Non-Zero-Sum Discrete Parameter Stochastic Games with Stopping Times

Hiroaki Morimoto

Department of Mathematics, Faculty of General Education, Ehime University, Matsuyama 790, Japan

w 1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space and $(\mathcal{F}_n, n=0, 1, 2, ...)$ an increasing sequence of sub- σ -fields of $\mathscr F$. Let X be the class of all $(\mathscr F_n)$ -adapted sequences $(x(n))$ of random variables such that

$$
E[\sup_n |x(n)|] < \infty, \quad \lim_n x(n) = 0 \text{ a.s.}
$$

We notice that X is a complete lattice, that is to say, every non-empty bounded subset of X has a greatest lower bound and a least upper bound. For any (\mathscr{F}_n) -stopping time T, let Π_T denote the class of all (\mathscr{F}_n) -stopping times $S \geq T$.

Now, we are given

$$
g_i, h_i \in X, \qquad i = 1, 2. \tag{1}
$$

9 Springer-Verlag 1986

Let us consider the non zero-sum stochastic game whose payoff functions are given by

$$
J_1(T, S) = E[1_{(T < S)} g_1(T) + 1_{(S \le T)} h_1(S)]
$$

\n
$$
J_2(T, S) = E[1_{(S \le T)} g_2(S) + 1_{(T < S)} h_2(T)], \quad (T, S) \in H_0 \times H_0.
$$
\n(2)

We call $(T^*, S^*) \in H_0 \times H_0$ a Nash point for the game if

$$
J_1(T^*, S^*) \le J_1(T, S^*)
$$

\n
$$
J_2(T^*, S^*) \le J_2(T^*, S), \quad (T, S) \in \Pi_0 \times \Pi_0.
$$
\n(3)

Our interest lies in finding a Nash point, which is an extension of a saddle point in the zero-sum game:

$$
h_1 = -g_2, \quad h_2 = -g_1. \tag{4}
$$

This problem was first considered by A. Bensoussan and A. Friedman [2] in the diffusion case. However, it is not known whether the regularity of the solution of the quasi variational inequality holds, which is needed for the existence of a Nash point.

The purpose of this paper is to give sufficient conditions for the existence of a Nash point by using the martingale method and the fixed point theorem for monotone mappings.

w 2. Main Results

The main results of this paper are the following.

Theorem 1. *Suppose that there exists* $z_i \in X$, $i = 1, 2$, such that

$$
z_i \leq g_i,\tag{5}
$$

$$
(z_i(n)) \t{is a submartingale}, \t(6)
$$

$$
z_i(n) = E[z_i((T^* \wedge S^*) \vee n) | \mathcal{F}_n], \quad n = 0, 1, 2, ..., \tag{7}
$$

$$
z_1(S^*) = h_1(S^*), \qquad z_2(T^*) = h_2(T^*), \tag{8}
$$

where

$$
T^* = \min \{ n \mid z_1(n) = g_1(n) \}, \quad S^* = \min \{ n \mid z_2(n) = g_2(n) \}. \tag{9}
$$

Then (T, S*) is a Nash point for the game.*

Theorem 2. We assume that for each $i = 1, 2,$

$$
h_i \leq g_i,\tag{10}
$$

$$
h_i \t{is a submartingale}, \t(11)
$$

$$
g_i \t{is a supermartingale.} \t(12)
$$

Then there exists $z_i \in X$, $i = 1, 2$, *satisfying* (5), (6), (7) *and* (8).

w 3. Proof of Theorem 1

By (7), (8) and (9) we have

$$
z_1(0) = E[z_1(T^* \wedge S^*) | \mathcal{F}_0]
$$

= $E[1_{(T^* < S^*)} z_1(T^*) + 1_{(S^* \le T^*)} z_1(S^*) | \mathcal{F}_0]$
= $E[1_{(T^* < S^*)} g_1(T^*) + 1_{(S^* \le T^*)} h_1(S^*) | \mathcal{F}_0].$

For any $T \in \Pi_0$, it follows from (6), (7), (8) and the optional sampling theorem that \hat{D} \geq F_{[z} (T \geq C*) π

$$
z_1(0) \leq E \left[z_1(T \wedge S^*) | \mathcal{S}_0 \right]
$$

= $E \left[1_{(T < S^*)} z_1(T) + 1_{(S^* \leq T)} z_1(S^*) | \mathcal{F}_0 \right]$

$$
\leq E \left[1_{(T < S^*)} g_1(T) + 1_{(S^* \leq T)} h_1(S^*) | \mathcal{F}_0 \right],
$$

and thus

$$
J_1(T^*, S^*) = E[z_1(0)] \le J_1(T, S^*).
$$

Similarly we get

$$
J_2(T^*, S^*) = E[z_2(0)] \leq J_2(T^*, S).
$$

The proof is complete.

w 4. Proof of Theorem 2

In order to prove the theorem, we shall prepare for two lemmas. For any $(x_1, x_2) \in X \times X$, we define the subclasses $C_1(x_2)$ and $C_2(x_1)$ of X by

$$
C_1(x_2) = \{x \in X | x \leq g_1, x \text{ is a submartingale,}
$$

\n
$$
x(S) = h_1(S) \text{ for any } S \in \Pi_{S_2} \text{ where}
$$

\n
$$
S_2 = \min\{n | x_2(n) \geq g_2(n)\}\},
$$

\n
$$
C_2(x_1) = \{x \in X | x \leq g_2, x \text{ is a submartingale,}
$$

\n
$$
x(S) = h_2(S) \text{ for any } S \in \Pi_{S_1} \text{ where}
$$
\n(13)

$$
S_1 = \min\{n \mid x_1(n) \geq g_1(n)\}.
$$

Lemma 3. *Under* (10) *and* (11), *the class* $C_1(x_2) \times C_2(x_1)$ *has a maximal element* (x_1^*, x_2^*) , i.e.

$$
x_1^* \ge y_1, \qquad x_2^* \ge y_2, \qquad (y_1, y_2) \in C_1(x_2) \times C_2(x_1). \tag{14}
$$

Proof. We shall show the existence of x^* in $C_1(x_2)$. By (10) and (11) we note that

$$
h_1 \in C_1(x_2), \quad h_2 \in C_2(x_1), \quad (x_1, x_2) \in X \times X. \tag{15}
$$

Let $Y = \{y_{\lambda}\}\$ be any totally ordered subset of $C_1(x_2)$. Since $y_{\lambda} \leq g_1$, we can define $y = (y(n)) \in X$ by

$$
y(n) = \operatorname{ess} \sup_{\lambda} y_{\lambda}(n).
$$

Clearly $y \leq g_1$, and also

$$
E[y(n+1)|\mathcal{F}_n] \geq E[y_{\lambda}(n+1)|\mathcal{F}_n] \geq y_{\lambda}(n),
$$

which implies that y is a submartingale. Let $S \in \Pi_{S_2}$ be arbitrary. Since Y is directed upwards, there exists, for any fixed *n*, a sequence (λ_k) such that

$$
y(n) = \lim_{k} y_{\lambda_k}(n).
$$

Hence we have on the set $\{S=n\}$,

$$
y(S) = y(n) = \lim_{k} y_{\lambda_k}(n) = \lim_{k} y_{\lambda_k}(S) = h_1(S).
$$

This implies $y(S) = h_1(S)$. Consequently, we have $y \in C_1(x_2)$ and y is an upper bound of Y.

By Zorn's lemma, $C_1(x_2)$ has a maximal element x_1^* . Similarly $C_2(x_1)$ has a maximal element x_i^* . It is easy to see that

$$
y_1, y_2 \in C_1(x_2)
$$
 (resp. $C_2(x_1) \Rightarrow y_1 \lor y_2 \in C_1(x_2)$ (resp. $C_2(x_1)$). (16)

Therefore (x_1^*, x_2^*) satisfies (14). The proof is complete.

Lemma 4. Let (A, \leq) be a complete lattice and let $f: A \rightarrow A$ be a monotone non*decreasing mapping. Suppose that the set* $B = \{x \in A | x \le f(x)\}\$ *is bounded above and not empty. Then f has at least one fixed point.*

Proof. The proof follows from a slight modification of the Knaster-Birkhoff theorem (see [1, Th. 9.25]). By assumption, B has a least upper bound $a \in A$. For any *xeB,* we have

$$
x \leq f(x) \leq f(a),
$$

and then $a \leq f(a)$. Furthermore,

$$
f(a) \leq f(f(a)),
$$

which implies $f(a) \in B$ and $f(a) \le a$. Thus the lemma is proved.

Proof of Theorem 2. Let us define the mapping $m_i: X \rightarrow X$, $i = 1, 2$, by

$$
m_1(x_2) = x_1^*
$$

\n
$$
m_2(x_1) = x_2^*
$$
, $(x_1, x_2) \in X \times X$, (17)

where (x_1^*, x_2^*) is a maximal element of $C_1(x_2) \times C_2(x_1)$. We define the mapping *m:* $X \rightarrow X$ and the subset K of X by

$$
m = m_1 \cdot m_2, \qquad K = \{x \in X \mid x \le m(x)\}.
$$
 (18)

We first show that *m* is monotone non-decreasing. For any $x_1, x_1 \in X$, $x_1 \le x_1'$, we have by (13)

$$
C_2(x_1') \subset C_2(x_1).
$$

Hence $m_2(x_1)$, $m_2(x_1') \in C_2(x_1)$, and also by (16)

$$
m_2(x_1) \vee m_2(x_1') \in C_2(x_1).
$$

Thus

$$
m_2(x'_1) \leq m_2(x_1) \vee m_2(x'_1) = m_2(x_1).
$$

Furthermore, by (13)

 $C_1(m_2(x_1)) \subset C_1(m_2(x_1')).$

Hence $m(x_1), m(x_1') \in C_1(m_2(x_1'))$, and then

$$
m(x_1) \vee m(x_1') \in C_1(m_2(x_1')).
$$

Consequently

$$
m(x_1) \leq m(x_1) \vee m(x_1') = m(x_1').
$$

Next, by (15) and (17)

$$
m_1(x_2) \geq h_1, \quad x_2 \in X.
$$

Therefore we get

$$
m(h_1) = m_1(m_2(h_1)) \geq h_1.
$$

This implies that K is not empty. For any $x \in K$, we have

and by (13)
\n
$$
m(x) \in C_1(m_2(x)),
$$
\n
$$
x \le m(x) \le g_1.
$$

This implies that K is bounded above. Consequently m has a fixed point x^* by Lemma 4.

Finally, we shall show that the pair (z_1, z_2) defined by

$$
z_1 = m(x^*) \in C_1(z_2), \qquad z_2 = m_2(x^*) \in C_2(z_1)
$$
 (19)

satisfies (5) , (6) , (7) and (8) . It is easy to see that (5) , (6) and (8) are verified. For simplicity we set

$$
u(n) = E[z_1(R \vee n) | \mathcal{F}_n], \quad R = T^* \wedge S^*.
$$

The optional sampling theorem yields $u \geq z_1$. By (5) and (12) we have

 $u(n) \leq E\left[g_1(R \vee n) | \mathcal{F}_n\right] \leq g_1(n).$

For any $S \in \Pi_{S^*}$

$$
u(S) = E[z_1(R \vee S) | \mathcal{F}_S] = z_1(S) = h_1(S).
$$

Moreover,

$$
E[u(n+1)|\mathcal{F}_n] = E[z_1(R \vee (n+1))|\mathcal{F}_n]
$$

= $E[1_{(R>n)} z_1(R) + 1_{(R \le n)} z_1(n+1)|\mathcal{F}_n]$

$$
\ge E[1_{(R>n)} z_1(R) + 1_{(R \le n)} z_1(n)|\mathcal{F}_n] = u(n).
$$

Consequently *u* belongs to $C_1(z_2)$. By maximality $u=z_1$. Similarly (7) is verified for $i = 2$. Thus the theorem is established.

w 5. Remarks

Let us consider the case of (4) . In [4], J.M. Bismut showed the existence of a saddle point under Mokobodzki's assumption:

There exist two submartingales *x*, $y \in X^{(-)}$ such that

$$
h_1 \le x - y \le g_1,
$$

\n
$$
X^{(-)} = \{x \in X \mid x \le 0\}.
$$
\n(20)

In this case, (11) and (12) are stronger than (20) . Also, we can see that (20) is equivalent to the following condition:

There exist $x, y \in X^{(-)}$ such that

$$
x \le Q(y + g_1), \quad y \le Q(x - h_1), \tag{21}
$$

where Qx denote the Snell envelope of x, i.e., $Q x(n) = \operatorname{ess\ inf}_{T \ge n} E[x(T)|\mathcal{F}_n].$

where

Indeed, it is clear that (20) implies (21). We define the mapping w : $X^{(-)} \rightarrow X^{(-)}$ by

$$
w(x) = Q(Q(x - h_1) + g_1).
$$

Then the assumption of Lemma 4 is fulfilled by (21) and w has a fixed point in $X^{(-)}$. Thus the assertion follows.

References

- 1. Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities. New York: John Wiley 1984
- 2. Bensoussan, A., Friedman, A.: Non zero-sum stochastic differential games with stopping times and free boundary problems. Trans. Am. Math. Soc. 231, 275-327 (1977)
- 3. Bensoussan, A., Lions, J.L.: Contr61e impulsionnel et in6quations quasi-variationnelles. Paris: Dunod 1982
- 4. Bismut, J.M.: Contrôle de processus alternants et applications. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 247-288 (1979)
- 5. Neveu, J.: Discrete parameter martingales. Amsterdam: North-Holland 1975
- 6. Morimoto, H.: Dynkin games and martingale methods. Stochastics 13, 213-228 (1984)

Received January 14, 1985; in final form September 23, 1985