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§ 1. Introduction

Let (@, % P) be a probability space and (¥, n=0,1,2,...) an increasing se-
quence of sub-g-fields of # Let X be the class of all (%)-adapted sequences
(x(n)) of random variables such that

E[sup|x(m)|]<oo, limx(n)=0 as.

We notice that X is a complete lattice, that is to say, every non-empty
bounded subset of X has a greatest lower bound and a least upper bound. For
any (%,)-stopping time 7, let II; denote the class of all (#)-stopping times
S=T
Now, we arc given
g, heX, i=12. 1)

Let us consider the non zero-sum stochastic game whose payoff functions are
given by
Ji (T S)zE[l(T<S)g1(T)+1(S§T)h1(s)]

)
LT S)=E[l5<r 8,8+ Lz o5 ha(T)], (T S)ellyx1I,.
We call (T*, S*)ell, x II,, a Nash point for the game if
J(T*,8*)<J (T, S*
1 )= (T, §%) 3

L (T*,S*¥)<J,(T*,S), (L S)ell,xII,.

Our interest lies in finding a Nash point, which is an extension of a saddle
point in the zero-sum game:

hi=—g,, hy,=—g;. 4)
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This problem was first considered by A. Bensoussan and A. Friedman [2] in
the diffusion case. However, it is not known whether the regularity of the
solution of the quasi variational inequality holds, which is needed for the

existence of a Nash point.

The purpose of this paper is to give sufficient conditions for the existence of
a Nash point by using the martingale method and the fixed point theorem for

monotone mappings.

§ 2. Main Results

The main results of this paper are the following,

Theorem 1. Suppose that there exists z;eX, i=1,2, such that
%458
(z;(n)) is a submartingale,
z;(W)=E[z,(T* ASHvm}| #], n=0,1,2,...,

2, (S¥)=hy(S*),  z,(T*)=h,(T%),
where

T*=min{n|z,(n)=g,(m)}, S*=min{n|z,(n)=g,M);.

Then (T*,5%) is a Nash point for the game.
Theorem 2. We assume that for each i=1,2,

hi =g

h; is a submartingale,

g, is a supermartingale.

Then there exists z;e X, i=1, 2, satisfying (5), (6), (7) and (8).

§ 3. Proof of Theorem 1

By (7), (8) and (9) we have
z,(0)=E[z,(T* AS*)| %, ]
:E[l(T*<S*)Zl(T*)+ 1(S*§T*)ZL(S*)|%]
:E[l(T*<s*)g1(T*)+l(s*gr*)hl(S*)‘ﬁo]-

)
(6)
)
®)

©)

(10)
(1)
(12)

For any Tell,, it follows from (6), (7), (8) and the optional sampling theorem

that
z;(0) < E[z,(T A S*)1 5]

ZE[I(T<S*)21(T)+ 1(5*§T)21(S*)‘370]
§E[1(T<s*)g1(T)+ 1(S*§T) R (S® Fl,
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and thus
J{(T*, 8% = E[,(0)] <J,(T; §¥).

Similarly we get
J,(T*, %) =E[2,(0)] £ J,(T*.5).

The proof is complete.

§ 4. Proof of Theorem 2

In order to prove the theorem, we shall prepare for two lemmas. For any
(x;, x,)€X x X, we define the subclasses C,(x,) and C,(x;) of X by

C,(x,)={xeX|x<g,, x is a submartingale,
x(S)=h(S) for any Sells, where
S,=min{n|x,(n)=g,m}},
C,(x;)={xeX|x=g,, x is a submartingale,
x(S)=h,(S) for any Sell; where
S;=min{n|x =g, (n)}}.
Lemma 3. Under (10) and (11), the class C,(x,) x C,(x,) has a maximal element
(x¥,x%), 1e
XT2Zy,  X32ys (e Cilxy) x Colxy). (14)

Proof. We shall show the existence of x¥ in C,(x,). By (10) and (11) we note

that
hieCi(xy), heCy(xy), (x;,x,)eXxX. (15)

Let Y={y,} be any totally ordered subset of C(x,). Since y,<g,, we can
define y =(y(n))eX by
y{n)=ess sup yaln).

Clearly y<g,, and also
Elyin+ DI A1z Ely,(n+ 1) F]12y,(),

which implies that y is a submartingale. Let Sellg, be arbitrary. Since Y is
directed upwards, there exists, for any fixed n, a sequence (4,) such that

y(n)=li}{n V3, (n).
Hence we have on the set {S=n},
y(S):y(n):likm y,-_k(n)-——li;n ylk(S):hl(S).

This implies y(S)=h,(S). Consequently, we have yeC,(x,) and y is an upper
bound of Y.



158 H. Morimoto

By Zorn’s lemma, C,(x,) has a maximal element x¥. Similarly C,(x,) has a
maximal element x%. It is easy to see that

V1, ¥V2€Ci(x,) (resp. C,(x )=y v y,€ C(X,) (resp. Cy(x,)). (16)
Therefore (x*, x%) satisfies (14). The proof is complete.

Lemma 4. Let (A, <) be a complete lattice and let f: A— A be a monotone non-
decreasing mapping. Suppose that the set B={xeA|xZ f(x)} is bounded above
and not empty. Then f has at least one fixed point.

Proof. The proof follows from a slight modification of the Knaster-Birkhoff
theorem (see [1, Th.9.25]). By assumption, B has a least upper bound acA.

For any xeB, we have
x=f(x)=f(a),

and then a < f(a). Furthermore,

fla=f(fa),

which implies f(a)eB and f(a) <a. Thus the lemma is proved.

Proof of Theorem 2. Let us define the mapping m;: X > X, i=1,2, by

my(x,)=x7 (17)
my(x,)=x3, (xy,x,)eX xX,

where (x¥, x%) is a maximal element of C,(x,)x C,(x,). We define the mapping
m: X —» X and the subset K of X by

m=m;-m,, K={xeX|x<m(x)}. (18)

We first show that m is monotone non-decreasing. For any x,,x;€X, x; <x,

h by (13
we have by (13) C,(x) <= Cylxy).

Hence m,(x,), m,(x})e C,(x,), and also by (16)

m,(x,) v my(xi)e Cy(x;).
Thus
my(x)) Smy(x ) v m, (X)) =m,(x)).
Furthermore, by (13)
C,(my(x ) = Cy(m,(xh)).

Hence m(x,), m(x};)e C,(m,(x})), and then

m(x,) v m(xy)e Cy(m,(x1))-
Consequently
m(x,) Em(x,) v m(xy)=m(x)).
Next, by (15) and (17)

m(x,)2h;, x,eX.
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Therefore we get

m(h)=m (m,(h))=h,.
This implies that K is not empty. For any xeK, we have

m(x)e C,(m,(x)),
and by (13) <m(x)<
x<m(x)<g,.

This implies that K is bounded above. Consequently m has a fixed point x* by
Lemma 4.
Finally, we shall show that the pair (z,, z,) defined by

2, =m(x*)eCi(z,), z,=m,(x*)eC,(z,) (19)
satisfies (5), (6), (7) and (8). It is easy to see that (5), (6) and (8) are verified. For
simplicity we set

um)=E[z;(Rvn)|#], R=T*AS*
The optional sampling theorem yields u>z,. By (5) and (12) we have

um=E[g,(Rvn)|F£]=<gn).
For any Sell,
u(S)=E[2,(R v 8)| F] = 2,(S) = hy ().
Moreover,
Eluln+ )| Z]1=E[z;(Rv(n+1))| %]
=E[lgonzi R+l geyz,(n+ ) F]
%E[l(RM) z(R)+ 1(R§n) z,(n) | Z]1=u(n).

Consequently u belongs to C,(z,). By maximality u=z,. Similarly (7) is verified
for i=2. Thus the theorem is established.

§ 5. Remarks

Let us consider the case of (4). In [4], J.M. Bismut showed the existence of a
saddle point under Mokobodzki’s assumption:
There exist two submartingales x, ye X~) such that

h1.s_x'“y§g1> (20)
where
X T ={xeX|x<0}.

In this case, (11) and (12) are stronger than (20). Also, we can see that (20) is
equivalent to the following condition:
There exist x,ye X~ such that

x=Q(y+gy), y=0(x—hy), 1)

where Q x denote the Snell envelope of x, i.e,, Q x(n)=ess inf E[x(T)| Z].
Tzn
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Indeed, it is clear that (20) implies (21). We define the mapping w:
X5 X by
w(x)=0(Q(x—hy)+g,).

Then the assumption of Lemma 4 is fulfilled by (21) and w has a fixed point in
X, Thus the assertion follows.
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