the year. 
These seasonal trends are usefully illustrated by plotting the semimonthly mean 
times of onset and end of activity on the computed semimonthly curves of "zcs- 
light intensity" (see Section 3). Examples of such plots are shown in :Figs. 17 
and 18. 

Fig. 17 compares the results obtained with tree shrews (Tupaja belangeri) 
at high and low latitude. At the arctic circle (Messaure) there was apparently a 
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Fig. 17. Onset and end of activity in tree shrews kept at the arctic circle (top) and in Southern 
Germany (bottom), together with the computed curves for "zenith clear sky" l ight inten- 
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(right) of activity and "zcs" light intensities at these times. The radius of the circles is the 

standard deviation of the time of onset or end 

decrease f rom summer  to  winter  of 6 log uni ts  in the  l ight  in tens i ty  a t  which t ree  
shrews became active.  The  end of ac t iv i ty  occurred wi th in  a range of 2 log units .  
The  resul ts  ob ta ined  in Sonthern  G e r m a n y  are a close m a t c h  to  those  ob ta ined  
in  Messanre (Fig. 17, lower d iagram).  The  l ight  condi t ions a t  the  arct ic  circle, 
covering a larger  a rea  of combina t ions  of l ight  in tens i ty  and  t ime  of day ,  seem 
be t t e r  su i ted  to  reveal  general  principles.  

Theoret ical ly ,  i t  is possible t h a t  the  da i ly  onset  and  end of ac t iv i ty  are  
comple te ly  exogenously  de te rmined  b y  a pa r t i cu la r  th reshold  of l ight  in- 
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Fig. 18. Activity onset and end in chaffinches (top) and golden hamsters (bottom), together 
with the computed curves for "zenith clear sky" light intensities at Messaure. For conven- 

tions, see Fig. 17 

tensity. An animal, in which this were the case, would show all onsets on a 
horizontal line, and all cessations on another horizontal line. On the other 
hand, a timing mechanism unaffected by light (but running with a period 
of 24 hrs) would produce all onsets and cessations vertically oriented in 
the light-intensity/time-of-day plane: at fixed local times. Apparently, the 
steepness of the slope by which mean onsets and ends of activity traverse 
the plane is suggestive of the influence light has on their timing. In  the birds, 
these slopes are generally less steep than in the mammals  studied. This is illus- 
t ra ted by the chaffinches and hamsters, studied in Messaure (Fig. 18), and by 
the linear regressions through mean onsets and ends of the 8 species studied in 
Messaure and Oulanka (Fig. 19). The timing of activity in the birds is apparently 
more influenced by light than in the mammals.  In  all regressions the slope is 
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one for the onset of activity (solid line) and one for the end of activity (dashed line). Each 
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slightly steeper in the morning than in the evening, suggesting a slightly larger 
seasonal variation of light intensity at activity onset than at activity end in the 
day-active animals (night-active animals: smaller). But these differences are 
small, and given the approximative nature of the zes-ligth-curves on which they 
are based, do not allow a firm conclusion. 

I t  is both common and useful practice, in circadian literature, to relate onset 
and end of activity to characteristic phase points of the daily light-dark cycle, 
e.g., sunrise and sunset. The time intervals separating the phase reference points 
of the activity rhythm and of the daily light-dark cycle are called t0onse t and ~0en d 
(see Fig. 1). Figs. 20 and 21 show the seasonal course of the semimonthly means 
of both time intervals in the 6 species which were studied both at the arctic circle 
and in Southern Germany. In  order to avoid such description of phase differences 
as "maximally positive" and "maximally negative" as have been used before 
we shall speak of maxima and minima and of large and small values of ~0, con- 
sidering negative and positive values as a continuum. 

The patterns found at high latitude are fairly homogenous: the day-active 
birds and tree shrews had their largest ~0ons~ and smallest ~//end in midwinter, 
smallest ~onset and largest ~0en d in midsummer. The changes in the night-active 
mammals are the reverse. Similar patterns are known from field data on Emberiza 
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sunrise (top) and of Y)end, i.e., time of end of activity in hours before sunset (bottom) in three 

species of birds in Southern Germany (left) and at the arctic circle (right) 

citrinella, Dendrocopus major and Erithacus rubecula (see Asehoff, 1969; Figs. 8, 
9 and 18). The mirror images of seasonal variation in YJonset and ~end are, of course, 
another expression of the change in light intensity at onset and end of activity 
discussed above. The differences at low latitude are much less pronounced than  
at high latitude, but  for most  species reveal the same seasonal tendencies. 

A noteworthy departure from the general pat tern is the sudden increase of 
~onset in March in the chaffinches, both in IVIessaure and in Erling. This is in agree- 
ment  with data for this species studied in Heidelberg (49o20 ' N), reported by  
Asehoff (1969; Fig. 23). I t  is apparently related to the general vernal maximum 
in activity t ime in ffingillid birds (Section 4). A vernal reduction in the light 
intensity at  which birds become active, necessarily implying and increase in 
~Ponset, is known from several field studies (e.g., Scheer, 1952: Turdus merula and 
Troglodytes troglodytes; Hjorth, 1968: Lyrurus tetrix). Studies on the daily dis- 
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tribution of the amount of perch hopping activity revealed that  the advanced 
onset of activity in spring is related to a large increase in the amplitude of the 
morning peak of activity (Daan, 1975). 

I t  has been emphasized that  the values of ~onset and ~%na are of limited value 
in assaying the phase angle difference between activity rhythm and light-dark 
cycle (Aschoff, 1964, 1965). Apart from theoretical considerations, the argument 
was based on the heterogeneity of the seasonal changes in ~onset in different 
organisms. The data analyzed (Aschoff, 1965; Fig. 9) originated mainly from 
temperate latitudes, where seasonal changes in photoperiod are small. In such 
studies, changes in ~?o~set due to seasonal changes in the physiological state of the 
organism (e.g., reproductive versus nonreproductive season) are likely to obscure 
the general trends, as suggested by the chaffinch results. At high latitude with 
large seasonal changes in photoperiod consistent general patterns in %nset and 
~0en d emerge. 

3.2.2. Midpoint of Activity 

A third measure of the phase angle difference between the activity rhythm 
and the entraining tight-dark cycle is ~midpoi~t (Aschoff, 1965, 1969), i.e., the time 
interval from midpoint of activity to sun culmination (in day-active animals) 
or to sun culmination + 12 hrs (in night-active animals) (see Fig. 1). A value of 

20 Oecologia (Berl.), Vol. lS  
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Fig. 22. Seasonal changes of ~midpoint (i.e., midpoint of activity time, expressed in hours 
before sun culmination) in 5 bird species kept at the arctic circle (top) and in Southern 
Germany (bottom). Enveloping curves connect points at a distance of 1 standard error from 

the semimonthly means (dots) 

~/)midpoint of -~-] hr, for instance tells tha t  the activity-time (~) phase leads the 
light-dark cycle by  one hour, whereas a value of - -  1 hr means a phase lag by  1 hr. 
Since midpoint of activity and midpoint of rest are 12 hrs apart,  a value ~midpoLnt 
of rest equals ~Vmid,oint of activity. ~vmidpoint further equals the arithmetic mean 
of ~Vonse t and ~ven a. As discussed above ~o~ot and ~nd undergo roughly mirror-image 
seasonal variations, conspicuously so at  high latitude. Their average, ~Pmidpoint, 
therefore remains relatively constant, but shows the minor differences between 
the two in the absolute amount  of change. 

The seasonal course of ~/)midpoint in the species studied is illustrated in 
Figs. 22-24. With the exception of the three greenfinch records obtained in 
Southern Germany, all birds showed distinct seasonal changes (Fig. 22). The 
patterns are clearly species-specific. 

Chaffinches (Fringilla coelebs) at  both latitudes had maximal phase-angle 
differences in spring; and from about June to :February, ~midpoint values fluc- 
tuated around zero. Greenfinches (Carduelis chloris) showed no regular changes 
in phase-angle differences in Erling-Andechs, but  a t  the arctic circle they had 
their minimum ~midpoint in midsummer. Siskins (Carduelis spinus) in Messaure 
had a maximum phase lead in late spring (second half of May), then jumped 
backward to a 1-hr phase lag in the second half of July. Bramblings (Fringilla 
monti]ringilla) were rather  erratic, but tended to have maximum phase leads in 
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Fig. 23. Seasonal changes in ~flmidpoint in the 2 sexes of 4 species of birds in Messaure. Each 
point is the average for several animals and several years 

May-June as well as in October-November, occurring more or less simultaneously 
with the periods of nocturnal restlessness (c/. Fig. 4). The data collected from two 
great  spotted woodpeckers (Dendrocopus major) are not as complete as the finch 
records, but  suggest maxima around May, both in Oulanka and Erling-Andechs 
(Fig. 22). 

The feature common to the curves in all birds is the decrease of ~Vra~dpoi,t 
shortly before or around the summer solstice. A spring maximum is common to 
all but  the Greenfinches. Fig. 23 confirms tha t  males and females in the Messaure 
series had similar seasonal patterns of ~midpoint- 

Among the mammals  (Fig. 24) a clear seasonal pat tern is absent only in the 
flying squirrels (Glaucomys volans) in Erling-Andechs. The 2 flying squirrels kept  
outdoors in the aviary for over 4 years, maintained a nearly constant phase lead 
of about 20 rain throughout this period. In  Oulanka, flying squirrels had a clear 
maximum phase lead in midwinter and a phase lag in midsummer. Golden ham- 
sters (Mesocricetus auratus) also had maximum ~)midpoint in midwinter in Messaure, 
but  the 4 Erling animals showed too much interindividual variation to allow a 
firm conclusion. Tree shrews (Tupaja belangeri) at  both latitudes had maximum 
phase lead in midsummer and a lower second maximum in midwinter. Minima 
in ~midpoint are found around the equinoxes, as described earlier (Aschoff, 1969; 
Aschoff et al., 1970). 

20* 
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Fig. 24. Seasonal changes of Y)midpoint in three species of mammals at the arctic circle (top) 
and in Southern Germany (bottom). Enveloping curves connect points at a distance of 

1 standard error from the semimonthly means (dots) 

The model for the influence of light on entrained activity rhythms, developed 
by Aschoff and Wever (1962), Wever (1962, 1963, 1964, 1965) and Aschoff (1965), 
makes some specific predictions on the seasonal changes in ~Omidpoint. The results 
presently discussed clearly have a bearing on these predictions. Assuming that  
the average light intensity in an LD-cycle affects the natural circadian fre- 
quency in the same way as it does in constant illumination (LL) (Asehoff, 1965, 
p. 270), and taking into account that  an entrained oscillation phase-leads an 
entraining cycle increasingly more, the shorter its natural period (T), the model 
qualitatively predicts that  the phase-angle difference (~)midpoint) increases with 
photoperiod in species where ~ decreases with greater intensity of constant 
illumination. Day-active birds have a negative, and night-active mammals a 
positive, dependence of v on the light intensity in LL. The "seasonal rule" 
("Jahreszeiteuregel"), originally formulated by Aschoff (1964), states that  the 
summer increase in photoperiod should result in an increased phase-angle differ- 
ence (~midpoint) in day-active animals and a decreased YJmidpo~t in night-active 
animals. Additional effects of the seasonal change in twilight duration, predicted 
by a mathematical formulation of the model (Wever, 1965, 1967), are such that  
an increase of ~0midpoint in midwinter and midsummer, due to the long twilight, is 
superimposed on the yearly curve, and can produce a secondary maximum. 

In the present results, only the seasonal change in YJmidgom~ of the mammals at 
the arctic circle can be described as a general pattern. A maximum is found in 
midsummer in the day-active tree shrews, in midwinter in the night-active golden 
hamsters and flying squirrels�9 Thus, unlike the birds, the mammals uniformly 
obey the original "seasonal rule".  In  the tree shrews, however, z is positively 
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Table 1. Equinoctial phase-angle differences (~midpoint) in southern Germany (Erling- 
Andechs) and at the arctic circle. Mean values and standard deviation are given in hours; 
numbers of original values in parentheses. P-values for the significance of difference between 

means were obtained with two-tailed t-test 

Species Erling-Andeehs Messaure/Oulanka P 

Second half of March 

F. coelebs 0.24 4- 0.36 (5) < 0.50 4- 0.42 (12) > 0.10 
C. chloris 0.11-4-0.i2 (3) > 0.014-0.07 (12) <0.10 
D. major 0.204-0.06 (3) = 0.20 (1) - -  
T. be langer i  --0.174-0.40 (5) < 0.164-0.17 (9) <0.05 
M. auratus 0.194-0.24 (2) < 0.784-0.30 (8) <0.05 
G. volans 0.244-0.11 (9) < 0.754-0.04 (3) <0.01 

Second half of September 

E. coelebs 0.03 4- 0.09 (9) > --0.13 4- 0.24 (I1) < 0.10 
C. r 0.154-0.12 (5) > --0.254-0.23 (9) <0.01 
D. major 0.19 (1) 
T. belangeri 0.204-0.11 (7) > --0.034-0.11 (6) <0.01 
M. auratus 0.444-0.50 (2) < 0.454-0.23 (5) >0.10 
G. volans 0.234-0.13 (8) < 0.834-0.15 (5) <0.01 

correlated with the intensity of constant light (Aschoff, 1969), and a maximum 
value of ~midpoint would be expected in midwinter rather  than in midsummer. 

Secondary maxima in the seasonal course of ~raidpoint point occurred in the 
tree shrews in December, and in the golden hamsters in May and July, in agree- 
ment  with the predictions from the model, and with earlier analyses of these 
data  (Aschoff, 1969; Asehof fe ta l . ,  1970). The presumed influence of twilight 
duration might further be expected to appear by comparison of ~Omidpoint observed 
around the equinoxes at different latitudes. Around the equinoxes, sunlight has 
nearly the same duration at  all latitudes, but twilight lasts much longer at high 
than at  low latitude. Table 1 summarizes the mean values of ~Omidpoint in the 
second half of March and the second half of September for the 6 species of which 
results are available both from the arctic circle and from Southern Germany. 
Significant (P <0.05) differences between the 2 latitudes appear in 6 out of 
10 cases. In  4 of these, ~)midpoint is larger with the longer (arctic) twilight, in 2 it is 
larger at the shorter twilight (Southern Germany). Similarly, Aschoff (1969; 
Fig. 17) found no consistent dependence of equinoctial ~0miapoint on latitude in the 
analysis of field data. 

Thus, 2 of the mammals  obey the seasonal rule, and the presence of 2 seasonal 
maxima in ~0miapoint in the tree shrews and golden hamsters nicely confirms a 
prediction from the model. However, the seasonal and latitudinal variation in 
~Omiapomt of flying squirrels, and especially the fact tha t  all 5 bird species have 
different seasonal patterns Of ~gmidpoint and none of them a pat tern according ~o the 
rule, seem to refute the general validity of the model, when applied to conditions 
of natural  daylight. 
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Another aspect of the model is the coupling between the frequency and the 
mean level of the oscillation which in combination with a threshold, is responsible 
for timing of activity. Since the level is supposed to be reflected in the activity 
t ime (~), and the (natural) frequency (under entrained conditions) in the phase 
angle difference (~0midpoint), the most general prediction of the model is a positive 
correlation between ~ and ~0midpoint , irrespective of the photoperiod. 

The relationship between ~midpoint and ~ was analyzed by the calculation of 
linear regressions and coefficients of correlation between all semimonthly pairs 
of individual averages of ~midpoint and ~. Two examples are shown in Fig. 25, and 
correlation coefficients for all experiments appear in Table 2. In  9 out of 15 cases, 
the regressions of Y~miapoi~ on ~ had a slope significantly different from zero: 
5 had a positive slope and 4 had a negative slope (P ~0.01).  The results do not 
allow a general s tatement  about  the correlation (and hence the coupling) between 
the two parameters. 

In  summary  then, the activity records obtained in natural  day-light at differ- 
ent latitudes support the predictions derived from the model to a very limited 
extent only. Either too many  other factors not accommodated in the model are 
involved, which differ from species to species and from season to season, and 
thus obscure general tendencies ; or some of the basic assumptions--predictabil i ty 
of the effect of light on t h e "  na tura l"  frequency in entrained conditions based on 
its effects on the freerunning rhythm;  internal coupling of level and frequency; 
usefulness of the midpoint of activity as phase reference poinb--aro wrong. Else- 
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Table 2. Coefficients of correlation of phase-angle differences (~0midpoint) and activity time 
(u). Coefficients differing significantly from zero ( P <  0.01) appear in bold type. The number 

of semimonthly means of ~0midpoint and ~ compared is shown in parentheses 

Species Erling-Andechs Arctic circle 

F. coelebs 0.88 (154) 0.18 (291) 
F. monti/ringilla 0.08 (233) 
C. chloris --0.13 (78) --0.40 (253) 
G. spinus 0.18 (324) 
D. ma]or 0.20 (51) 0.44 (33) 
T. belangeri 0.01 (138) 0.11 (180) 
M. auratus --0.76 (50) 0.04 (145) 
G. volans outdoors --0.18 (187} 0.70 (80) 
(7. volans indoors --0.50 (53) 

Table 3. Mean values of the semimonthly correlation coefficients of ~Ponset and ~Pend" The 
number of r-values contributing to the mean appears in parentheses 

Species Arctic circle Eding-Andechs 

Carduelis 8pinus --0.17 (262) 
Fringilla monti/ringilla --  0.11 (184) 
Fringilla coelebs --0.10 (241) 
Carduelis chloris --0.16 {216) 
De~ulrocopus major --0.01 (33} 
Tupa]a belangeri --0.07 (151) 
Mesocricetus auratus --0.01 (123) 
Glaucomys volans autdoors --0.03 (87) 
Glaucomys volans indoors 

-}- 0.07 (155) 
+0.05 (79) 

+ 0 . 0 3  (139) 
- o . 1 4  (87) 
--  0.06 (189) 
- 0 . 0 5  (54) 

where  (Daan, 1975) resul ts  are  presented  which show t h a t  the  effect of l ight  
in tens i ty  on ~Pmidpoint Of finches is of a sign opposi te  to  t h a t  p red ic ted  from the  
effect of l ight  in tens i ty  in cons tan t  l ight.  

3.3. Precision 

The precision of the  en t ra ined  r h y t h m  of ac t i v i t y  is expressed b y  the  con- 
verse  of the  d a y - t o - d a y  var ia t ions  in i ts  t iming.  The semimonth ly  s t anda rd  
dev ia t ion  of ~0midpoint (~Om) has been t a k e n  as a measure  of th is  var iab i l i ty .  Pre-  
cision of phase is t hen  defined as 1/s.d. ~vm. 

There is some justification in assuming that variations of activity onset (~o) and end (~e) 
contribute equally to the standard deviation of ~o-midpoint. Since 

~m = (~~ + YJe)/2 
O'21]) m -~- (O'2~% + 2 "  r" a~p o �9 o'~pe)/4 

where r is the coefficient of correlation between ~onset and Y~end" Values of r were estimated 
for each animal in every semimonthly interval by Pearson's coefficient of correlation of 
~onset and ~end" The average species values of r are given in Table 3. Although slightly negative 
in most animals, r clearly tends to be close to zero. Therefore 

a~r~ =1/4- (a2~o o + ~oe) 
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1 standard error from the mean standard deviation 

is approximately correct, and the variances in activity onset and in activity end contribute 
equally to the variance of ~0midpoint. I t  has to be pointed out here that the values of r (Table 3) 
are overall means for each species, averaged over long time spans. A more detailed analysis 
reveals a systematic seasonal trend in r. In the day-active siskins, for example, r tends to 
attain maximally negative values in December and January and is slightly positive in March 
and August. I t  could be tempting to discuss the compatibility of this pattern with the models 
discussed below (Section 4.2). However, the 2 twilight sensors (see Section 2.2) show seasonal 
changes of r similar to those of the siskins, and yearly averages of r = -  0.20 and --0.28. 
Therefore, the behaviour of r does not necessarily reflect a property of the driving oscillation. 

The extent  of variations in phase (or in precision) undergoes significant 
seasonal changes. An  increase in variabil i ty of ~0midpoint towards midsummer and 
towards  midwinter  has been reported by  Erkinaro (1972) for the night-active owl 
Aegolius/unereus and by  Aschoff et al. (1972) for tree shrews and golden hamsters,  
all studied at  high latitude. A summer  increase in the variabil i ty of end of act ivi ty 
in greenfinches had already been observed by  Palmgren (1943, p. 102). For  the 
8 species discussed here, Figs. 26 and 27 summarize the seasonal changes of 
the semimonthly  s tandard  deviations of ~0midpoint. Significant seasonal fluctua- 
tions in variabil i ty are found especially in the results f rom the arctic circle. The 
3 mammal  species have a clear bimodal pat tern,  with larger variabil i ty in 
midwinter  and midsummer than  in spring and autumn.  I n  the birds, variabil i ty 
is largest in summer,  and the midwinter increase in variabil i ty is small, if present 
at  all. 

Clearly, there is a general seasonal t rend in the variabili ty of phase, part icularly 
in the results obtained at  high latitude. The difference in variat ion between the 
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Fig. 27. Seasonal changes in variability of ~Pmidpoint in mammals at the arctic circle (top) and 
in Southern Germany (bottom). Conventions as in Fig. 26 

solistices and the equinoxes is in some cases as large as an order of magnitude. 
The question arises whether this change in variability indicates any specific 
property of the mechanisms involved in the timing of activity. There are 3 general 
sources from which variation in the timing of the observed activity could emerge: 
(1) the endogenous circadian rhythm, (2) the entrainment of this rhy thm by the 
Zeitgeber, and (3) direct external influences on the overt rhythm. Explanations 
of the seasonal changes in precision can be derived from each of these 3 
sources as follows: 

(1) The endogenous clock can be assumed to be least precise around summer 
and winter solistices. Since some freerunning activity rhythms are most precise 
somewhere in the middle of their range of frequencies, i.e., around z = 2 4  hrs 
(Aschoff et al., 1971), one might presume tha t  the "na tura l  f requency" depends 
somehow on season and passes through this maximum-precision value twice a 
year, in spring and in autumn. Erkinaro's  (1972) approach to the problem is of 
this type. 

(2) I t  can be argued tha t  phase control is better with stronger Zeitgebers, and 
tha t  Zeitgeber strength decreases towards the winter and summer solistices. 

(3) Direct action of light on the overt rhythm, producing either additional 
activity during the clock-determined rest t ime of an animal (" positive masking"),  
or partial suppression of activity during the activity t ime ("negative masking")  
(see Asehoff, 1960; Hoffmann, 1969). I t  could be argued tha t  such masking 
effects are minimal in spring and autumn, due to the near coincidence of the 
mean activity onset and end with dawn and dusk. 

All of these are complicated propositions, and it is likely tha t  the seasonal 
change in variability is a result of more than one factor. (There are still more 
complicated conjectures about the seasonal variation in precision of entrainment, 
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related to the different slopes of phase-response curves for long and for short 
photoperiods, and with varying v, to different daily phase-resets. We feel, how- 
ever, that  too little is known of these properties in the entrainment mechanism 
of our species to make further exploration of these conjectures presently fruitful.) 
From a further analysis of our results--obtained in natural daylight, and there- 
fore in a limited number of combinations of different Zeitgeber characteristics--, 
no firm evidence for any of the propositions can be expected. Nevertheless, the 
likelihood of different contributions to the precision of phasing can be discussed 
on the basis of the present material. 

Ad (1). The seasonal course of variability is quite uniform among the birds 
(Fig. 26) and among the mammals (Fig. 27). To explain this variability on the 
basis of changes in the "natural  frequency" of the driving oscillation, we have 
to assume that  also these changes in frequency are of uniform type. There is so 
far little evidence for a seasonal change in freerunning circadian frequency, apart 
from one case in bats (Myotis luci]ugus: Menaker, 1961) where differences in 
physiological state associated with hibernation may have influenced the free- 
running period, and preliminary observations on fringillid birds (Pohl, unpub- 
lished). Among the animals presently studied, the mean phase-angle differences 
(YJmidpoint) (Figs. 22 and 24) have revealed no indication of regular seasonal changes 
in "natural  frequency".  

Ad (2). Explaining the seasonal change in precision by Zeitgeber strength 
one has to assume (a) that  a weaker Zeitgeber produces less precise phase 
control, and (b) that  Zeitgeber strength decreases with the approach to the 
summer and winter solistices. 

Weak Zeitgebers may either fail to entrain a circadian rhythm [as demon- 
strated in a captive woodmouse, Apodemus [lavieollis in the subarctic summer 
(Erkinaro, 1969)], produce relative coordination (e.g., as observed in a hamster: 
Swade and PittendI~gh, 1967), or cause "relative entrainment".  In relative 
entrainment (described for a mathematical oscillator by Wever, 1971; for the 
activity rhythm of a flying squirrel, entrained by very short light pulses, by 
Decoursey, 1962) a phase point of the observed rhythm moves slowly back and 
forth relative to the Zeitgeber over a number of cycles. Obviously, this phenom- 
enon would add to the day-to-day standard deviation of its phase. Yet, in none 
of the activity records presently analyzed were such oscillating patterns encoun- 
tered. 

Even without relative entrainment, strength of Zeitgeber may affect pre- 
cision, although it does not seem to be an a priori necessity. If we assume that  
there is an effect of Zeitgeber strength on the precision, three different properties 
of the natural light-dark cycle should he considered as factors possibly deter- 
mining Zeitgeber strength: 

(a) the range of light-intensities between L and D, 

(b) the duration of twilight, and (e) the L: D ratio (photoperiod). 

The strength of a Zeitgeber decreases with its amplitude, as has been amply 
demonstrated for circadian rhythms (Hoffmann, 1969a, b). At the arctic circle, 
the amplitude of the natural LD-cycle decreases sharply towards the summer 
solistice, but there is only a weak reduction in midwinter (Fig. 7): because both 
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at the summer solistice and the winter solistice the sun touches the horizon once, 
and because the largest changes in light intensity occur when the sun moves 
between the horizon and 12 ~ below ("nautical twilight"), the LD-cycle in mid- 
winter is of much larger amplitude than the LD-cycle in midsummer. Night-active 
mammals, being more sensitive in the low light intensity ranges, would certainly 
experience a larger Zeitgeber amplitude in midwinter than in midsummer. Yet, 
their precision is better in summer than in winter (Fig. 27). This can therefore 
not be explained in terms of amplitude. 

The effect of twilight duration on the Zeitgeber strength has not been rigorously 
tested in vertebrates, i.e., no assay of its effect on the range of entrainment or on 
the amplitude of phase response curves are known. Twilight duration undergoes 
pronounced seasonal changes at the arctic circle. One might suppose a priori 
that  steep changes in light-dark transitions (short twilights) would increase 
the Zeitgeber strength, but the opposite has also been proposed (Wever, 1967). 
In  Fig. 28, the mean values for the standard deviation of ~midpoiat are plotted as 
a function of the semimonthly mean duration of civil twilight. The variability 
increases with longer twilights, so that  it would be necessary for Zeitgeber strength 
to decrease with long twilights in order that  the hypothesis be npheld. However, 
there is a remarkable difference when variability in the winter half (October to 
March) and in the summer half (April to September) of the year are compared 
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Table 4. Half months in which maximal precision was observed at the arctic circle, and the 
corresponding average durations of sunlight 

Species Half month Sunlight Mean s.d. ~m 
(hrs) (hrs) 

First half of the year 

Day-active Carduelis 8pinus Mar I 10.7 0.06 
Carduelis vhloris Mar II  12.6 0.07 
Fringilla monti/ringilla Feb I I  8.9 0.10 
Fringilla coeleb8 Feb I I  8.9 0.11 
Tupa]a belangerl Mar II  12.6 0.21 

Night-active Mesocricetus auratus Apt I 14.5 0.37 
Glaucomys volans Apr I I  16.5 0.24 

Second half of the year 

Day-active Carduelis spinus Oct I 10.5 0.10 
Carduelis ~hloris Nov I I  4.6 0.12 
Fringilla monti/ringilla Dec II  0 0.15 
Fringilla coelebs Dec II  0 0.14 
Tupa]a belangeri Oct I I  8.5 0.18 

Night-active Meso~ricetu8 auratus Sep I 14.1 0.43 
Glaucomys volans Sep I 14.1 0.37 

(Fig. 28). At seasons of equal twilight duration, the night-active animals are less 
precise in the winter half of the year, and day-active animals less precise in the 
summer half of the year. I t  thus appears tha t  twilight duration cannot be the 
sole factor involved. 

That  photoperiod has an effect on the Zeitgeber strength is clear from the 
observation tha t  light-dark cycles with extremely long or short photoperiods lose 
their entraining capacity (West and Pohl, 1973), and have smaller frequency 
ranges of entrainment (Wever, unpublished). Little is known of the relationship 
between these extremes, but it seems reasonable to assume tha t  there is maximum 
Zeitgeber strength at  some intermediate photoperiods, e.g., at  LD12:12 
(Wever, 1965). Figs. 26 and 27 show tha t  the times of maximum precision 
occurred in all day-active animals before the vernal equinox and after the 
autumnal  equinox, and in the nocturnal species after the vernal and before the 
autumnal equinox. The effect of the LD-ratio on Zeitgeber strength, tentat ively 
proposed as the major  cause of seasonal fluctuations in precision by us earlier 
(Aschoff et al., 1972) would require the additional assumption tha t  maximum 
Zeitgeber strength is not at  an L:D-ra t io  of 1.0, but at values slightly smaller 
or greater than 1.0 (c/. Table 4). I t  is not unreasonable to assume tha t  the L :D 
ratio at which the Zeitgeber is of maximal strength depends on the species and 
is especially different for day- and night-active animals. So far, for such an hypo- 
thesis no experimental support exists. 

Apparently, the hypotheses dealing with either clock precision or Zeitgeber 
strength as the major factors in the precision of activity timing seem to require 
one or more unproven assumptions. No single assumption accommodates the 
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differences between species, especially between day-active and night-active 
animals, and leads to a single coherent explanation of the facts observed. 

Ad (3). We have seen tha t  a~ the arctic circle the times of mean onset and 
mean end of daily activity cross the times of sunrise and sunset twice a year, or 
Vonset and Vend cross the value zero twice a year, between summer and winter 
(Figs. 20 and 21). I f  there were some process involved in the timing of onset and 
end of activity, making these times most precise when occurring around sunrise 
and sunset, this would lead to the seasonal variation in precision. Figs. 29 and 30 
show tha t  the variability indeed increases when the mean v-values are further 
away from zero. But  minimum variability (maximum precision) is apparently 
not found exactly where the mean V is zero. Maximum precision tends to occur 
when in a day-active animal mean activity onset (night-active: active end) 
slightly precedes sunrise, and when mean activity-end (night-active: activity- 
onset) slightly phase-lags sunset. Thus, precision of both onset and end of activity 
tend to become maximal when means of onset and end fall within civil twilight. 
This is the par t  of the day when the rate of change of light intensity is fastest 
(Figs. 17 and 18). The computed curves of light intensity present the opportunity 
to estimate the average rate of change of light intensity at  the mean time of 
act ivi ty onset and end for every semimonthly interval. The correlation of the 
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vertical lines have a length of 2 standard deviations, the bars have a length of 2 standard 

errors of the mean 

corresponding semimonthly  est imate of the precision of ac t iv i ty  onset and end 
with these rates of change (dlogI/dt)  is shown in  Fig. 31 and  Table  5. There is 
always a posit ive and  often a strong correlation between the two parameters.  
Especially the precision of the end of ac t iv i ty  seems to be highly dependent  on 
the rate  of change of l ight in tens i ty  at  the average t ime of ac t iv i ty  end. Moreover, 
the precision estimates for a given species from different la t i tudes seem to lie on 

different par ts  of the same regression line. 

Considering the hamster and chaffinch results in Fig. 18, we can see how this correlation 
gives rise r the seasonal variation in the variability of f/midpoint" In  midwinter, the hamsters 
started activity around 16:00 and stopped around 04:00. Both points, especially end of 
activity were subject to large day-to-day variations, since the dlogI/dt was minimal at both 
times, even though at other times of the day steep changes in light intensity were present. 
Variability decreased until after the vernal equinox, when onsets and ends of activity were 
at ca. 19:00 and 3:00 and in the civil twilight, i.e., at the largest dlogI/dt. In midsummer, 
activity lasted from ca. 20:00 to 2:00, and was again less precise due to its beginning and 
termination in almost full daylight, with small dlogI/dt. The chaffinches, as birds, have much 
larger seasonal variation of their activity time than the hamsters: onset and end of activity 
follow sunrise and sunset more closely, but not completely. In midsummer, activity started 
at ca. 3:00 and stopped at ca. 20:00, and variability was large due to little change of light 
intensity at these times of day. With decreasing duration of sunlight, onset and end of activity 
crossed the time of sunrise and sunset and moved into the civil twilight. Since the activity 
did not move further into the night, however, and was still within the civil twilight even in 
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Fig. 3t. Precision (1/mean semimonthly standard deviation) of onset and end of activity as a 
function of the rate of change of light intensity (d log I /d t )  at the time of mean onset and end. 
Values on the abscissa were computed from the slope of daily light curves (see Figs. 17 and 18) 
at the times of onset and end. Solid dots are 24 semimonthly values from experiments in 
Messanre, circles are 24 semimonthly values from experiments in Erling-Andechs. Lines are 
linear regressions. Examples from top to bottom: chaffinch, greenfinch, and tree shrew 

midwinter variability did not increase again. Clearly, the existence of a midwinter peak in 
the mammals, and its absence in birds, is explained by the larger seasonal variation in phase 
angle difference in mammals (Figs. 20 and 21) than in birds and, relatedly, the smaller sea- 
sonal variation in activity time in mammals (Figs. 11-15). 

The  corre la t ion  be tween  precision of onset  or end  of da i ly  a c t i v i t y  and the  
r a t e  of change of l ight  i n t ens i ty  a t  those  t imes  of d a y  thus  seems to  lead  to  a 
meaningful  exp lana t ion  which accounts  for the  differences be tween the  seasonal  
change of precis ion among  species, and  for  a n y  one species be tween dif ferent  
la t i tudes .  Elsewhere  (Daan, 1975) precision was shown to be expe r imen ta l ly  
reduced  b y  shif t ing ac t i v i t y  onset  and  end in chaffinches to  t imes  of d a y  wi th  
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Table 5. Coefficients of correlation between precision (1/mean s.d.) of time of onset and time 
of end of activity, and computed rate of change (in log units) of the light intensity at these 
times. Data from different localities are pooled. Values significantly different from zero 
(P<0.05) appear in bold type. Number of values used in calculation of the correlation 

coefficient are given in parentheses 

Species Activity onset Activity end 

Carduelis spinus 0.41 (24) 0.63 (24) 
Frlngilla monti/ringilla 0.16 (24) 0.62 (24) 
Fringilla coelebs 0.39 (48) 0.79 (48) 
Cardudi8 chloris 0.55 (48) 0.66 (48) 
Dendrocopu8 major 0.33 (28) 0.39 (29) 
Tupa]a belangeri 0.42 (48) 0.83 (48) 
Mesocricetus auratu8 0.49 (48) 0.25 (48) 
Glaucomys volans 0.64 (48) 0.70 (48) 

smaller dlogI/dt. In  this effect of rate of change of light intensity no property 
of the driving oscillation needs to be involved. This is illustrated by the fact tha t  
twilight sensors operated by fixed light intensities show the same correlation 
between precision and rate of change of light intensities (Section 3) and thereby 
the same seasonal course of precision (Fig. 10). Obviously, if the mean rate of 
change of light intensity at  a given t ime of day  is large, then the time at which 
a fixed light intensity threshold is crossed will vary  less between bright and over- 
cast days than when dlogI/dt is small. For instance, when dlogI/dt around this 
threshold is 0.10 min -1, the time at which the threshold is crossed will vary  about 
10 min between 2 consecutive days with a difference in light intensity of 1 log 
unit due to meteorological conditions. But  when dlogI/dt is 0.02 rain -1, the same 
day-to-day variation will be 50 rain. Thus the par t  of the variability that  emerges 
from rates of change of light intensity may  well reflect direct action of light 
intensity on the observed rhythm rather than precision of resetting the under- 
lying oscillation. A similar conclusion was drawn already (p. 298) from the 
correlation between Vonset and Vend" A possible route of direct effect is given by 
"mask ing" .  In  a day-active animal, activity near mean onset and end may  be 
partially suppressed by occasional dark days, or additionally evoked by occasional 
bright days. The effect would be maximal when the mean dlogI/dt at  activity 
onset and end is minimal. I t  would yield minimal variability when daily activity 
is "cut off"  by  a steep change in light intensity. 

In  conclusion, the observed daily rhythm of activity appears to be the product 
of actions of the endogenous clock and of direct responses to light. Lutz (1931), 
after a month of observations of the onset of morning song in the wren Troglodytes 
musculus, came to the impression tha t  the bird was "a combination of an alarm 
clock and a photometer" .  We are inclined to subscribe to his opinion. Had  Lutz 
observed terminations rather than onsets of activity, he might have stressed the 
photometer  more than the alarm clock. Had  he brought his bird from Panama 
to the arctic circle and seen how its onset of morning song would vary  over 3 to 
4 orders of magnitude of light intensity, he might have rejected the photometer.  
But  at  least in the precision as well as in the correlation of Y4nset and Y4nd the 
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photometer still seems to be ~t work, and it should be emphasized that  not all 
the characteristics of entrained activity rhythms reflect properties of the endo- 
genous circadian oscillation. The general statements which can be based on the 
present results are: 

(1) Precision of onset and end of activity increases with dlogI/dt  at the times 
of mean onset and end of activity (more markedly for the end of activity). 

(2) If mean Y;onsets and mean negative Ydnds which have the same value (i.e. 
~p-values derived from onsets and ends recorded at equal distances before sunrise 
and after sunset) are compared, precision of activity onset turns out to be larger 
than that  of activity end. 

(3) Precision of activity timing is larger in birds than in mammals. 

4. General Discussion 

4.1. Comparison o/the Results with Field Data 

There are few generalizations applying to most or all of the species studied. 
Some seasonal patterns are common to the four ffingillid bird species only, and 
other patterns are apparently species-specific. A maximum in ~)midpoint in the 
birds' reproductive season is found in all finches (Fig. 22). But  there are other 
seasonal changes in ~gmidpoint, unrelated to Zeitgeber properties, which eventually 
may be explained if more is known about each species. 

Before listing the generalizations, some attention will be given to a comparison 
with data available from animals in natural conditions. For mammals there is 
little information available on the timing of daily activity in nature. For birds 
there are comprehensive accounts reviewed by Aschoff and Wever (1962) and 
Aschoff (1969). Asehoff and Wever (1962) have formulated 6 general rules mainly 
concerning vocalization and roosting times of birds, as derived from field studies. 
These can be used as a basis of comparison for the present results obtained in 
captive animals. 

(1) (a) Activity onset in day-active birds is usually at lower light intensities 
than activity end, (b) in winter the reverse may be true, and (c) the reverse prob- 
ably holds in night-active birds. 

Translated into phase-angle differences, this rule says that  ~/)midpoint is positive, 
except in some day-active birds in winter. I t  was based on a large number of 
studies compiled and supported by all of the analyses later made by Aschoff 
(1969). In the present experiments, it was supported in all species (Figs. 22 
and 24) except for 3 of the finches (C. spinus, C. chloris, F. monti/ringilla), which 
had negative values of ~midl)oint in the arctic midsummer (Fig. 22). Night-active 
mammals behaved in this regard as expected for night-active birds (Fig. 24). 

(2) Species and individuals within a species which start activity early in the 
day, tend to terminate activity late. 

This rule was based mainly on the field studies by Wright (1913) and Mori 
(1945) involving large numbers of species. The present results, involving a much 
smaller number of species do not contribute to further interspeci/ic evaluation 
of this rule. With regard to interindividual differences, the results from 8 simul- 
taneously recorded siskins give no significant support to the rule. 

21 Oecologia (Berl.), 37ol. 18 
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(3) In day-active birds, males wake up earlier and terminate activity later 
than females. 

The 4 species of finches studied at the arctic circle did not obey this rule, since 
females in spring and summer had longer activity times (e) than males (Fig. 13). 
Sexual differences may be species-specific, and they seem of no further relevance 
to the general principles of circadian rhythms in season and latitude. 

(4) Interindividual and day-to-day variations in the time of activity onset are 
smaller than the variations in activity end. 

This rule, based o n  data from a wide variety of bird species (references in 
Aschoff and Wever, 1962) is supported by all species presently studied. In view 
of rule 6, precisions should be compared for onsets and ends of activity occmwing 
at the same light intensity (or solar altitude), or, ~Oonse t values should be compared 
with negative ~0en d values of the same magnitude. 

The examples in Fig. 29 and especially in Fig. 30 show the difference in 
precision. 

(5) The light intensity at activity onset is less subject to (a) seasonal variation 
and (b) latitudinal variation than the light intensity at activity end. 

This implies that  %nset varies less with season and latitude than ~%nd" I t  is 
supported by the behaviour of night-active mammals (Figs. 20 and 32) and by 
some, but  not all, of the other species. Activity times in Dendrocopus major agree 
with the rule, both in captive conditions (Fig. 19) and in nature (Aschoff, 1969; 
Fig. 9). 

(6) Interindividual and day-to-day variation in onset and end of activity is 
smaller on the average when onset and end occur at lower light intensities. 

The 5 day-active bird species in the present study all obeyed this rule. The 
behaviour of the mammals where onset and end of daily activity shifted farther 
away from sunrise and sunset in the course of the year, leads to the further 
specification that  variability increases again at very low light intensities (Figs. 17, 
18, 27 and 29). Precision apparently depends on the rate of change of light inten- 
sity rather than on the absolute light intensity (Fig. 31). 

Thus, the rules derived from field studies are partly upheld and partly violated 
by animals in captive conditions. In  ease of disagreement there seem to be species 
differences in the patterns observed. There is no a priori reason to assume syste- 
matic differences in the timing of activity for free living animals and for animals 
kept in captivity. However, such differences may exist (e.g. Dunnett  and Hinde, 
1953; RKber, 1949; Kenagy, 1975) whether due to differences in light intensities 
experienced by the animals, to differences in climatic conditions (indoors versus 
outdoors), to differences in the physiological state of the animals related to 
general living conditions; or due to differences in the assays used to record the 
activity rhythm. If they exist, they very well may have a bearing on the con- 
clusions drawn: 

The remaining generalizations that  can be made for both field data and ex- 
perimental results in conditions of natural daylight are: 

(1) With longer photoperiods, activity in day-active animals starts earlier in 
local time, but later relative to sunrise (~onset smaller), and terminates later in 
local time, but earlier relative to sunset (%nd larger). The reverse holds in night- 
active animMs. The resulting S-curve of activity time as a function of photo- 
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period with a slope significantly less than  1.0 is characteristic of all animals studied 
in natural  (Asehoff, 1969) and in captive conditions. 

(2) Onset and end of activity follow sunrise and sunset more closely in birds 
than  in mammals.  Seasonal variation in ~onset and ~e~d is thereby smaller in birds 
than  in mammals,  and seasonal variation in ~ is larger in birds than in mammals.  
Day-to-day variations in the times of activity onset and end are larger in mam- 
mals than in birds. 

(3) As a tendency rather  than a strong generalization, we can state tha t  onset 
of activity is usually more precise than  activity end, its precision less affected 
by  day-to-day variations in light intensity, and in the course of the year tends 
to s tay closer to sunrise (day-active animals) or sunset (night-active animals). 

4.2. Implications ]or Models o/Circadian Activity Rhythms 

An S-shaped relationship between activity t ime and photoperiod, produced 
by opposite seasonal changes of Fo~se~ and Y4nd (Figs. 11-15) is the most important  

21" 



310 S. Daan and J. Aschoff 

one of the 3 generalizations formulated in the previous section, and any model 
of the formal structure of circadian oscillations will be adequate only if it accom- 
modates this phenomenon. In  the level-and-threshold model of circadian rhythms 
of activity (Wever, 1965) the duration of ~ is determined by the time the oscilla- 
tion stays above a threshold. As can be derived from computer simulations of the 
entrained model oscillation (e.g. Wever, 1964; Fig. 7), the dependence of ~ on 
photoperiod is, for some combinations of factors, in principle similar to that  
observed in the species discussed here. 

Another approach to the problem starts from the fact tha t  daily onset and end 
of activity move in opposite directions with changes in photoperiod (Figs. 20 
and 21), as well as with changes in the intensity of illumination (Daan, 1975); 
this can be interpreted as reflecting two systems with different responses to light, 
although it would not be compulsory evidence. The existence of two oscillating 
systems involved in the circadian rhythm of activity is further suggested by its 
usually bimodal pattern (Aschoff, 1962). With increasing activity time, the two 
peaks move apart (Aschoff, 1966), i.e., they stay closer to activity onset and 
activity end than to each other; the opposite would be expected if there were 
one oscillation with varying level. The most suggestive indication of two oscilla- 
tions is the phenomenon of "spl i t t ing" of circadian rhythms of activity, a process 
in which two components ffeerun for some time with different circadian fre- 
quencies. This has been observed in several species of mammals (Pittendrigh, 
1960, 1967; Hoffmann, 1970, 1971; Pohl, 1972)and recently in birds (Gwinner, 
1974). 

To account for both splitting and bimodality, Pittendrigh (1974) following 
earlier suggestions (Gwinner, in Aschoff, 1967; Hoffmann, 1967) has proposed 
a two-oscillator system as the basis of circadian rhythms of activity: A morning 
oscillator (M), which is speeded up by light, and thereby tends to lock on 
to dawn, and an evening oscillator (E; Pittendrigh's night oscillator N) which 
is slowed down by light and thereby tends to lock on to dusk. Activity 
onset would be linked to E in night-active animals, and to M in day-active 
animals, and activity end linked to M in night-active and to E in day-active 
animals. 

If  there are really two oscillators involved, they must be coupled either 
mutually or unilaterally, since in free-running conditions they share a common 
frequency, except in the phenomenon of splitting. Coupling means that  there is 
some force at work to keep the two oscillators in a certain phase relationship to 
each other. On the other hand, locking on to dawn and dusk by the two oscillators 
would imply that  in the course of the year, when sunrise and sunset move apart, 
this phase relationship changes. The coupling force between the oscillators must 
then necessarily counteract the coupling of each of them to dawn or dusk. One 
would expect this counteraction to increase when the two oscillators are pulled 
further away from their "na tu ra l "  phase relationship, i.e. with extremely long 
and extremely short days as occur in the arctic summer and winter. Since activity 
onset and activity end are assumed to be phase points of the two oscillators, the 
interval (~) between them would be a measure of their mutual phase relationship. 
Thus, if we assume an internal coupling force counteracting the effects of changing 
photoperiod and keeping the phase relationship within certain limits, the smooth 
�9 q-shaped curve of ~ as a function of photoperiod is readily explained. 
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The slight differences in the variation of activity onset and activity end with 
season and latitude (generalization 3) are compatible with the one- as well as with 
the two-oscillator model. In the two-oscillator model, we could accommodate the 
facts tha t  activity onset is usually less subject to day-to-day variation, is less 
affected by external influences, and stays closer to dawn or dusk than the end of 
activity, by assuming that  the oscillation to which activity onset is coupled is of 
larger amplitude and perhaps "dominates"  over the activity-end oscillator. The 
common "bigeminus" (Aschoff, 1962), a pattern of daily activity with one large 
peak followed by a small peak, suggests such a possibility. Then in a night-active 
mammal the E-oscillator would be dominant, and in the day-active birds the 
M-oscillator would be dominant. 

We would expect changes in the ~/~ ratio to accompany changes in the period T 
of the free running rhythm when the latter are brought about by changes in the 
intensity of constant illumination. For instance, in a day-active bird an increase 
in light intensity would cause a decrease in the natural period of the morning 
oscillator (VM) and an increase in rE. Since the phase relationship between the 
two oscillators (~M,E) which in day-active birds equals ~, increases with the ratio 
~/~M, ~ will increase with light intensity. In  night-active mammals, where 
~M,E----Q, ~ will increase (and therefore ~ decrease) with light intensity. This is 
experimentally known (Aschoff, 1960). 

Thus, the two-oscillator model seems to combine the major empirical facts 
concerning circadian rhythms of locomotor activity both in conditions of free- 
run and of entrainment by natural light-dark cycles. I t  may eventually give an 
explanation for the seasonal inversion of activity rhythms known in microtine 
rodents (Ostermann, 1956; Erkinaro, 1961) and salmonid and cottid fishes (Kalle- 
berg, 1958; Miiller, 1968, 1970; Eriksson, 1973)where otherwise day-active ani- 
mals become night-active in summer. This phenomenon may turn out to be 
related t o "  splitting" in free-running rhythms (Hoffmam~, 1971) where apparently 
two distinct stable phase relationships, about 180 ~ apart, can be realized. 

The problem of parametric versus non-parametric modes of entrainment 
would not be different for one-oscillator and two-oscillator systems. The question 
remains open whether changes in light intensity rather than absolute light inten- 
sities are the major agents involved in entrainment. In constant illumination, 
di]]erential effects are, by definition, excluded. The fact tha t  in many animals the 
free-running period (3) changes with light intensity is, therefore, proof of the 
existence of proportional effects of light on the system. On the other hand, the 
phase shifts caused by single short light pulses in otherwise constant darkness 
are clear expressions of the differential effect of a Zeitgeber. The magnitude of 
such phase shifts suggests that  differential effects can be major constitutents 
in the process of entrainment. The involvement of photoreceptors adapting to 
levels of constant illumination is one possible source of sensitivity of the circadian 
pacemakers to changing rather than to constant light intensities. 

The night-active mammals investigated so far largely obey the "seasonal 
rule"  in having larger values of ~midpoint in winter than in summer. Asehoff (1964) 
has explained this rule by assuming that  proportional effects of the light-dark 
cycle were such that  longer days involve a higher average light intensity, and 
thereby decrease the natural circadian frequency in night-active animals, which 
--in conditions of entrainment--would lead to a smaller (less positive or more 
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negative) phase-angle difference in summer. An analysis of data from several 
recent studies on the daily timing of foraging activity in bat colonies (Fig. 32), 
suggests tha t  the seasonal rule applies to natural situations, too. The habit of 
these species of bats to hide in dark roosts in daytime make it improbable tha t  
proportional effects of light are involved here. The colony of pond bats (Myotis 
dasycneme) investigated by Vofite (1972), for instance, was located in the loft of 
a church where no daylight penetrated. The animals woke up in the late after- 
noon in the colony, and one after the other moved to a "waiting room",  a space 
near the exit of the loft, where daylight was perceptible, for less than 1 hr 
before the majority of bats took off almost simultaneously. There was no indica- 
tion of more time spent in this "light-sampling behaviour" (Twente, 1955) in 
summer than in spring or autumn. The seasonal differences in phase-angle differ- 
ences (Fig. 32) can, therefore, not be explained by proportional effects of the 
average light intensity over 24 hrs. 

In terms of the two-oscillator model (Pittendrigh, 1974), the validity of the 
seasonal rule for all night-active mammals for which data were obtained either 
in the field or in captivity, again suggests tha t  the oscillator governing onset of 
activity is generally dominant over the oscillator governing end of activity. 
Activity onset locks closely onto sunset, and seasonal variations in Nonset are 
smaller than in ~ena. Seasonal variation of their average, ~midpoint, then largely 
reflects variations in ~ena, which are characterized by a minimum in summer in 
night-active mammals. 

The analysis of all the data accumulated does not allow a decision between 
the one- and the two-oscillator model. Several of the generalizations are com- 
patible with both of them. However, at least the predictions from the one-oscilla- 
tor  model concerning the seasonal course of ~Ymidpoint (Figs. 22 and 24) and its 
correlation to ~ (Table 2) are not matched by the data. On the other hand none 
of the generalizations contradicts the two-oscillator model. 

4.3. Birds versus Mammals 

As stated above (generalization 2), the circadian activity pattern follows 
seasonal and latitudinal variations in photoperiod more closely in birds than in 
mammals. The precision of the avian rhythms is usually larger than that  of the 
mammal rhythms. There are other differences, perhaps related to these: after a 
phase shift of the light-dark cycle, activity rhythms of birds become resyn- 
chronized faster than those of mammals (Hoffmann, 1969a). The minimum 
amplitude of the light-dark cycle necessary for entrainment is smaller in birds 
than in mammals (Hoffmann, 1969a). Phase response curves for light pulses 
seem to have larger amplitude in birds (Eskin, 1971; V. Saint Paul, unpub- 
lished) than in mammals (DeCoursey, 1960, 1964; Pittendrigh and Daan, 1975), 
although the differences between the techniques used obstruct rigorous comparison. 
The change in intensity of continuous illumination appears usually to have 
stronger effects on the free-running circadian period in birds than in mammals 
(Aschoff, 1965). There are major differences in the physiological organization of 
the avian and mammalian circadian system, e.g., in the participation of the 
pineal organ and of extraoeular photoreceptors in entrainment of the rhythms 
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(Menaker, 1974). How these differences are related to the differences in the 
activity rhythms as influenced by season and latitude remains to be revealed. 

Further,  the question can be raised, whether there is biological meaning to a 
difference in sensitivity of the avian and mammalian circadian system to light 
as the major entraining agent. The anwer is in no way clear if locomotor activity 
is considered. Apart  from adjusting activity, and other biological functions, 
to the temporal  order of the environment, circadian clocks play an important  
role in photoperiodic t ime measurement. One of the mechanisms proposed for the 
measurement of photoperiod is " internal  coincidence" (Pittendrigh, 1972; 
Gwinner, 1973). I t  postulates two circadian oscillations with a mutual  phase 
relationship subject to seasonal fluctuations. I t  is tempting to speculate tha t  
such oscillations, whatever their physiological nature, would have similar phase 
relationships to dawn and dusk in the course of the year as activity onset and 
activity end. Their internal phase relationship (~vi) would, then, undergo the 
same seasonal variation as the activity time. 

If  a system were available where photoperiod can be measured via its effects 
on the phase relationship between oscillations (~i) one would expect tha t  any 
selective pressure for precise measurement of photoperiod would favour large 
seasonal variations and small day-to-day variations in ~v i. Both properties are 
found in the circadian activity rhythms of birds, as contrasted to mammals.  
Most birds of the temperate zones probably utilize phot0period for the recognition 
of season. In  mammals  photoperiodic reactions are far less marked. Menaker 
(1971) has recently suggested tha t  " in  mammals  much of the pressure for precise 
synchronization of reproductive activity with season may  have been removed 
by the evolution of the m am m ary  glands, which enable the female to provide 
nourishment for the young from a wide variety of nutrient substrates. I t  would 
therefore not be surprising tha t  photoperiodic control were less general and less 
rigorous among the mammals  than among birds".  I f  the circadian rhythm of 
activity indeed somehow reflects the circadian system involved in photoperiodie 
time measurement, such considerations may  be a guide to functional aspects of 
seasonal and daily variations in the timing of daily activity. 
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