Non-Zero-Sum Discrete Parameter Stochastic Games with Stopping Times

Hiroaki Morimoto

Department of Mathematics, Faculty of General Education, Ehime University, Matsuyama 790, Japan

§1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space and $(\mathcal{F}_n, n=0, 1, 2, ...)$ an increasing sequence of sub- σ -fields of \mathcal{F} . Let X be the class of all (\mathcal{F}_n) -adapted sequences (x(n)) of random variables such that

$$E[\sup_{n} |x(n)|] < \infty, \quad \lim_{n} x(n) = 0 \text{ a.s.}$$

We notice that X is a complete lattice, that is to say, every non-empty bounded subset of X has a greatest lower bound and a least upper bound. For any (\mathscr{F}_n) -stopping time T, let Π_T denote the class of all (\mathscr{F}_n) -stopping times $S \ge T$.

Now, we are given

$$g_i, h_i \in X, \quad i = 1, 2.$$
 (1)

Probability Theory and Related Fields

© Springer-Verlag 1986

Let us consider the non zero-sum stochastic game whose payoff functions are given by

$$J_{1}(T, S) = E \left[1_{(T < S)} g_{1}(T) + 1_{(S \le T)} h_{1}(S) \right]$$

$$J_{2}(T, S) = E \left[1_{(S \le T)} g_{2}(S) + 1_{(T < S)} h_{2}(T) \right], \quad (T, S) \in \Pi_{0} \times \Pi_{0}.$$
(2)

We call $(T^*, S^*) \in \Pi_0 \times \Pi_0$ a Nash point for the game if

$$J_1(T^*, S^*) \leq J_1(T, S^*) J_2(T^*, S^*) \leq J_2(T^*, S), \quad (T, S) \in \Pi_0 \times \Pi_0.$$
(3)

Our interest lies in finding a Nash point, which is an extension of a saddle point in the zero-sum game:

$$h_1 = -g_2, \quad h_2 = -g_1.$$
 (4)

This problem was first considered by A. Bensoussan and A. Friedman [2] in the diffusion case. However, it is not known whether the regularity of the solution of the quasi variational inequality holds, which is needed for the existence of a Nash point.

The purpose of this paper is to give sufficient conditions for the existence of a Nash point by using the martingale method and the fixed point theorem for monotone mappings.

§2. Main Results

The main results of this paper are the following.

Theorem 1. Suppose that there exists $z_i \in X$, i = 1, 2, such that

$$z_i \leq g_i, \tag{5}$$

$$(z_i(n)) is a submartingale, (6)$$

$$z_i(n) = E[z_i((T^* \land S^*) \lor n) | \mathscr{F}_n], \quad n = 0, 1, 2, ...,$$
(7)

$$z_1(S^*) = h_1(S^*), \quad z_2(T^*) = h_2(T^*), \tag{8}$$

where

$$T^* = \min\{n \mid z_1(n) = g_1(n)\}, \quad S^* = \min\{n \mid z_2(n) = g_2(n)\}.$$
(9)

Then (T^*, S^*) is a Nash point for the game.

Theorem 2. We assume that for each i = 1, 2,

$$h_i \leq g_i, \tag{10}$$

$$h_i$$
 is a submartingale, (11)

$$g_i$$
 is a supermartingale. (12)

Then there exists $z_i \in X$, i = 1, 2, satisfying (5), (6), (7) and (8).

§3. Proof of Theorem 1

By (7), (8) and (9) we have

$$\begin{aligned} z_1(0) &= E[z_1(T^* \wedge S^*) | \mathscr{F}_0] \\ &= E[1_{(T^* < S^*)} z_1(T^*) + 1_{(S^* \le T^*)} z_1(S^*) | \mathscr{F}_0] \\ &= E[1_{(T^* < S^*)} g_1(T^*) + 1_{(S^* \le T^*)} h_1(S^*) | \mathscr{F}_0]. \end{aligned}$$

For any $T \in \Pi_0$, it follows from (6), (7), (8) and the optional sampling theorem that

$$z_{1}(0) \leq E [z_{1}(T \wedge S^{*}) | \mathscr{F}_{0}]$$

= $E [1_{(T < S^{*})} z_{1}(T) + 1_{(S^{*} \leq T)} z_{1}(S^{*}) | \mathscr{F}_{0}]$
 $\leq E [1_{(T < S^{*})} g_{1}(T) + 1_{(S^{*} \leq T)} h_{1}(S^{*}) | \mathscr{F}_{0}].$

and thus

$$J_1(T^*, S^*) = E[z_1(0)] \leq J_1(T, S^*).$$

Similarly we get

$$J_2(T^*, S^*) = E[z_2(0)] \leq J_2(T^*, S).$$

The proof is complete.

§4. Proof of Theorem 2

In order to prove the theorem, we shall prepare for two lemmas. For any $(x_1, x_2) \in X \times X$, we define the subclasses $C_1(x_2)$ and $C_2(x_1)$ of X by

$$C_{1}(x_{2}) = \{x \in X \mid x \leq g_{1}, x \text{ is a submartingale,} \\ x(S) = h_{1}(S) \text{ for any } S \in \Pi_{S_{2}} \text{ where} \\ S_{2} = \min\{n \mid x_{2}(n) \geq g_{2}(n)\}\}, \\ C_{2}(x_{1}) = \{x \in X \mid x \leq g_{2}, x \text{ is a submartingale,} \\ x(S) = h_{2}(S) \text{ for any } S \in \Pi_{S_{1}} \text{ where} \end{cases}$$
(13)

$$S_1 = \min\{n \,|\, x_1(n) \ge g_1(n)\}\}.$$

Lemma 3. Under (10) and (11), the class $C_1(x_2) \times C_2(x_1)$ has a maximal element (x_1^*, x_2^*) , i.e.

$$x_1^* \ge y_1, \quad x_2^* \ge y_2, \quad (y_1, y_2) \in C_1(x_2) \times C_2(x_1).$$
 (14)

Proof. We shall show the existence of x_1^* in $C_1(x_2)$. By (10) and (11) we note that

$$h_1 \in C_1(x_2), \quad h_2 \in C_2(x_1), \quad (x_1, x_2) \in X \times X.$$
 (15)

Let $Y = \{y_{\lambda}\}$ be any totally ordered subset of $C_1(x_2)$. Since $y_{\lambda} \leq g_1$, we can define $y = (y(n)) \in X$ by

$$y(n) = \operatorname{ess sup}_{\lambda} y_{\lambda}(n)$$

Clearly $y \leq g_1$, and also

$$E[y(n+1)|\mathscr{F}_n] \ge E[y_{\lambda}(n+1)|\mathscr{F}_n] \ge y_{\lambda}(n),$$

which implies that y is a submartingale. Let $S \in \Pi_{S_2}$ be arbitrary. Since Y is directed upwards, there exists, for any fixed n, a sequence (λ_k) such that

$$y(n) = \lim_{k} y_{\lambda_k}(n).$$

Hence we have on the set $\{S=n\}$,

$$y(S) = y(n) = \lim_{k} y_{\lambda_{k}}(n) = \lim_{k} y_{\lambda_{k}}(S) = h_{1}(S).$$

This implies $y(S) = h_1(S)$. Consequently, we have $y \in C_1(x_2)$ and y is an upper bound of Y.

By Zorn's lemma, $C_1(x_2)$ has a maximal element x_1^* . Similarly $C_2(x_1)$ has a maximal element x_2^* . It is easy to see that

$$y_1, y_2 \in C_1(x_2) \text{ (resp. } C_2(x_1)) \Rightarrow y_1 \lor y_2 \in C_1(x_2) \text{ (resp. } C_2(x_1)).$$
 (16)

Therefore (x_1^*, x_2^*) satisfies (14). The proof is complete.

Lemma 4. Let (A, \leq) be a complete lattice and let $f: A \rightarrow A$ be a monotone nondecreasing mapping. Suppose that the set $B = \{x \in A \mid x \leq f(x)\}$ is bounded above and not empty. Then f has at least one fixed point.

Proof. The proof follows from a slight modification of the Knaster-Birkhoff theorem (see [1, Th. 9.25]). By assumption, B has a least upper bound $a \in A$. For any $x \in B$, we have

$$x \leq f(x) \leq f(a)$$

and then $a \leq f(a)$. Furthermore,

$$f(a) \leq f(f(a)),$$

which implies $f(a) \in B$ and $f(a) \leq a$. Thus the lemma is proved.

Proof of Theorem 2. Let us define the mapping $m_i: X \to X$, i = 1, 2, by

$$m_1(x_2) = x_1^*$$

$$m_2(x_1) = x_2^*, \quad (x_1, x_2) \in X \times X,$$
(17)

where (x_1^*, x_2^*) is a maximal element of $C_1(x_2) \times C_2(x_1)$. We define the mapping $m: X \to X$ and the subset K of X by

$$m = m_1 \cdot m_2, \quad K = \{x \in X \mid x \le m(x)\}.$$
 (18)

We first show that *m* is monotone non-decreasing. For any $x_1, x'_1 \in X$, $x_1 \leq x'_1$, we have by (13)

$$C_2(x_1') \subset C_2(x_1)$$

Hence $m_2(x_1), m_2(x_1') \in C_2(x_1)$, and also by (16)

$$m_2(x_1) \lor m_2(x_1') \in C_2(x_1).$$

Thus

$$m_2(x'_1) \leq m_2(x_1) \lor m_2(x'_1) = m_2(x_1).$$

Furthermore, by (13)

 $C_1(m_2(x_1)) \subset C_1(m_2(x_1')).$

Hence $m(x_1), m(x'_1) \in C_1(m_2(x'_1))$, and then

$$m(x_1) \lor m(x_1') \in C_1(m_2(x_1')).$$

Consequently

$$m(x_1) \leq m(x_1) \lor m(x_1') = m(x_1').$$

Next, by (15) and (17)

$$m_1(x_2) \ge h_1, \qquad x_2 \in X.$$

Therefore we get

$$m(h_1) = m_1(m_2(h_1)) \ge h_1$$
.

This implies that K is not empty. For any $x \in K$, we have

and by (13)
$$m(x) \in C_1(m_2(x)),$$
$$x \leq m(x) \leq g_1.$$

This implies that K is bounded above. Consequently m has a fixed point x^* by Lemma 4.

Finally, we shall show that the pair (z_1, z_2) defined by

$$z_1 = m(x^*) \in C_1(z_2), \quad z_2 = m_2(x^*) \in C_2(z_1)$$
 (19)

satisfies (5), (6), (7) and (8). It is easy to see that (5), (6) and (8) are verified. For simplicity we set

$$u(n) = E[z_1(R \lor n) | \mathscr{F}_n], \quad R = T^* \land S^*.$$

The optional sampling theorem yields $u \ge z_1$. By (5) and (12) we have

 $u(n) \leq E[g_1(R \vee n) | \mathscr{F}_n] \leq g_1(n).$

For any $S \in \Pi_{S^*}$

$$u(S) = E[z_1(R \lor S) | \mathscr{F}_S] = z_1(S) = h_1(S).$$

Moreover,

$$E[u(n+1)|\mathscr{F}_n] = E[z_1(R \lor (n+1))|\mathscr{F}_n]$$

= $E[1_{(R>n)} z_1(R) + 1_{(R \le n)} z_1(n+1)|\mathscr{F}_n]$
 $\ge E[1_{(R>n)} z_1(R) + 1_{(R \le n)} z_1(n)|\mathscr{F}_n] = u(n).$

Consequently u belongs to $C_1(z_2)$. By maximality $u=z_1$. Similarly (7) is verified for i=2. Thus the theorem is established.

§5. Remarks

Let us consider the case of (4). In [4], J.M. Bismut showed the existence of a saddle point under Mokobodzki's assumption:

There exist two submartingales $x, y \in X^{(-)}$ such that

$$h_1 \leq x - y \leq g_1,$$
 (20)
 $X^{(-)} = \{x \in X | x \leq 0\}.$

where

In this case,
$$(11)$$
 and (12) are stronger than (20) . Also, we can see that (20) is equivalent to the following condition:

There exist $x, y \in X^{(-)}$ such that

$$x \leq Q(y+g_1), \quad y \leq Q(x-h_1),$$
 (21)

where Qx denote the Snell envelope of x, i.e., $Qx(n) = \mathop{\mathrm{ess \ inf}}_{T \ge n} E[x(T) | \mathscr{F}_n].$

Indeed, it is clear that (20) implies (21). We define the mapping w: $X^{(-)} \rightarrow X^{(-)}$ by

$$w(x) = Q(Q(x-h_1)+g_1).$$

Then the assumption of Lemma 4 is fulfilled by (21) and w has a fixed point in $X^{(-)}$. Thus the assertion follows.

References

- 1. Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities. New York: John Wiley 1984
- 2. Bensoussan, A., Friedman, A.: Non zero-sum stochastic differential games with stopping times and free boundary problems. Trans. Am. Math. Soc. 231, 275–327 (1977)
- 3. Bensoussan, A., Lions, J.L.: Contrôle impulsionnel et inéquations quasi-variationnelles. Paris: Dunod 1982
- 4. Bismut, J.M.: Contrôle de processus alternants et applications. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 247–288 (1979)
- 5. Neveu, J.: Discrete parameter martingales. Amsterdam: North-Holland 1975
- 6. Morimoto, H.: Dynkin games and martingale methods. Stochastics 13, 213-228 (1984)

Received January 14, 1985; in final form September 23, 1985