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Summary. The hypothesis that dispersal in a heterogeneous environment can be 
an important factor in population stability is examined. I t  is shown that dispersal 
may increase the persistence time of a population by several orders of magnitude. 

1. Introduction 

Andrewartha and Birch (1954) in their "general theory of the num- 
bers of animals in natural  populations" maintain that  animal numbers 
are determined by  a multitude of factors, many  of which are independent 
of population density. They suggest that  a population is best considered 
as a set of local populations each subject to different environmental 
conditions. At any one time some areas will be unoccupied, some will 
have a few animals and some will contain relatively dense populations. 
Dispersal between subpopulations causes fluctuations in population size 
to be damped. I t  is the central theme of the theory of Andrewartha and 
Birch tha t  fluctuations in population numbers can only be understood 
when environmental and genetical heterogeneity are taken into account. 

Den Boer's (1968) concept of "spreading of r isk"  is essentially the 
same idea; "heterogeneity and instability must  not be considered as 
just a drawback of field data to be neglected ... heterogeneity and/or 
instability must  be recognized as fundamental features of a natural  
situation. The chance of survival of a population may  even be increased, 
because the variation within the population makes it possible to cope 
with the variation in space and time of the habi ta t" .  

In  discussing the "spreading of risk in space" den Boer notes "the 
fluctuations of animal numbers in the population as a whole will be the 
resultant of the numerical fluctuations in the different places (sub- 
populations) . . . .  Migration between subpopulations will generally con- 
tr ibute to the stabilizing tendency of spatial heterogeneity, since in this 
way extreme effects of some places will be levelled out more thoroughly. 
Hence, migration will improve the outcome of spreading of the risk in 
space ". 
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Reddingius and den Boer (1970) demonstrated the stabilizing in- 
fluence of migration and age classes in a series of simulation experiments. 
I-Iowever, their model is rather complex and the demonstration of the 
stabilizing influence of spatial heterogeneity and age classes results 
" f rom an appropriate choice of the values of the parameters, which was, 
in fact, attained after some trial and error"  (Reddingius and den Boer, 
1970). The choice of parameters was made using the criterion that  " the  
population density would not be expected to show a strong tendency to 
increase or to decrease in the most complex version of the model".  
This choice was made because they "wished to restrict the discussion to 
persisting populations". Because of this restriction and because of the 
complexity of their models " i t  is diffcult to construct an ordered se- 
quence of models" (Reddingius and den Boer, 1970). 

The purpose of the present s tudy was to begin with a simple po- 
pulation model with few parameters and explore the effect of intro- 
ducing other parameters such as migration. Using this procedure, it is 
possible to investigate the relative importance of each parameter. 

In  the simplest model, a full analytical t reatment of its stability is 
possible (Lewontin and Cohen, 1969; Levins, 1969; May, 1971). In the 
more complex model, incorporating migration, a theoretical analysis is 
extremely difficult and therefore a numerical analysis using computer 
simulated populations was adopted. 

There are numerous definitions of stability (Lewontin, 1969). I will 
use the word "stability" in the sense of "persistence". Population A is 
said to be more stable than population B if its mean time to extinction 
is longer. This criterion permits us to construct an ordered sequence of 
models. 

2. The Population Models 

The basic population model is 

n n 

1 i = l  

where 

2V(t§ 1) is the size of the population at  t ime t §  1, 
Ar i (t) is the size of the ith subpopulation at  time t, 
t,(t) is the "potential  finite rate of increase", tha t  is the rate of 

increase in the absence of any density limiting factors. Various distri- 
butions of t~ (t) were used, the details of which are given in section 3. 

The population is divided into 25 subpopulations. Each subpopulation 
begins initially with 40 animals. Four types of populations were studied. 
These 4 population %ypes constitute a "set". Within any set the same 
sequence of random numbers was used for each population run. Thus 



_eersistence of Populations 247 

each population within a set is subjected to exactly the same environ- 
mental  fluctuations. Eleven replicates were made. As all replicates were 
qualitatively identical the results of only one set will be given. 

A subpopulation is considered extinct if there are less than  2 animals 
in it. Subpopulations were allowed to change only by integer steps. 

2.1 Population Model 1 

I n  this model there is no dispersal between subpopulations and no 
limit to the number  of animals tha t  can exist in any subpopulation. 

2.2 Population Model 2 

In  this model the subpopulations are still isolated (no dispersal) but  
an upper  limit to the size of a subpopulation is introduced. The upper  
bound for the i th subpopulation at  t ime t, K i (t), is a random variable 
between 0 and 160. Ki  (t) may  be considered as the carrying capacity of 
the habi ta t  of the i th subpopulation at  t ime t. I f  a subpopulation exceeds 
its upper  bound the excess animals are eliminated. :Biologically this is 
equivalent to the death of the excess or their migration out of the po- 
pulation. I n  reality the correlation between the carrying capacities of 
adjacent habitats  will depend upon the distance between habitats  and 
the number  of factors which determine the carrying capacity: increasing 
either of these will, in general, decrease the correlation. For simplicity I 
have assumed the extreme case of no correlation between habitats  
either in space or time. 

The size of the i th subpopulation at t ime t is therefore given by 

2v~ (t + l) = ~ (t) & (t) 
where 

N;(t)=g~(~) IfN~(t) >K~(t) 

2.3 Population Model 3 

This model comprises a population divided into 25 subpopulations 
connected by  dispersal. As in population model 1 no limit is set to the 
number  of animals tha t  can exist in a subpopulation; a subpopulation 
is allowed to exceed K i. I n  this instance K is viewed as an environmental 
factor causing dispersal rather than  limiting numbers. 

Each subpopulation is connected by  dispersal to its 4 nearest neigh- 
bours. The rules for dispersal are as follows : 

a) Dispersal of animals from the i th subpopulation can occur if 

N~(t) ~(*) .  However, dispersal into one of the 4 surrounding sub- 
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populations is dependent upon there being one available for occupancy. 

b) Dispersal into the ith subpopulation can occur if Ni(t) < Ki(t). 
2 

The size of the ith subpopulation at time t-k 1 is therefore given by 

N~ (t + 1) = Ni** (t)~i(t) 
where 

N~** (t) : N~ (t) --  Emigrants + Immigrants. 

2.4 Population Model 4 

This model incorporates both dispersal and an upper limit to the size 
of a subpopulation. 

The size of the ith subpopulation at time t + 1 is given by the set 
of equations 

N~ (t + 1) = N~* (t) ~ ~(t) 
where 

and 
Ni** (t) --~ N i (t) - -  Emigrants + Immigrants 

Ni*(t)-~Ni**(t ) IfN~**(t) <K~(t) 

N~* (t) = K i (t) IfN~** (t) > K i (t). 
This model is essentially that  of a territorial type of animal. Animals 

can easily establish territories when their numbers are low (N i (t) < Ki(t)/2 ) 
but as they increase (Ni(t)>Ki(t)[2) pressure is exerted on some to 
disperse. If  the surrounding jth subpopulations are not very dense 
(Nj(t) <Kj(t)/2) migrants will flow in filling them up to the point 
N1(t) ~ Kj(t)/2. Thereafter territories are rigid and no more animals are 
allowed in. If  a subpopulation is dense (Ni(t)> Ki(t)/2 ) but animals 
cannot disperse out because there are no surrounding subpopulations 
available (Nj(t)>Kj(t)/2) then territories will contract and animals 
" b o r n "  in the subpopulation will be able to establish territories but 
migrants cannot come into the area in the sense that  migrants coming 
into the area will not  be able to establish territories (Ni(t)>Ki(t)/2) 
Finally, however, a point is reached when territories become rigid and 
no more animals, whether born in the subpopulation or not, can be ac- 
commodated (Ni(t) > K i(t)). The excess are then forced completely out 
of the population as a whole. 

3. The Potential Finite Rate of Increase (~) 

In  models 1 and 3 the potential finite rate of increase is also the 
actual finite rate of increase. In  models 2 and 4, however, the actual 
finite rate of increase will be something less than the potential since the 
size of any subpopulation is limited, The actual finite rate of increase will 



Persistence of Populations 249 

be a funct ion of the number  of subpopulations tha t  exceed the upper  
limit per  uni t  time. 

A number  of distributions of ~ were used. Each  such distribution will 
be described in the following way:  

Given tha t  X 1 ~  Z ~ X 2 denotes t ha t  ~ is a random variable between 
X 1 and X~ the s ta tement  t ha t  P ( X  1 ~ 2 ~  X 2 ) ~  p will mean tha t  the  
probabi l i ty  t ha t  ~ takes some value between X 1 and X 2 is p. 
The distributions of ~ m a y  be divided into two classes: 

a) dens i ty - -dependen t ;  
b) dens i ty- - independent .  

All distributions were tested to ensure tha t  the observed means and 
variances were no t  significantly different f rom their expected values. 

3.1 Densi ty-Dependent  

The potential  finite ra te  of increase is distr ibuted in the following 
manner  

IfKi(t)/20 < N~(t) < K~(t)/4, then P (0  < ~ < 1) = P(1  < ~ < 4 )  = 
0.5, and if Ni(t ) < Ki(t)/20 or N~(t) > Ki(t)/4, then P (0  < 2 < 1) = 
P(1  < 2  < 2 )  = 0 . 5 .  

At  any  given t ime a subpopnlat ion is equally likely to increase or 
decrease but  when a subpopulat ion is not  too sparse (Ni(t) ~ Ki(t)/20) 
nor too dense (Ni(t)~Is its potential  finite rate of increase is 
high, having a mean value of 1.5. 

3.2 Densi ty- Independent  

Three different distributions of ~ were studied. All have the same 
mean bu t  the variances are different. The mean value of ). equals 1.125. 
Therefore the subpopulations are biased towards increasing. 

The distributions studied were as follows: 

a) P (0 < ~ < 1.0) = P ( 1.0 < ~ < 2.5) = 0.5; 
b) P ( 0  < ~  < 2 . 2 5 ) =  1; 
c) P (0.5 < ) ,  < 1.0) = P(1 .0  < ~ < 2.0) = 0.5. 

Distr ibution a) represents an environment  which is highly variable. 
At  any  one t ime the populat ion is equally likely to increase or decrease 
bu t  the amount  by  which a populat ion m ay  increase is such tha t  the 
mean  potential  ra te  of increase exceeds 1.0. 

Concerning b) a subpopulat ion is more likely to increase than  de- 
crease. This, therefore, represents an environment  in which there are 
more " g o o d "  seasons than  " b a d "  ones. "Bad"  seasons when they  do 
occur m a y  be very  severe ()~ close to 0). 
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Distribution c) represents an environment which has only small fluc- 
tuations. A subpopulation is equally likely to increase or decrease but  
bad seasons are never very severe (~ is never less than  0.5). 

Mathematically the decreasing " seve r i ty"  of environments a), b), e) 
is given by  their variances which are 0.5417, 0.4219 and 0.2083 re- 
spectively. 

4. Analysis  and Results 

4.1 Population Model 1 : No Migration, No Upper Bound 

Lewontin and Cohen (1969) analysed the stability of a population 
following the growth equation 

N ( t +  l ) = N ( t ) 2 ( t ) .  

This equation is the same as tha t  for the subpopulations of population 
model 1, the whole population simply consisting of 25 replicates. Le- 
wontin and Cohen (1969) concluded tha t  "if a population is growing in a 
randomly varying environment such tha t  the finite rate of increase per 
generation is a random variable with no serial autocorrelation ...  even 
though the expectation of population size may  grow indefinitely large 
with time, the probabil i ty of extinction may  approach un i ty , "  

i.e. as t-->~E(N)--->cx~butP(N>O)--->O. 

May (1971) analysed the equivalent differential equation 

ctN (t) = {a + r (t)} N (t) 
dt 

where 
a is the mean growth rate, 

(t) is a random variable with mean zero and variance a 2. 

The mean population size, ~ (N) is 

~z (N) = N O e at 
where 

N O = initial population size, t = time. 

Clearly as t ime goes on the expectation of N when the growth rate 
is positive, a>O, increases without bound. However, the root-mean 
square relative fluctuations about  the population mean are 

Variance (e 62 t - - i )  '/' 
Mean 

and as t ime goes on the population fluctuations become relatively more 
and more severe. Finally if a 2 ~  2a  " then  the probabili ty for the system 
to become extinct tends to unity as the t ime tends to infini ty" (May, 
1971). 

"The  basic message from this discussion of the growth of a population 
in a randomly varying environment is tha t  such fluctuations do not 
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Table 1. Population model 1 
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Distribution of ~ (4) a z(2) T(o) N(200) n(o) 
2 

3.1 1.144 a 0.6765 38 - -  - -  
3.2a 1.125 0.5417 43 - -  - -  
3.2 b 1.125 0.4219 101 - -  - -  
3.2c 1.125 0.2083 - -  109 + 11 

The stability e r a  population composed of 25 isolated subpopulations allowed to 
increase without bound. 
2 ~ Potential finite rate of increase; ~(~) ~ mean 2; a~(~) ~ variance of 2; 
T(o) = time to extinction; N(200) ~-- mean subpopulation size over 200 iterations; 
n (o) = mean number of subpopulations extinct per iteration. 
a The mean and variance of 3.1 are estimated from the simulation data, no 
theoretical method for calculating it being available. 

mere ly  enhance  the  poss ib i l i ty  of ex t inc t ion  (which is i n tu i t i ve ly  obvious),  
b u t  if large enough, as measured  b y  the  (above) cr i ter ion,  will p roduce  
ex t inc t ion  even in  a popu la t ion  whose expec ta t ion  va lue  is increasing 
e x p o n e n t i a l l y "  (May, 1971). 

The  above  phenomenum of an  inf ini te  expec ta t ion  b u t  a zero prob-  
ab i l i t y  of persis t ing,  is c lear ly  demons t r a t e d  b y  the  s imula t ion  ex- 
per iment .  The  resul ts  of these  are shown in Table  1 and  Figs.  1 and  2. 
I n  all  b u t  1 case, the  popu la t ion  becomes ex t inc t  in cons iderab ly  less 
t h a n  200 t ime  uni ts  (one t ime  uni t  being one i terat ion) ,  despi te  the  fac t  
t h a t  the i r  expec ta t ions  increase wi th  t ime.  The popu la t i on  t h a t  does 
pers is t  for 200 t ime  uni ts  has  a mean  subpopu la t ion  size af te r  200 t ime  
uni ts  in excess of 109. However ,  11 subpopula t ions  are ex t inc t  a f te r  
th is  t ime.  

4.2. Popu la t ion  Model 2: No Dispersal ,  U p p e r  Bound  

I t  is c lear ly  unreal is t ic  to  allow a subpopula t ion  to  reach  sizes in 
excess of 109 animals.  The  effect of imposing a l imi t  to  the  size of a sub- 
popu la t i on  is to  reduce i ts  s t ab i l i t y  and  the  popu la t ion  p rev ious ly  show- 
ing un l imi ted  growth  (Fig. 2) now becomes ex t inc t  wi th in  100 t ime  uni ts  
(Fig. 2). 

4.3. Popu la t i on  Model  3: Dispersal ,  No U p p e r  Bound  

The  effect of in t roduc ing  dispersal  in to  popu la t ion  model  1 is to  
s tabi l ize  the  popula t ion .  The  resul ts  of the  s imula t ions  are  shown in 
Figs.  1 and  3. I n  t he  3 popula t ions  which prev ious ly  became ex t inc t  
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Fig. 1. Size changes of the simulated population with a density-dependent potential 

finite rate of increase (3.1) 

Symbol Migration Size limit to 
subpopulation 

No No 
�9 Yes No 
o Yes Yes 

there  is now no t r e n d  over  200 t ime  uni t s  for t h e  popula t ions  to  go to  
zero or to  increase indef in i te ly .  I n d i v i d u a l  subpopu la t ions  may ,  however ,  
show large increases  in size; in t he  dens i t y -dependen t  case (Fig. 1) a 
subpopu la t i on  size of abou t  550 occurs and  in the  dens i ty - independen t  
(Fig. 3) subpopu la t i on  sizes of a b o u t  107 are  reached  in  1 or 2 of the  sub- 
popula t ions .  I t  is the  increase in a few subpopu la t ions  which is responsible  
for the  v e r y  large  increase in mean  subpopu la t ion  size a round  t = 170 
in Fig.  1 and  t ---- 200 and  t = 250 in Fig.  3. 

The  popu la t i on  which  previously ,  in the  absence of dispersal  and  an  
uppe r  l imi t  to  subpopu la t ion  size, showed un l imi t ed  growth  again  grows 
indef in i te ly  as is to  be expec ted  (Fig. 3). However ,  now no subpopula t ions  
are  ex t inc t .  
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Fig. 2. Size changes of the simulated populations with isolated subpopulations and 
density-independent potential finite rates of increase. Figures in brackets show time 

at which all subpopulations are extinct (N = 0) 

Symbol Migration Size limit to Varience 
subpopulation of 2 

• No No 0.5417 
o No No 0.4219 
�9 No No 0.2083 
A No Yes 0.2083 

4.4. Popula t ion  Model 4: Dispersal, Upper  Bound  

The incorporat ion of an  upper  bound  into popula t ion  model 3 has a 
significant  effect though this is no t  obvious from the mean  n u m b e r  of 

17 Oecologia (Bell.),  Vol. 15 
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Fig. 3. Size changes of the simulated populations incorporating migration between 
subpopulations and density-independent potential finite rates of increase 

(Population model 3) 

Symbol Migration Size limit to Variance 
subpopulation of ,t 

x Yes No 0.5417 
O Yes No 0.4219 
�9 Yes No 0.2083 

subpopu la t ions  which exceed th is  l imi t  pe r  un i t  t i m e  (Table 2). The  
popu l a t i on  wi th  a dens i t y -dependen t  po t en t i a l  f ini te  r a t e  of increase  
now has  a mean  subpopu la t ion  size only  1/3 t h a t  of t he  same  popu la t i on  
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Table 2. Population model 4 
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Distribution of T(o) N(IO00) N n(K) n(o) 

3.1 - -  19.24 20.3 0.95 7.15 
3.2a 437 . . . .  
3.2 b - -  29.4 30.9 1.95 3.40 
3.2c - -  40.68 36.0 2.90 0.30 

The stability of a population composed of 25 subpopulations connected by 
dispersal and with an upper bound to size. 

~ potential finite rate of increase; T(o) ~ time to extinction; N(10O0) ~ mean 
subpopulation size at  time t ~-- 1000; N ~ Mean subpopulation size over 1000 itera- 
tions; n(K) ---- mean number of subpopulations that  exceed their upper bound per 
iteration; n(o) ~ mean number of subpopulations that  are extinct per iteration. 
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Fig. 4. Size changes of the simulated population model 4 with a density-dependent 
potential finite rate of increase (see also Fig. 1 showing size changes over 200 time 

units) 

w i t h o u t  l i m i t a t i o n s  o n  s u b p o p u l a t i o n  size (Fig. 1). The  m e a n  n u m b e r  of 
s u b p o p u l a t i o n s  t h a t  are  e x t i n c t  pe r  u n i t  t i m e  is over  5 t imes  (7. 15) t h a t  
of t h e  u n b o u n d e d  p o p u l a t i o n  (1.4). B u t  t he  m e a n  n u m b e r  of subpo-  
p u l a t i o n s  wh ich  exceed t h e  u p p e r  b o u n d  is less t h a n  one  pe r  t i m e  u n i t  
(0.95). The  s t a b i l i t y  of th i s  p o p u l a t i o n  c a n  be gauged  f r o m  t h e  f ac t  
t h a t  i t  is st i l l  i n  ex is tence  a f te r  1000 t i m e  u n i t s  a n d  shows no  t r e n d  to  
inc rease  or  decrease  (Fig. 4). 

17" 
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Fig. 5. Size changes of the simulated population model 4 with a density-independent 
potential finite rate of increase 

Symbol Migration Size limit to Variance 
subpopulation of i 

• Yes Yes 0.5417 
0 Yes Yes 0.4219 
�9 Yes Yes 0.2083 

The populations with a density-independent potential finite rate of 
increase show a similar pattern to the above (Fig. 5). The population in 
the most unstable environment (in the sense of large fluctuations) is 
"destabilized" to the extent that  it persists for only 437 time units. The 
other 2 populations, however, are still in existence after 1000 time units 
and show no tendency to increase or decrease. The mean number of 
subpopulations that  are extinct per unit time is less than for the "den- 
sity-dependent" population but the mean number of subpopulations 
which exceed the upper limit is higher (Table 2), though they are still 
relatively small. 

5. D i scuss ion  

With respect to the population models 1 and 2 in which the "po- 
tential" finite rate of increase, ~, is density-independent (though the 
actual rate of increase in model 2 is density-dependent) we may note that  
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the stability is related to the variance of 2. Thus in terms of stability 
3.2a is less stable than 3.2b which is less stable than 3.2c and the vari- 
ance of 3.2a is greater than 3.2b which is greater than 3.2c (Table 1). 

We cannot, however, use persistence as a criterion of stability for 
population models 3 and 4 because the populations persist throughout 
the simulation. Another criterion of stability is that  population A is 
more stable than population ]3 if its fluctuations are relatively less, or 
its numbers approach zero less often than B. Using this criterion an 
ordered sequence can be constructed for population models 3 and 4 and 
is the same as that  for population models 1 and 2 (see Table 2). Whilst 
these 2 criteria of stabihty seem complementary in the simple case con- 
sidered here it does not necessarily follow that  this will always be the case. 

By analogy with the stability criteria for population model 1 (a2>2a) 
we may suggest that  the stability of all the populations considered in 
this study is related to the mean potential finite rate of increase and the 
mean/variance ratio. A more detailed discussion of this relationship 
will be given in a later paper (Roff, 1974). 

I t  has now been demonstrated both analytically and numerically for 
populations with a stochastic exponential growth rate, that  increasing 
environmental variability greatly reduces the probability of persistence 
of a population. If  the environment is spatially and temporarily variable 
but no movement of animals occurs then, as is intuitively obvious, the 
persistence time of a population is not significantly changed. However, if 
movement between subpopulations is allowed the persistence time may 
be increased by several orders of magnitude or more. This increase is 
sufficient to make it a plausible hypothesis that  dispersal is an important 
factor in the persistence of populations in the real world. 
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