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w 1. I n t r o d u c t i o n  

o ~ _ 0, 1, 2 . . . .  ) an increasing se- Let ( O , ~ P )  be a probabi l i ty  space and ( ,, n =  
quence of sub-a-fields of  ~ Let X be the class of all (~ ) - adap ted  sequences 
(x(n)) of r a n d o m  variables such that  

EEsup Ix(n)l] < oo, l i m x ( n ) = 0  a.s. 
n t l  

We notice that  X is a complete lattice, that  is to say, every non-empty  
bounded  subset of  X has a greatest lower bound  and a least upper  bound.  For  
any (~ ) - s topp ing  t ime T, let H r denote the class of all (~ ) - s topp ing  times 
S>_T. 

Now,  we are given 
gi, hiEX, i=1,2. (1) 

Let us consider the non zero-sum stochastic game whose payoff  functions are 
given by 

J1 (T, S) = E [ l(r  < s) g 1 ( r )  + l(s _< r) h ~ (S)] 
- (2) 

J2(T, S)=EEl(s<_r ) g2(S) + l ( r<s  ) h2 (T)], (T, S)~H o x H o. 

We call (T*, S*)EH o x H o a Nash  point  for the game if 

J1 (T*, S*) --~J1 (r~ S*) 

J2(T*, S*) <=Jz(T*, S), (T, S ) a H  o x H o. 
(3) 

Our  interest lies in finding a Nash  point, which is an extension of a saddle 
point  in the zero-sum game:  

h~ = - g 2 ,  h2 = - g l '  (4) 
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This problem was first considered by A. Bensoussan and A. Friedman [2] in 
the diffusion case. However, it is not known whether the regularity of the 
solution of the quasi variational inequality holds, which is needed for the 
existence of a Nash point. 

The purpose of this paper is to give sufficient conditions for the existence of 
a Nash point by using the martingale method and the fixed point theorem for 
monotone mappings. 

w 2. Main Results 

The main results of this paper are the following. 

Theorem 1. Suppose that there exists z i~X , i= 1, 2, such that 

Zi~gi, 

(zi(n)) is a submartingale, 

zi(n)=E[zi((T* A S*) v n ) [~ ] ,  n=O, 1,2 . . . . .  

zl(S*)=hl(S*), z2(T*)=h2(T*), 
where 

T*=min{nlz l (n)=gl(n)} ,  S*=min{nlz2(n)=g2(n)}. 

Then (T*, S*) is a Nash point for the game. 

Theorem 2. We assume that for each i= 1, 2, 

hi < gi, 

h i is a submartingale, 

gi is a supermartingale. 

Then there exists z isX,  i= 1, 2, satisfying (5), (6), (7) and (8). 

(5) 

(6) 

(7) 

(8) 

(9) 

(lO) 

(11) 

(12) 

w 3. Proof of Theorem 1 

By (7), (8) and (9) we have 

zl(0 ) = E [zl(T*/x S*) I ~o] 

=E[l(r ,<s,)zt(T*)+ l(s,~T,)Zl(S*)lYo] 

= Ell(T* < S*) gl (T*) + l(s, ~ T*) hi (S*) I ~o]- 

For any T~H o, it follows from (6), (7), (8) and the optional sampling theorem 
that 

zt(O ) < E[z l (T  /x S*) I ~ol 

---E[I(T<s,)Zl(T)+ l(s,~r) zl(S*)lYo] 

< E[  l(T <s,)gl(r)+ l(s,<=rlh~(S*)l ~o~, 
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and thus 

Similarly we get 

The  p roof  is complete.  

J~ (T*, S*) = E [zx (0)] < J~ (T, S*). 

J2 (T*, S*) = E [z 2 (0)] < J2 (T*, S). 

w 4. Proof of Theorem 2 

In order  to prove  the theorem,  we shall p repare  for two lemmas.  Fo r  any 
(xl, x2)~X x X, we define the subclasses Cl(x2) and C2(x~) of  X by 

Ci (x 2) = {x ~ X I x < g 1, x is a submart ingale ,  

x(S)=ht(S) for any  S~IIs~ where 

S 2 = rain {nix 2(n) > g2(n)}}, 
(13) 

C2 (x l )=  {x~Xlx<g2,  x is a submart ingale ,  

x(S)=h2(S) for any S~Ils~ where 

S 1 = min {nlxx(n) > gl(n)}}. 

L e m m a  3. Under (10) and (1l), the class C1(x2) x C2(xl) has a maximal element 
x* x*~ i.e. i~ 25~ 

x'~>y,, x*>Y2, (yl,y2)~Cl(x2)x C2(xl). (14) 

Proof. We shall show the existence of x~ in Cz(x2). By (10) and (11) we note  
that  

hleC,(x2) , hz~C2(xl), (xl,xa)~X x X. (15) 

Let  Y={y~} be any total ly ordered subset  of C1(x2). Since yx<g~ ,  we can 
define y = (y(n))~X by 

y(n) = ess sup ya(n). 
,t 

Clearly y<g~, and also 

E[y(n + 1)l ~ ]  > E [y~(n + 1)1~3_-> y~.(n), 

which implies that  y is a submart ingale .  Let  S~11s~ be arbi t rary.  Since Y is 
directed upwards,  there exists, for any  fixed n, a sequence (2k) such that  

y(n) = lira yx~(n). 
k 

Hence  we have on the set {S=n},  

y(S) = y (n) = lim y2~(n) = lira yjo~ (S) = h ~(S). 

This implies y(S)=h~(S). Consequent ly ,  we have y~C~(x2) and y is an upper  
bound  of  Y. 
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By Zorn's lemma, CI(X2) has a maximal element x*. Similarly C2(xi) has a 
maximal element x*. It is easy to see that 

Yl, Y2 e Cl(x2) (resp. Cz(x l ) )~y  1 v y2e C1(x2) (resp. C2(x0). (16) 

Therefore (x*, x~) satisfies (14). The proof is complete. 

Lemma 4. Let (A, <) be a complete lattice and let f :  A--, A be a monotone non- 
decreasing mapping. Suppose that the set B = { x e A I x <  f(x)} is bounded above 
and not empty. Then f has at least one fixed point. 

Proof The proof follows from a slight modification of the Knaster-Birkhoff 
theorem (see [-1, Th. 9.25]). By assumption, B has a least upper bound aEA. 
For any xeB, we have 

x <f (x )  <f(a),  

and then a <f(a). Furthermore, 

Thus 

Furthermore, by (13) 

f(a) < f( f(a)) ,  

which implies f (a)eB and f (a)<a.  Thus the lemma is proved. 

Proof of Theorem 2. Let us define the mapping mi: X ~ X ,  i=  1, 2, by 

mi(x2)= x* (17) 
m2(xl)=x*, (xl,x2)eXxX, 

where (x*, x~) is a maximal element of Cl(x2)x C2(xl). We define the mapping 
m: X ~ X  and the subset K of X by 

m=m 1 .m 2, K = { x e X I x < m ( x ) } .  (18) 

We first show that m is monotone non-decreasing. For any xt ,x ' ieX,  xi<x'a, 
we have by (13) 

C2(X1) C C2(x1). 

Hence m2(xi), m2(x'l)~ C2(xi), and also by (16) 

m2(xl) v m2(x'Oe C2(xO. 
, < 

m2(xi) =m2(Xl) v m 2 ( x ' l ) = m 2 ( x i ) .  

Consequently 

Next, by (15) and (17) 

C i (m 2 (x 1)) c C1 (m2 (x])). 

Hence m(xl), m(x'Oe Cl(m2(x'O), and then 

m(xl) v m(xl)e Cl (mz(Xl) ). 

m(x~) <= m(x~) v m ( x l )  = m(xl). 

ml(x2)>=hi, x2~X. 
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Therefore  we get 

m (ha) = ml (m2 (hi)) > ha. 

This implies that  K is not  empty. Fo r  any xeK,  we have 

m (x) e C a (m2 (x)), 
and by (13) 

x<=m(x)<=g 1. 

This implies that K is bounded  above. Consequent ly  m has a fixed point  x* by 
L e m m a  4. 

Finally, we shall show that the pair  (zl, z2) defined by 

z 1 =m(x*)eCl(z2), Zz=-mz(X*)EC2(za) (19) 

satisfies (5), (6), (7) and (8). It is easy to see that  (5), (6) and (8) are verified. For  
simplicity we set 

u(n)=E[za(Rvn) l~] ,  R=T* AS*. 

The opt ional  sampling theorem yields u>z 1. By (5) and (12) we have 

u (n) < E [ga (R v n) l ff,] < ga (n). 

For  any SEHs, 

Moreover ,  

E [u (n + 1 )1 ~ ]  = E [za (R v (n + 1)) I g . ]  

u(S) =E[za(R v S) [ ~s]  -= zl(S)=ha(S).  

= E [l(g >,,) za(R) + l(R_<n) za(n + 1 ) t ~ ]  

=> E [I(R >,) za(R) + I(R _<,7 Za (n) l ~ 3  = u (n). 

Consequent ly  u belongs to Ca(z2). By maximal i ty  u=z 1. Similarly (7) is verified 
for i = 2. Thus the theorem is established. 

w 5. Remarks 

Let us consider the case of (4). In [41, J.M. Bismut showed the existence of a 
saddle point  under  Mokobodzki ' s  assumption:  

There  exist two submart ingales x, y~X (-) such that  

where 
ha <=x-y<=g a, 

X~-I= {x~Xlx<O}. 

(20) 

x<=Q(y+ga), y < Q ( x - h l ) ,  

where Qx denote  the Snell envelope of x, i.e., Qx(n)=ess in fE[x(T)[~] .  
T ~ n  

(21) 

In this case, (11) and (12) are s tronger than (20). Also, we can see that  (20) is 
equivalent to the following condi t ion:  

There  exist x ,y~X ~-) such that 
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Indeed ,  it is c lear  tha t  (20) impl ies  (21). W e  def ine  the  m a p p i n g  w: 
X ( - )  ~ X (-)  by  

w (x) -- Q (Q (x - hi) + gl)- 

T h e n  the  a s s u m p t i o n  of  L e m m a  4 is fulfi l led by  (21) a n d  w has  a fixed po in t  in  
X (-). T h u s  the  a s se r t ion  follows. 
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