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Abstract 

A new hypothesis for the organization of synapses between 
neurons is proposed: "The synapse from neuron x to neuron y is 
reinforced when x fires provided that no neuron in the vicinity of y 
is firing stronger than y". By introducing this hypothesis, a new 
algorithm with which a multilayered neural network is effectively 
organized can be deduced. A self-organizing multilayered neural 
network, which is named "cognitron", is constructed following this 
algorithm, and is simulated on a digital computer. Unlike the 
organization of a usual brain models such as a three-layered per- 
ceptron, the self-organization of a cognitron progresses favorably 
without having a "teacher" which instructs in all particulars how the 
individual cells respond. After repetitive presentations of several 
stimulus patterns, the cognitron is self-organized in such a way that 
the receptive fields of the cells become relatively larger in a deeper 
layer. Each cell in the final layer integrates the information from 
whole parts of the first layer and selectively responds to a specific 
stimulus pattern or a feature. 

1. Introduction 

It is thought that the synaptic connections between 
neurons in the brain are not completely inherited, but 
are plastically modified by learning or experiences 
after birth. It is reported, for instance, that early 
experiences during maturat ion grossly modify the 
visual cortex of a cat. In the normal  adult cat, neurons 
of the visual cortex are selectively sensitive to the 
orientation of the lines and edges in the visual field, and 
the preferred orientation of different neurons are 
uniformly distributed in all orientations (Hubel and 
Wiesel, 1959, 1962 and 1965). Blakemore and Cooper 
(1970) reared kittens in an abnormal  environment 
consisting entirely of black-and-white stripes of one 
orientation. These animals had no cortical neurons 
responding to the orientation perpendicular to the 
stripes that they saw when they were young. It seems 
that the visual cortex adjusts itself during maturat ion 
to the nature of the visual experience. Perhaps the 
nervous systems are plastically modified to match the 
probabili ty of occurrence of features in the visual 
inputs. Such kind of self organization of neural networks 
would be more prominant  in the higher center of the 
brain. 

At present, however, the algorithm with which a 
neural network is self-organized is not known. 
Although several hypothesis for it have been proposed, 
none of them has been physiologically substantiated. 

The three-layered perceptron proposed by Rosen- 
blatt (1962) is one of the examples of the brain models 
based on such hypotheses. For  a while after the per- 
ceptron was proposed, its capability for information 
processing was greatly expected, and many research 
works on it have been made. With the progress of the 
researches, however, it was gradually revealed that the 
capability of the perceptron is not so large as it had 
been expected at the beginning. 

Although the perceptron consists of only three 
layers  of neurons, it is known that the capability of a 
layered neural network is greatly enlarged if the number 
of the neural layers is increased. A model of the 
mechanism of feature extraction in the visual nervous 
system proposed by the author (Fukushima, 1970 
and 1971) would be one of the examples which shows 
the capability of a multilayered neural network. In 
that model, however, the synaptic connections be- 
tween neurons are fixed, and the plastic modification 
of the synapses has not been considered. It can be 
inferred that, even for a neural network with modifiable 
synapses, the multiplication of the neural layers would 
increase the capability of the network. Since the 
algorithm with which a multilayered neural network 
can be effectively organized has not been known, how- 
ever, brain models with multilayered structure which 
have functions of memory  or learning have little been 
reported. Consequently, the selforganizing system or 
a brain model hitherto reported did not go beyond the 
confine of a three-layered perceptron, in which only 
the synapses between the last two layers are modifi- 
able. 

In this paper, a new hypothesis for the organization 
of synapses between neurons is proposed. By introduc- 
ing this hypothesis, a new algorithm with which a 
multilayered neural network is effectively organized 
can be deduced. A self-organizing multilayered neural 
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network is constructed following this algorithm, and 
is named a "cognitron", The performance of a cogni- 

(1 
tron has been simulated on a digital computer. 

In a cognitron, similarly to the animal's brain, 
synaptic connections between neurons are plastically 
modified so as to match the nature of its experience. 
The neurons become selectively responsive to the 
features which have been frequently presented. Since 
wasteful functions which are utilized only for the 
detection of rarely appearing features are not formed, 
the capability of the neural network can be fully b 
exhibited. 

2. Hypothesis on the Synapse Modification 

2.1. Hypotheses Hitherto Proposed 

According to Marr (1970), the hitherto-proposed 
hypotheses on the synapse modification are classified 
into the following three categories as shown in Fig. 1. 

In the hypothesis of Fig. la, a modifiable afferent 
synapse e i is excitatory at the beginning. It becomes 
ineffective, if and only if the postsynaptic cell y firs 
without presynaptic activity x v This hypothesis is 
based on the idea that the irrelevant synapses become 
ineffective. Incidentally, the inhibitory afferent synapses 
shown in the figure control the threshold of the cell y 
at an appropriate level. 

This hypothesis, however, has a fatal disadvantage: 
once an improper stimulus is given to the neural 
network, the network would suffer an irrecoverable 
damage, because the synapses are irreversibly modified 
only toward extinction. 

In the hypothesis of Fig. lb, a modifiable synapse 
c~ has a certain amount of excitatory component at the 
initial state. It will be reinforced if there is a presynaptic 
activity xi simultaneously with the firing of the post- 
synaptic cell y. This hypothesis is based on the idea 
that only the synapses relevant to the firing of the 
postsynaptic cell are reinforced. Such synapses are 
called Brindley Synapses. 

In a four-layered perception (Block et al., 1962), the 
synapses from AI-celts to Air-cells are of this type. 
Brindley synapses are also used in the model of visual 
cortex proposed by yon der Malsburg (1973), in which 
orientation sensitive simple cells are self-organized. In 
these models, Brindley synapses are used only between 
particular two layers. It is not known whether a 
multilayered network with only Brindley synapses 
can be favorably organized or not. Probably, very 
sophisticated initial connections between neurons 
would be necessary, in order a multi!ayered network 
with only Brindley synapses be favorably organized. 
The information quantity for such s0fisticated initial 
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Fig. la-c.  Hitherto-proposed three hypotheses on the modification 
of synapses 

connections might be too much to be transmitted 
hereditarily, if they are to be determined by birth not 
only in the distal system but also in the higher center 
of the brain. 

In the hypothesis of Fig. lc, the postsynaptic cell y 
possesses another synaptic input z which controls the 
reinforcement of its ordinary afferent synapses. An 
ordinary synapse ci, which is named a Hebb synapse, 
is initially ineffective, and is reinforced if there is a 
presynaptic activity x~ in conjunction with the control 
signal z. That is, the afferent synapses are reinforced 
following the state of the input signals at the moment 
when the control signal z comes. Marr (1969) proposes 
a hypothesis that the learning in the cerebellum is 
carried out by the synapses of this type, and that the 
afferent input from a climbing fiber corresponds to the 
control signal z. The control signal z is considered to 
be an instruction from a "teacher" for a "supervised 
learning". Following this concept, the modifiable 
synapses in a three-layered perceptron might be 
classified to this type. 

In order to organize a multilayered network 
composed of Hebb synapses, a "teacher" should give 
instructions how each individual cell should respond 
whenever a stimulus is given to the network. These 
instructions must be given not only to the cells of the 
final layer, but also to the cells of the intermediate 
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layers. It is difficult to imagine that such a "teacher" 
exists in the brain. 

Although above-mentioned hypotheses have been 
proposed, none of them has been physiologically 
substantiated, and they are still a matter of conjecture. 
Even if these hypotheses be accepted, it seems very 
difficult to deduce only from these hypotheses an 
algorithm for a successful organization of a multi- 
layered neural network. 

If the synapses are modified following the new 
hypothesis proposed below, however, even a multi- 
layered neural network can be satisfactory organized 
neither with a special "teacher" nor with sofisticated 
initial connections. #Z 

~> : excitatory / 
: inhibitoryJ modifiable 

~-y { q = 0  at t = 0  

c~ increases 
if x i > O m y = m a x ( y  . . . . .  y") 

(If c~ is an inhibitory synapse, 
the inhibitory effects increases) 

yn 

2.2. A New Hypothesis 

A new hypothesis on the modification of synapses is 
proposed here 1 (Fig. 2): 

The synaptic connection from cell x to cell y is 
reinforced if and only if the followin9 two conditions are 
simultaneously satisfied. 

(i) Presynaptic cell x fires. 
(ii) None of the postsynaptic cells situated near the 

cell y fires stronger (or brisker) than y. 
It is physiologically believed that there are two 

kinds of neurons: excitatory ones and inhibitory ones. 
The former cells give excitatory effects, and the latter 
cells give inhibitory effects to the postsynaptic cells. 
It is assumed that the above hypothesis holds in case 
where the presynaptic cell x is an inhibitory one as 
well as an excitatory one. Where, the reinforcement of 
an inhibitory synapse means that the synapse is made 
more inhibitory (not less inhibitory). 

It is assumed here that a cell does not always have a 
possibility to have afferent synapses from all the other 
cells. A cell can have afferent synapses only from a 
group of cells situated in a particular area predetermin- 
ed for each cell. This area is named "connectable area" 
of the cell. The connectable area is determined by the 
spread of the dendrites of the postsynaptic cell and the 
spread of the axon terminals of the presynaptic cells. 

Condition (ii) in the hypothesis means that, among 
a group of postsynaptic cells situated in a small area, 
only one cell has its afferent synapses reinforced. This 
small area is named a "vicinity area". The neighboring 
cells generally have approximately the same con-~ 
nectable area. Hence, if condition (ii) were neglected 
and only condition (i) were imposed, all the neigh- 
boring cells would become to have almost the same 
afferent synapses. As a matter of fact, however, since 

This hypothesis has been reported by the author in Japanese 
(Fukushima, 1974) 

Fig. 2. A new hypothesis on the modification of synapses 

condition (ii) is also imposed, only one cell which 
happens to have yielded a maximum output in the 
vicinity area is reinforced. The afferent synapses to 
other cells in the vicinity area, which have almost the 
same connectable areas, remains unchanged. 

This is the case where there is at least one post- 
synaptic cell firing in the vicinity area. If no post- 
synaptic cell happens to fire in a vicinity area, how- 
ever, all the postsynaptic cells in the area are to be 
reinforced under condition (i). Such a situation might 
occur, when the neural network is in an initial state 
where there are no connections between neurons, or 
when a stimulus unexperienced before is given to the 
network. Quantitatively speaking, however, as is 
discussed later, the amounts of the reinforcement of 
the afferent synapses are smaller when all the cells in the 
vicinity area are simultaneously reinforced than when 
only one cell is exclusively reinforced. 

Although the connectable areas of the cells in a 
vicinity area overlap each other, they do not strictly 
coincide with each other but are slightly different. 
Therefore, even if all the cells in the vicinity area are 
once reinforced simultaneously, it does not mean that 
all of these cells are grown to have identical afferent 
synapses. Once even a slight difference in character- 
istics is generated between the cells, it will grow further 
and further because of condition (ii). Hence, each cell 
becomes to have its own individual characteristics. 

If it is assumed that the synapses grow under 
these conditions, the neural network would also have 
a self-repairing function. That is, even if a certain cell 
is damaged, another cell will substitute for the 
damaged cell. When a cell which has responded strong- 
ly to a certain stimulus becomes nonresponsive 
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because of a damage, another cell which happens to 
respond stronger than the other cells to this stimulus 
will be grown so as to substitute for the damaged cell. 
Until the damage of the first cell, the second cell has 
been prevented from reinforcement of its afferent 
synapses. 

Here, let us discuss whether the hypothesis is 
reasonable. Let us suppose, for instance, that the 
following situation takes place. For the reinforcement 
of the synapses, a certain kind of chemical substance 
must be supplied to the postsynaptic ceils, and a kind of 
glia cells participate in the nourishment of this chemi- 
cal substance. The spread of one glia cell coincides 
with a vicinity area. The glia cell supplies the nutrient 
concentratedly to a single cell which has yielded a 
maximum output within the vicinity area. In case 
where no cell is firing in the vicinity area, however, all 
the cells in the area are equally supplied with the 
nutrient. Since the total amount of the nutrient 
supplied at a time is limitted, the amount of nutrient 
given to each individual cell becomes smaller in this 
case than in case where only one cell is concentratedly 
nourished. If such a situation is supposed, the hypo- 
thesis proposed here would not be so ill-advised. 

3. Neural Element 

Before discussing the structure of the multilayered 
neural network "cognitron", let us discuss the charac- 
teristics of neural elements employed in a cognitron. 

The neural element (which, in this paper, sometimes 
will be called merely a neuron or a cell) is of analog type 
with a mechanism of shunting inhibition. The inputs 
and the output of a neural element take non-negative 
analog values proportional to the pulse densities (or 
instantaneous mean frequencies) of the firing of the 
actual biological neurons. Let u(1) . . . . .  u(N) be the 
inputs from excitatory afferent synapses (that is, the 
the outputs of the presynaptic cells), and v(1),...,v(M) 
be the inputs from inhibitory afferent synapses. The 
output w of this cell is defined by: 

[ 1] 1 + ~ =  1 a(v)" u(v) 
w = q ,  > v -  . (1) 

b(#) . v ( # ) -  

where q~[] is a function defined by the following 
equation: 

{o ~0 [x] = (x < 0). (2) 

The conductances of the excitatory and inhibitory 
synapses a(v) and b(#) take non-negative analog 
values. 

The input-to-output characteristics of the cell could 
be interpreted as follows. The first term in [ ] of Eq. (1) 
stand for the membrane potential (short-term mean 
value), which is raised by the inputs from excitatory 
synapses, and, at the same time, is shunted by the effect 
of the inputs from inhibitory synapses. It is assumed 
that the cell fires with a pulse density proportional 
to the difference between the membrane potential 
determined in this way and the resting potential 
indicated by the second term in [ ] of Eq. (!). 

Let e be the sum of all the excitatory effects, and h 
be the sum of all the inhibitory effects. That is, 

e = ~ = ,  a(v). u(v), (3) 

h = ~ = 1  b(#)' v(#). (4) 

With these symbols, Eq. (1) can also be written as 

w=~o[ l+h  =(p . (5) 

When the inhibitory input is small (h ~ 1), we have 
w - o [ e - h ] ,  which coincides with the characteristics 
of the usual analog-threshold-element (Fukushima, 
1969). For a system like a cognitron where the synaptic 
conductances a(v) and b(#) increase further and further 
with the progress of learning, the employment of such 
elements like analog-threshold-elements is improper 
because their outputs increase boundlessly. In the 
cell proposed here, however, when the conductances 
of the input synapses increase and we have e>> 1 and 
h>> 1, Eq. (5) approximately becomes w ~ . o [ e / h -  1] 
where the output is determined by the ratio e/h not by 
the difference ore and h. Therefore, even if the synaptic 
conductances increase with learning, the output of the 
cell converges to a certain value without divergence, 
so long as both the excitatory synaptic conductances 
a(v) and the inhibitory ones b(#) increases with the 
same rate. 

Let us look at the input-to-output relation of the 
cell in case where the excitatory and the inhibitory 
input increase in proportion. If we write 

e=ex  , h=qx  

and if e > q holds, Eq. (5) can be transformed into 

(e- t l )x  
V I ) ~  - -  

1 +~x 

1 
- e -  t/{1 + tanh (~ log~x)}. 27 (6) 

This input-to-output relation coincides with a loga- 
rithmic relation expressed by Wever-Fechner's law to 
which a S-shaped saturation expressed by tanh is 



added. The same expression is often used as an em- 
pirical formula in neurophysiology and psychologyto 
approximate the nonlinear input-to-output relations 
of the sensory receptors (for instance, cones) and the 
overall sensory systems of animals. 

Since the neural element of this type resembles so 
well in characteristics to the biological neuron, it has 
a wide application not only for a cognitron but also 
for various kinds of visual and auditory information 
processing systems. 

4. Structure of  a Cognitron 

4.1. The Basic Structure 

According to the hypothesis discussed in Section 2.2, 
a self-organizing multilayered neural network, cogni- 
tron, is constructed (Fukushima, 1974). At first, the 
basic idea for the construction of a cognitron is 
discussed. 

The cognitron has a multilayered structure. It 
consists of a number of neural layers of a similar 
structure cascaded one after another. The/-th layer Ut 
consists of excitatory neurons ut(n) and inhibitory 
neurons vt(n), where n =(nx, ny) is a two-dimensional 
co-ordinates indicating the location of a cell. 

An excitatory cell ut(n ) receives modifiable synaptic 
connections from neurons u t _ i ( n + v  ) [veSt] and 
vt_a(n) in the preceding layer Ut-1. If we write the 
conductances of the synaptic connections as at(v, n) 
and bt(n), the output of the cell ut(n ) is given by 

ut(n)=(~ [ -l + ~ s ~  at(v' n) " ut-  i(n + v) - I + bt(n) " vt_ ~(n) (7) 

where St indicates the connectable area of a cell. 
Meanwhile, the inhibitory cell v~_l(n) receives 

fixed excitatory synaptic connections ct_l(v)[>0] 
from the neighboring excitatory cells ut_l(n +v), and 
yields an output equal to the mean value of the outputs 
of the neighboring cells: 

vt- l(n) = ~,~sz ct- l(v)" ut- l(n +v).  (8) 

The values of the fixed synaptic connections are so 
determined as to satisfies 

~ s ,  ct- i(v) = 1. (9) 

As is seen from Eqs. (7) and (8), the connectable area of 
the cell ut(n ) coincides with the connecting area of this 
inhibitory cell v t_ ,(n). Figure 3 shows how the cells of 
layers Ut_ i and U~ are connected. 

The reinforcement of the afferent synapses of cell 
ut(n ) takes place only when none of the cells situated 
in the vicinity of ut(n) is firing stronger than ut(n). Let 
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Fig. 3. The basic structure of the cognitron. The interconnections 
between two adjoining layers are shown 

fit(n) be a function which takes a value i or 0 depending 
whether the synaptic reinforcement for cell uz(n) 
is performed or not: 

I10 ifut(n)>=u~(n+v)for every vef2~ 
fit(n) = ~_ otherwise (10) 

where f2 t stand for a vicinity area (for instance, the area 
in which Iv[ < R  holds). 

When fit(n) = 1 holds and the reinforcement is to be 
performed, the amounts of the synaptic reinforcement 
Aat(v, n) and Abt(n) change depending whether ut(n)= 0 
or ut(n) > O. 
When ut(n) = O: 

Aat(v, n)= qo "c t - l (V) 'u t - l (n+v) ' f i t (n ) ,  (11) 

Abt(n) = qo " vt_ i(n) " fiZ(n) . (12) 

When ut(n ) > O: 

Aat(v, n)= ql "q -a (v ) ' u t - l ( n+v ) ' f i t ( n ) ,  (13) 

Abt(n) = ~wsz at(v, n) " ut_ l(n + v) fit(n) 
2v, ,  l(n) 

ql Y~,~sz c,-  ~(v) " uL  ~(n + v) 
= 2v~_ l(n) " fit(n) (14) 

where qo and qt are positive constants which satisfies 

qi > q 0 > 0 .  (15) 

4.2. Quantitative Analysis 

Let us discuss the implication of this algorithm on 
reinforcement. 

When both fi~(n)= 1 and ut(n)=0 hold, it is seen 
from Eq. (10) that there is no neuron firing in the 
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vicinity of ut(n). Consequently, also the other cells in 
its vicinity are reinforced following the algorithm of 
Eq. (11) and (12), if they are to be reinforced. As is seen 
from (15), the amounts of reinforcement are set smaller 
in this case than in case where u~(n) is the only cell 
reinforced in its vicinity. The latter case arises when 
both ,Sl(n ) = 1 and ul(n)>0 hold. 

As shown in Fig. 3, there are two paths of informa- 
tion flow from cell u~_ ~(n + v) in the preceding layer to 
cell uz(n): the excitatory information through the 
synapses of conductance at(v, n), and the inhibitory 
information transmitted via inhibitory cell v~_ l(n). As 
for the inhibitory information flow, the conductance 
of the synapse from u t_ l (n+v  ) to vg_a(n) is cl_l(v) 
which is unmodifiable, and the conductance of the 
inhibitory synapse from v l_ l(n) to ul(n ) is bz(n ) which is 
modifiable. The input-to-output characteristic of cell 
vt_ l(n) is linear since it does not have inhibitory inputs. 
Hence, the overall conductance of the inhibitory path 
from ut_l(n+v) to ut(n) is ct_l(v).bz(n ). 

Let rt(v, n) be the ratio of the amount of reinforce- 
ment of the excitatory conductance Aat(v, n) to that of 
the over all inhibitory conductance ct-l(v)" Abz(n): 

A at(v, n) 
r~(v, n ) :  ct- l(v) " Abz(n). (16) 

That is, rt(v, n) takes a value greater than or less than 1 
depending upon which of the excitatory or the in- 
hibitory connection from cell u~_ l(n+v) to ut(n) be 
reinforced stronger than the other. 

It is reduced from Eqs. (11) and (12), or from 
Eqs. (13) and (14), that rt(v, n)> 1 hods if and only if the 
following conditions are satisfied. 
When ut(n) = 0: 

u~_ ~(n + v) > vz- ~(n). (17) 

When uz(n ) > 0: 

ut_ l(n + v)> ~,~s, cz- l(l~) " u~- l(n + !a) (18) 
2v z_ l(n) 

As is seen from Eqs. (8) and (9), the output of cell 
vz-~(n) is equal to the (weighted) mean value of the 
outputs of the cells within the connectable area of 
uz(n). Accordingly, inequality (17) means that, when 
ut(n)=0, the excitatory connections from the cells 
responding stronger than the mean value are more 
reinforced than the inhibitory ones. As for the case 
where ut(n)>0, since the right side of inequality (18) 
is a little complicated, we will consider for a moment 
a simple case where all the outputs of the cells within 
the connectable area take value 0 or 1. In this special 
case, the right-hand side of inequality (18) is equal 

to 1/2. This means that, when u~(n)>O, the excitatory 
connections from the cells responding stronger than 1/2 
are more reinforced than the inhibitory ones. 

In both cases, qualitatively speaking, the excitatory 
connection is more reinforced than the inhibitory one 
from a cell which is yielding a relatively large response 
[rt(v, n) > lJ, and, inversely, the inhibitory connection 
is more reinforced than the excitatory one from a cell 
which is yielding a relatively small response [rt(v, 
n) < 1]. 

Generally, in a cognitron, the number of post- 
synaptic cells which are reinforced at one time tend to 
only one within a single vicinity area, after a certain 
degree of learning has taken place. Hence, at every 
instance, the distribution of strongly firing cells 
generally becomes sparse. Therefore, using Eqs. (16) 
and (11)-(14), we can conclude that the value of 
rl(v, n) is generally much smaller in case of ul(n)>0 
than in case of ul(n) = 0, if the inputs are the same for 
the two cases. That is, the relative amount of re- 
inforcement of the inhibitory synapses to that of the 
excitatory ones is much larger in the former case. As 
the result of such a strong reinforcement of the in- 
hibitory connections, the postsynaptic cells become 
reluctant to respond to other stimulus patterns than 
the one to which the cell has been reinforced, and the 
cognitron acquires the ability to differentiate a pattern 
from other similar patterns. 

The amount of reinforcement for the case of 
u~(n)>0 is so determined that the increment of the 
total excitatory effect to the postsynaptic cell is just 
2 times as large as that of the inhibitory one if the same 
stimulus pattern is given again. That is, 
when ut(n)>0: 

~ w s ,  Aal( v, n)- u l_ ~(n + v) = 2. (19) 
Abz(n) " vt- a(n) 

Therefore, if the same stimulus patterns are given 
repeatedly, the output of cell u~(n) gradually increases 
and tend to 1. This conclusion can be deduced from 
Eqs. (7) and (19). 

If the amount of reinforcement is shared in such a 
way between the excitatory and inhibitory synapses, 
however, the inhibitory synapses become too strong in 
case of ut(n)= 0. Let us consider for a moment what 
would happen if the synapses were to be reinforced 
according to Eqs. (13) and (14) even for ut(n)= 0. In the 
initial state where the synaptic connections from 
layer Ut-a to layer Uz are not completed, cell u~(n) 
might be presented with several kinds of different 
stimuli without yielding a response. If these stimulus 
patterns are random, the overall inhibitory connection 
from any of the cells uz-l(n + v) would become stronger 



than that of the excitatory one. Hence, cell u~(n) would 
become nonresponsive to any of the stimulus patterns, 
and the organization of the cognitron would stop. 
Actually, in case of ul(n)= 0, the amount of reinforce- 
ment of the excitatory synapse are kept small so as to 
satisfies the following equation. 
When u~(n) = 0: 

~ws, Aa,(v, n)=- Zv~s, c,_ l(v) . Abz(n ) . (20) 

Equation (20) means that the synapses are reinforced 
under the condition that the cell responds neither in an 
excitatory nor in an inhibitory manner to a uniform 
pattern (or to a d.c. component of the spatial fre- 
quency). 

4.3. Lateral Inhibition 

In the last two sections, the principles of the con- 
struction of a cognitron has been discussed. In the 
actual construction of the network, however, a little 
modification is made. 

An excitatory cell uz(n)receives lateral inhibition 
from the neighboring cells. That is, as shown in Fig. 3, 
there is a mechanism of backward lateral inhibition 
among the excitatory cells of the same layer. 

In the computer simulation mentioned later, how- 
ever, the backward lateral inhibition is substituted by 
a forward lateral inhibition in order to save the 
computation time. 

That is, the right-hand side of Eq. (7) is regarded as a 
intermediate output u'~(n) instead of the final output of 
the cell ut(n). The fined output ul(n) is obtained by 
application of lateral inhibition to this intermediate 
output ~(n). So, instead of Eq. (7), we have intermediate 
output u'z(n) by 

[ l + ~ ' ~ s ' a z ( v ' n ) ' u l - l ( n + v ) - l ]  (21) 
u'l(n) • q) 1 + bl(n ) �9 vz- l(n) 

and the final output of the cell is given by 

ul(n) = q) 1 + ~.~n,  gl(l~)" u'z(n + / ~ )  - -  1 . ( 2 2 )  

In this equation, gt(/~) represents the conductance of 
the equivalent forward lateral inhibition transformed 
from the backward one, and is determined so as to 
satisfy 

Z,~n, at(p) = 1 (23) 

where H~ represents the spread of this lateral inhibi- 
tion gl(/~). 

This kind of lateral inhibition is helpful for getting 
rid of an awkward situation mentioned below. Suppose 
that the spatial distribution pattern of the outputs of 
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the excitatory cells of U~ happens to be of the shape 
like, say, Mt. Fuji, and have a single peak surrounded 
by a wide spread slope. In such a case, any of the cells 
in the slope is in the state that some other cells in its 
vicinity are yielding larger outputs than it. Hence, no 
cell in the slope would be reinforced. It is only the cell 
at the peak that can be reinforced, and a favorable 
progress of the self-organization could not be ex- 
pected. 

If the above-mentioned mechanism of lateral 
inhibition is added to the network, however, the wide 
spread slope vanishes, and a number of cells in the 
layer can be reinforced at a time. This results in a 
successful self-organization. 

4.4. Connectable Areas and Branching of 
Axon Terminals 

A cognitron consists of many neural layers of the 
above-mentioned fundamental structure cascaded one 
after another. The layers are named Uo, Us... from the 
headmost one. Layer Uo is an input layer to which 
stimulus patterns are presented. The cells of layer Uo, 
however, are not necessarily the sensory receptor cells 
themselves.. We suppose that another neural network 
like a feature extractor is placed in front of layer Uo, 
and the cells of layer Uo receive the information 
already processed to some extent. Here we use the 
word "receptive field" in a wide sense: The area in 
layer Uo (not necessarily the sensory receptor layer) 
which affects the response of a cell in a deeper layer 
will be called the receptive field of the cell. 

In cascading layers, it is important how to determine 
the connectable area of each cell. Let us compare three 
possible methods shown in Fig. 4. 

In the method of Fig. 4a, the size of the connectable 
area of each cell is determined to become equal 
independent of the layer to which the cell belongs. In 
this case, however, even if the number of layers are 
increased, the receptive field of a cell of the last layer 
does not increase its size so noticeably. In order the 
receptive field of a cell of the last layer covers the whole 
U 0 layer, a considerable number of layers should be 
cascaded. 

On the other hand, in the method of Fig. 4b, the 
size of the connectable area of a cell increases with the 
depth of the layer in which the cell is situated. In this 
case, the receptive field of a cell in the last layer can be 
made to cover the whole U o layer with a less number of 
layers than for the method of Fig. 4a. If the sizes of the 
connectable areas are determined in such a way, how- 
ever, all the cells in a deeper layer, especially in the last 
layer, would become to have almost identical connect- 
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a) 

b) 

Fig. 4a-c. Three possible methods for interconfiecting layers. The 
connectable area of each cell is differently chosen in these three 
methods. Method c is adopted for the cognitron discussed in this 

paper 

able area because of too much overlapping. Hence, in 
order to make each cell have its own individual 
character, it is necessary to widen the size of the 
vicinity area f2~ (which is the area in which the reinforce- 
ment of more than two cells is generally prevented). 
Consequently, we have a situation where only one or a 
few cell fire at a time in the last layer. This seems to 
contradict to the  situation in the animals brain where 
it is supposed that many cells would fire for one 
stimulus pattern, and that the configuration of the 
firing pattern would correspond to a "concept". 
Furthermore, no more processing of information 
could be expected in this case, even if another layer is 
cascaded after the last layer, since the cells of the newly 
added layer would normally have only one firing cell 
at a time in their connectable areas. Judging from 
these, the method like Fig. 4b does not seem desirable 
either. 

It is true that, however, for some applications, it 
would be desirable to have a network in which the 
firing of only one cell correspond to one stimulus. In 
such a case, it is good enough to design the network 
having a structure like Fig. 4b. 

In Fig. 4c, the axons of the excitatory cells ramifies 
into a number of branches, and the destination of each 
branch is probabilistically distributed. The prob- 
abilistic distribution here does not mean, however, 
that the deviation of the destination from the starting 
position is completely random. The destinations are 
determined in such a way that branches with large 
deviation be less numerous. 

With this method, the receptive field of each cell of 
the last layer will cover the whole Uo-layer without 
widening the connectable areas of postsynaptic cells 
so much nor increasing the number of layers so much. 
It is also possible to cascade another layers after the 
last one , since a number of cells would fire at a time 
even in the last layer. 

In this paper, the method of Fig. 4c is adopted. 
Suppose that the axon of every excitatory cell uz(n) 
ramifies into (K + 1) branches. Let the spatial pattern 
representing the firing states of the terminals of these 
branches be u'/(n, k) [k=  0, 1, 2 . . . . .  K]. Suppose the 
branches with k = 0  are not deviated: 

u'[(n, O) = ul(n ) . (24) 

On the other hand, the destinations of the branches 
with k=~0 receive probabilistic permutation. Let ~Zk 
be the operator representing the permutation on n. 
Then we have 

{u'[(n, k)} = ~k{U,(n)} (k + 0). (25) 

Here the assignment of the permutation of each element 
is made in such a way that a permutation with small 
disparity between the positions before and after the 
permutation occurs more frequently. 

In the computer simulation mentioned later, we 
discuss the case with K = 1, that is, the case where each 
axon bifurcates into two branches. One of the two 
branches goes straight, but the other one receives a 
probabilistic permutation. 

In case where every axons ramifies, Eq. (21) is to be 
replaced by 

u'~(n)  = ~o 

.[1+ ~=~ . (26) 

Equations (8), (9), and (11)-(14) holds without change, 
if only the following replacements of the variables are 
carried out. 

uz-l(n+v) u~_l(n+v, k) 
ai(v, n)~at(v, n, k) 

(27) 
c~_ ~(v)--,c~_ ~(v, k) 

Y, vos,-  Z =o Zv s,. 

5. Computer Simulation 

5.1. The Parameters for the Simulation 

In the computer simulation, the parameters are 
chosen in the following way. 



The number of the layers are four, and the layers 
are named Uo, U,, ..., U4 from the front. In each layer, 
there are 12 x 12= 144 excitatory cells uz(n) and the 
same number of inhibitory cells vl(n ). 

The connectable area S, is a square of 5 x 5 = 25 in 
size for every I. The vicinity area ~2 t in which the re- 
inforcement of more than two cells is generally prevent- 
ed, is a little smaller and have a rhombic shape whose 
hight and width are both 5 (13 in area). The con- 
ductance cl(v, k) of the synaptic connection from an 
axon terminal uT(n + v) to a cell vl(n) is actually a func- 
tion of only v and independent of 1 and k. It is a two- 
dimensional Gaussian function of v. 

The spread of the lateral inhibition Hz is a square 
of 7 x 7 in size for every I. The value of the intercon- 
nection 91(/*) is independent of 1 and is a two-di- 
mensional Gaussian function of/, .  

The number of the branches of the ramified axon 
is 2 (K = 1). The permutation N,k (k = 1) of the destina- 
tions of the axon terminals has been determined in the 
following way. At first, from a matrix which indicating 
the starting position of each axon, a pair of horizontal- 
ly adjoining two elements have been chosen at random 
and have been permutated to each other. Next, from 
this new matrix, a pair of vertically adjoing two ele- 
ments have been chosen at random and also have been 
permutated. Such an operation has been repeated 
576 times each for the horizontal and vertical direction, 
and a matrix indicating the state of permutation ~lk 
has been obtained. Different random numbers have 
been used for l=  0, 1, and 2. The r.m.s, values of the 
disparities between the positions before and after the 
permutation determined in this way has been 3.28, 
3.54, and 4.05 for l = 0, 1, and 2, respectively. 

The parameters which determine the amount of 
reinforcement at a time are adjusted to q0 =2.0 and 
q ~ = 16.0. The initial conductances of all the modifiable 
synapses al(v, n, k) and hi(n) are chosen to be 0. 

Here, the method of boundary correction is dis- 
cussed briefly. Since the size of the neural layers is 
limited in the computer simulation, the connectable 
area S~ and the spread of the inhibitory connection Hz 
of a cell which is situated near the boundary might 
exceed the boundary of the layer. 

In Eqs. (9) and (23), if it is supposed that the sum- 
mation is taken only within the part of Sz or H, which 
is contained within the boundary of the layer, the 
left-hand sides of these equations would become less 
than 1 for such a chipped-off summation area. 

Hence, in case of u~(n)= 0, if the reinforcement is 
made following Eqs. (11) and (12), the inhibition would 
become too small for the cells near the boundary, and 
Eq. (20) would not be satisfied for such cells. In order 
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to avoid such an effect, the amount of reinforcement 
given by the right-hand side of Eq. (12) is compensated 
by dividing it by the value of left-hand side of Eq. (9) 
calculated in the above-mentioned sense. As for the 
lateral inhibitions, the values of g~(/,) themselves are 
compensated so as to satisfy the equation (23) in the 
sense mentioned above. 

5.2. Responses of the Cells of Each Layer 

Five stimulus patterns "0", "1", "2", "3", "4" have 
been presented repeatedly to layer Uo in a cyclic 
manner. These patterns have been selected to become 
simple figures when directly watched, only for the sake 
of the convenience for examining the response. These 
patterns do not necessarily stand for the unprocessed 
retinal images themselves. 

Figure 5 shows how the cells respond to each of 
the five stimulus patterns at the 20th cycle of presenta- 
tion. The responses of the cells of each layer are 
indicated by the whiteness in the photographs. As is 
seen in Fig. 5, the cognitron has been organized in such 
a way that each stimulus pattern elicits its own 
response pattern to every layer. Most of the cells, 
especially in layer U3, have become to respond 
selectively to one stimulus pattern. 

In order to show how the permutation of axon 
branches is made, Fig. 6 exemplifies the responses at 
the terminals of the permutated axon-branches for the 
stimulus pattern "4". 

5.3. Reverse Reproduction 

In order to verify that the synapses have been 
satisfactorily organized, an experiment by means of 
reverse reproduction is made. Actually, the information 
flow through a synapse is unilateral, and, in case of a 
cognitron, it is always in the direction from the front 
to the last layer. In the reverse reproduction, however, 
it is supposed that the direction of information flow 
through synapses were to be reversed, and the re- 
sponses of the cells under such condition are obtained 
by computer simulation. For example, if the reverse 
reproduction is made from a single cell of layer U1 
only the Uo-cells which have excitatory effect on this 
Ul-cell would respond. That is, the excitatory part of 
the receptive field of this Ul-cell can be seen. 

To be more exact, in the reverse reproduction, it 
is assumed that the information flows in the following 
way. If a cell u~(n) responds with an intensity ul(n), the 
amount of excitatory effect transmitted to a branched 
axon u~'_ l(n + v, k) of the preceding layer is al(v, n, k). 
uz(n), and the amount of inhibitory effect is cz- l(v, k). 
bl(n)'ul(n ). The inhibitory effect is transmitted via cell 
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Fig. 5. The responses of the cognitron to five different stimulus patterns. These stimulus patterns have been presented to layer U o in a cyclic 
manner. The responses at the 20th cycle of stimulus presentation are shown 

Fig. 6. An example of the responses at the terminals of the permutated axon-branches 

v l_ l(n). It is assumed that the excitatory cells of the 
preceding layer U~_ 1 has the input-to-output charac- 
teristic given by Eq. (5) also for the inputs in the reverse 
direction. The excitatory input e is assumed to be 
equal to the sum of the excitatory effects appeared at 

every branched axon terminals of the cell. The in- 
hibitory input h is also calculated in the same manner. 
By substituting these values e and h to Eq. (5), the 
response to the reverse inputs is calculated. It is sup- 
posed that the lateral inhibition discussed in Sec- 
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tion 4.3 does not work in the process of reverse 
reproduction. 

Figure 7 shows several results of reverse reproduc- 
tion from the normal response patterns for stimulus 
"4' after the 20th cycle of learning. That first line of 
Fig. 7 shows the normal response of the cognitron to 
stimulus pattern "4" presented to layer U 0 and is 
identical with the fifth line of Fig: 5. The second line of 
Fig. 7 shows the reverse reproduction of the response 
of layer U0 from the normal response pattern of 
layer U1. 

In the third line of Fig. 7, the response of layer U1 is 
reversely reproduced from the normal response pattern 
of layer U 2 at first, and, again from this result, the 
response of layer U o is reversely reproduced. The 
fourth line shows the results of reverse reproduction 
from layer U3. As is seen from these results, the input 
stimulus pattern is correctly reproduced by the 
reverse reproduction. 

In contrast to Fig. 7, in which the reverse reproduc- 
tion is made from the normal responses of the whole 
cells of a certain layer, Fig. 8 shows the results of reverse 
reproduction from single cells. The first line of Fig. 8 
is the same as that of Fig. 7, and shows the response of 
the cognitron in the normal state. In the second line of 
Fig. 8, a Ul-cell which happened to respond strongly 
to stimulus "4" is chosen at first. (Here, it is not so 
important which cell is to be chosen, provided that the 
cell has yielded a large response to this stimulus. 
In Fig. 8, the cell whose normal response to this 
stimulus is maximum among the cells of layer U1 has 
been chosen.) From this single cell, the response 
pattern of layer Uo is reversely reproduced. Since the 
connectable area, hence the receptive field, of this cell 
is situated at the lower right part of layer Uo, only the 
lower right part of pattern "4" is reproduced. It can be 
considered that, in the reverse reproduction, excita- 
tory responses are elicited only from the Uo-cells 
which, in the normal state, give excitatory effects to 
this Ul-cell. The third line of Fig. 8 shows the result of 
reverse reproduction from a single U2-cell which has 
yielded a maximum output, and the fourth line shows 
the result of reverse reproduction from a single 
U3-cell. 

As is seen from these results, the cells in a deeper 
layer have relatively larger receptive fields, and the 
receptive field of the chosen U3-cell covers the whole 
Uo-layer. That is, the deeper the layer is, the larger 
becomes the area from which a single cell of the layer 
integrates the information. In case of Fig. 8, the 
U3-cell watches the whole Uo-layer and correctly 
grasps the information of pattern "4". 

Figure 9 sums up the results of reverse reproduction 
for all the five stimulus patterns. It shows only the 

responses of U0-1ayer and the firing patterns of U3- 
layer from which the reverse reproduction are made. In 
the left half of Fig. 9, the results of reverse reproduc- 
tion from the whole U3-1ayer are shown. The right 
half of the figure shows the results of reverse reproduc- 
tion from single U3-cells whose outputs have been 
maximum in layer U3. It is seen that the original 
stimulus patterns are correctly reproduced by the 
process of reverse reproduction, except for some 
errors for pattern "0". The imperfect reproduction of 
pattern "0" from single U3-cell seems to be caused by 
the fact that this U3-cell happens to be situated near 
the periphery of U3-1ayer, and that the receptive field 
of this cell has been unable to cover the whole U0- 
layer. We can find a U3-cell, from which a better re- 
production of pattern "0" is obtained. The reversely 
reproduced pattern from such single cell is almost the 
same as the pattern shown at the left and on the first 
line in Fig. 9. As is seen from these experiments, 
reverse reproduction is made correctly except a little 
error for pattern "0". Then we can conclude that the 
self-organization of the cognitron has been successfully 
performed. 

5.4. The Time-Course of Synapse Organization 

Figure 10 shows the time course of synapse 
organization observed by the reverse reproduction. 
That is, the Ua-cell which has yielded a maximum 
output to pattern "2" at the 20th cycle of presentation 
is chosen at first. This is the same cell as the one 
chosen in the experiment shown in the right side on the 
third line of Fig. 9. In order to observe how the 
synaptic connections to this cell have been organized, 
we start again from the initial state. We make the 
reverse reproduction from this cell after every cycle of 
presentation of the five stimulus patterns, and observe 
how the reversely reproduced pattern of Uo-layer 
varies with time. The numeral letter to the upper left 
of each pattern in Fig. 10 indicates the time from the 
initial state measured in cycles of pattern presenta- 
tions. 

From the 1st to the 3rd cycle, no pattern is re- 
produced by the process of reverse reproduction, 
since the paths from U0-cells to this Ua-cell are not 
formed yet. At the 4th cycle, weak connections begin 
to be formed between the cells, and a faint pattern 
begins to appear. From the 4th to the 6th cycle, 
however, the reproduced pattern does not only contain 
the components of pattern "2" but also the components 
of patterns "0" and "1". These results show that, at this 
stage of development, this U3-cell has not come to 
selectively detect pattern "2" yet, and responds also 
to the components of patterns "0" and "1", 
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Fig. 7. Reverse reproduction from the normal 
responses of the whole cells of single layers. 
The first line shows the normal response to 
stimulus "4" at the 20th cycle of pattern 
presentation. The second, the third and the 
fourth lines show the reverse reproduction 
from the normal response patterns of layers 

U1, U2, and U 3 respectively 

Fig. 8. Reverse reproduction from single cells. 
The first line shows the normal response to 
stimulus "4". The second, the third and the 
fourth lines show the reverse reproduction 
from the single cells whose normal responses 
have been maximum among the cells of 

layers U~, Uz, and U3 respectively 



133 

Fig. 9. Summary of the results of reverse reproduction for five stimulus patterns. Left: the reverse reproduction of layer U 0 from the whole 
U 3 layer. Right: the reverse reproduction of layer U 0 from single U3-cells whose responses to the stimuli have been maximum in layer U 3 

Fig. 10. The time course of synapse organization observed by the reverse reproduction 

Since the magn i tude  of the r ep roduced  pa t te rns  
from the 4th to the 7th cycle are too  small  to be 
d i sp layed  with equal  level to  o ther  pat terns,  in Fig. 10, 
the pa t te rns  f rom the 4th to  the 6th cycle are d i sp layed  

with a level 8 t imes larger  than  actual ly  is, and  the one 
at the 7th cycle is d i sp layed  with a level 2 t imes larger.  

After the 7th cycle, the r ep roduced  pa t te rns  
g radua l ly  become to bear  a cons iderab le  resemblance  
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Fig. 11. The response of the cognitron to four stimulus patterns which resembles to one another. These stimulus patterns have been presented 
to layer Uo in a cyclic manner. The responses at the 20th cycle of stimulus presentation are shown 

to pattern "2", but contain some parts whose levels 
still remain low. This shows that some of the synapses 
have  not been fully developed yet. After 15th cycle, 
however, the reproduced patterns reach a steady state, 
and it is seen that the synaptic connections have been 
completed. 

5.5. Response to Resembling Patterns 

Between the stimulus patterns used in the above 
experiments, there are not strong resemblances. In 
such a case, the response patterns of U3-1ayer also bear 
little resemblance to each other. In this section, we 
discuss how the cognitron becomes to respond, if the 
stimulus patterns have considerable amounts of 
common components  with one another. 

The stimulus patterns presented to the cognitron 
are "X", "Y ' ,  "T",  and "Z", and are shown in the left 
column of Fig. 11. There are considerable amounts of 
common components  between "'X" and "Y", "Y" and 
" T ' ,  "T"  and "Z", "Z"  and " X ' ,  and also between 
"Y" and "Z". 

Figure 11 shows how the cells become to respond 
to these four stimulus patterns after 20 cycles of pattern 
presentation. In this case, even in layer U3, there are 
many cells which respond to fnore than two different 
stimulus patterns. Figure 12 shows to which pattern 

each Ua-cell responds. That is, Fig. 12 indicates, for 
instance, that the 3rd cell from the left on the 2nd line 
responds bo th"  T" and"Z".  In this figure, the magnitude 
of the response of each cell is neglected, and it is only 
checked whether the cell yields any output to the 
stimulus or not. In Fig. 12, we can find cells which 
respond to, for example, both "X" and "Y", which 
have several points of similarity to each other. We 

m=mmmmm=mm Z 

XY XY 
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XY XY 
,ZTI Z T 
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Z Z T 
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Y Y X 
T X T T 

Y 

,.x Y z x z x 
Y x Y YX Y 

T T T ,  T 

XY 

Fig. 12. List of the names of the stimulus patterns to which each 
U3-cell responds under the same condition as Fig. 11 
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Fig. 13. Reverse reproduction fiom the normal response patterns of the whole U3-1ayer. The 
stimulus patterns presented to the cognitron have been "X', "Y", "T", and "27', which are 

shown in Fig. 11 

Fig. 14. Typical examples of the reverse reproduction from single U3-cells. The conditions are 
the same as Fig. 13 

cannot find, however, cells which respond to both "X" 
and "T", between which there is little resemblance. 
These results show that resembling stimulus patterns 
elicit similar response patterns. 

Figure 13 shows the results of reverse reproduction 
from the normal response patterns of the whole 
U3-1ayer. It is seen that the original stimulus patterns 
are correctly reproduced except a little error for "Z". 

Figure 14 shows some typical examples of the 
reverse reproduction from single U3-cells. The left side 
pictures show the reversely reproduced patterns of 

layer U 0. The right side pictures show the U3-cells 
from which reverse reproduction is made. The letter 
drawn to the right of each of these pictures indicates 
the names of the stimulus patterns which elicit positive 
responses to these U 3 cells. 

The first line of Fig. 14 shows the reverse reproduc- 
tion from a single cell which responds only to stimulus 
"Y". It is seen that the pattern "Y" is correctly re- 
produced. Also, in the second line of Fig. 14, the 
stimulus pattern "T"  is reproduced fairly well, although 
the reproduced pattern is missing at one cell. It is seen 
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that the reversely reproduced pattern from a single 
cell which selectively responds to one stimulus pattern 
generally coincide with the original stimulus pattern 
fairly well. 

The third line of Fig. 14 shows the reverse re- 
production from a cell which responds to both "X" 
and "Y". The reproduced pattern in this case is a 
mixture between "X" and "Y". The same situation is 
observed for the pictures in the following lines of 
Fig. 14. The U3-cell shown in the bottom line of Fig. 14 
responds to "X ' ,  "Y" and "Z". The pattern reversely 
reproduced from this cell consists of a line component 
which is the common component among these three 
stimulus patterns. 

In some cases, a complete reproduction of the 
original pattern is impossible from only one U3-cell. 
For  example, the U3-cell shown in the second line of 
Fig. 14 is the one which gives the best reproduction 
of pattern "T", but the reversely reproduced pattern 
contains some error. The reverse reproduction from 
other U3-cells only give worse results. If the reverse 
reproduction is made from the whole cells of U3- 
layer, however, a complete reproduction of the original 
stimulus pattern is performed as has been shown in the 
third line of Fig. 13. As is seen from these results, the 
response of a single cell by itself does not always serve 
for pointing out the presented stimulus pattern cor- 
rectly, but the configuration of the spatial pattern 
representing the response of all the U3-cells serves for 
the purpose. That is, in the cognitron, even the cells of 
the last layer generally divide the work among them, 
rather than only one of the cells works alone for the 
information processing of each stimulus pattern. 

6. Conclusion 

A self-organizing multilayered neural network 
"cognitron" has been constructed following a new 
hypothesis on the synapse organization. The computer 
simulation of the cognitron has shown that the cogni- 
tron has characteristics similar to that of the animal's 
brain in many points. Since the cognitron has a 
multilayered structure, it seems to have a larger 
capability for information processing than the usual 
brain models or learning machines proposed before. 

The cognitron discussed in this paper is not 
intended to be a complete system for pattern recogni- 
tion: If we want to make a pattern recognizer with a 
cognitron, some other functions must be added to it. 

For  instance, a feature extractor with a function of 
normalization of position, size, etc. would be necessary 
to be added in front of the cognitron, and a decision 
circuit should be cascaded after the last layer of the 
cognitron. 

In the cognitron proposed here, the neural layers 
are merely cascaded one after another. It is expected 
that the neural network would acquire more ability if 
the structure of the network is modified. For instance, 
backward couplings between the cells of different 
layers, or cross couplings between the cells in the same 
layer would yield a better performance. Even for such 
cases, the algorithm used for the organization of the 
cognitron would be successfully applied. 

The author conjectures that the hypothesis on the 
synapse organization proposed here holds not only 
in the higher center of the brain but also in the distal 
parts of the sensory systems. This does not mean, 
however, that this hypothesis is the only one rule which 
controls the organization of all kinds of synapses. 
Perhaps, the organization of some kinds of synapses 
would be controlled by some other rules. 
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