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Summary. We consider systems of "modera te ly"  interacting particles, which 
are divided into a finite number of different subpopulations, and show that 
in the limit as the population size tends to infinity the empirical processes 
of the subpopulations converge to the solution of a system of reaction- 
diffusion equations. 

1. Introduction 

Systems of reaction-diffusion equations are used very frequently to establish 
deterministic mathematical models in natural sciences, in particular, in biology 
[12, 18, 26], or chemistry [21]. They are intended to describe large systems 
of interacting individuals, molecules, or particles. It is the aim of this paper 
to present a method, which allows to derive a fairly general class of such systems 
as limit dynamics of interacting stochastic many-particle systems. Our considera- 
tions are based on [-7, 17, 23, 24], where some simple examples had been investi- 
gated. 

In particular, we study for any N e N  a population of about  N individuals 
in R e, which is divided into K subpopulations. The individuals may move around 
in R a, may die, or give birth to new individuals, and may change their subpopula- 
tion. We rescale the interaction between the individuals in a suitable (moderate) 
way as the population size tends to infinity. Essentially, this means that for 
any fixed particle the drift coefficients, the birth-, death- and transition rates 
depend on the configuration of the remaining particles in a neighbourhood, 
which is macroscopically small, i.e. its volume tends to 0 as N ~ oo, and micro- 
scopically large, i.e. it contains an arbitrarily large number of individuals as 
N ~ oe. It is shown that for large N the empirical processes of the different 
subpopulations converge to the solution of a system of reaction-diffusion equa- 
tions. For  that we consider regularized versions of these empirical processes 
and study their asymptotic properties as L 2 (Ra)-valued stochastic processes. 

* This work has been supported by the Deutsche Forschungsgemeinschaft 
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This paper is organized as follows: In the next section we describe our 
model for the N-particle system and give a heuristic study of its limit behaviour. 
Section 3 contains the formulation of our results, which finally are proved in 
Sect. 4. 

2. Description of  the Model  

We consider for any N ~ N  a population in R a consisting of ~ N  individuals, 
which is divided into K subpopulations. We enumerate the members of this 
population by 1, 2, ..., and denote by M(N, r, t), r = 1, ..., K, the set of all indi- 
viduals belonging at time t to the r th subpopulation. Moreover, let M(N, t) 

K 
= U M(N, r, t) be the set of all individuals being alive at time t. For  convenience 

r = l  

we assign to any new-born a new number, which has not been used before. 
Let P~(t)~R a, k s M ( N ,  t), be the position of the kth individual at time t=>0. 

For the description of the subpopulations and the total population no distinction 
between individuals of the same species is needed. Hence, it is convenient to 
consider the measure valued empirical processes 

-~ 1 
t SN, , ( t )=~ ~ 6v~,(t), r = l , . . . , K ,  

k~M(N,r,t) 

and 
K 

t-->SN(t)= ~, SN, r(t)= ~ be~(t), 
r =  1 keM(N,t) 

where 5, denotes Dirac measure at a~R a. 

2.A. Densities for the N-particle System 

An essential ingredient of our model is the assumption that the dynamics of 
any individual depends on the configuration of the remaining population in 
a small neighbourhood. This interaction is formulated mathematically by using 
smooth versions of the empirical processes 

Star(X, t) = (Smr(t)* VN)(x), 
(2.1) 

~N,,(x, t) = (SN,~(t)* ~'N)(X), 

where " , "  denotes the convolution. VN and 17 N are probability densities, which 
are obtained from a fixed symmetric, sufficiently smooth function V 1 by the 
scaling 

VN(X ) = o~d V 1 (aNN), ~rN(X) = ~ V1 (~Nx), (2.2) 
where 

aN = Nt3/a, ~N = Nt~/d, (2.3) 

for fixed scaling exponents fl and fl satisfying 

O<f l<  d O<f l<  fl (2.4) 
d + 2 '  d + l "  
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The functions sN,r(x, t) and gN,~(x, t) formally represent the density or concen- 
tration of the r th  subpopulation near x at time t. This can seen most easily 
when V1 is the indicator function of a ball with volume 1 and centre 0, although 
such a choice does not satisfy our assumptions below on V1. In this case 

1 ~a times the number of particles of the r th  subpopulation sN,~ (x, t) = ~-  

at time t in the ball B(c~r a, x) with volume a/c a and centre x 

number of particles of M(N, r, t) in B(e~r d, x) 

volume of B(c~; a, x) 

1 
• 

size of the total population" 

The space element A x = B ( e ~ a , x )  is macroscopically small, since its volume 
a ;d  = N -p tends to 0 as N ~ oo. On the other hand, if the particles are distributed 
sufficiently smooth, one expects that the number of individuals of any subpopula- 
tion in B(~Tv a, x) is of order N x volume(B(~r d, x ) ) = N  1-~, which tends to oo 
as N -+ oo, i.e. A x is microscopically large. Hence the functions SN,,, and similarly 
~N,~, meet the usual heuristic picture of a "populat ion density" or "one-particle 
distribution function", as it is called in the context of statistical physics. For  
a discussion of this concept cf. [28], p. 75. 

The introduction of two versions, SN,, and ~u,~, of the concentrations has 
technical reasons, cf. (4.13). 

2. B. Dynamics o f  the N-particle System 

In our model we assume that any individual can change its state in three ways: 
- change of the position in space, 
- change of the internal state, i.e. transition from one subpopulation to 

another, 
- birth and death. 

The motion through space is described by a stochastic differential equation. 
Let k ~ M ( N ,  r, t). Then 

dP k (t) = FN,r (P~ (t), t) d t + ar d W k (t), (2.5) 

where wk( . )  are independent Re-valued standard Brownian motions, cr r, r 
= 1, ..., K, fixed nonsingular matrices, and FN,~(x, t), r =  t, . . . ,  K, vector-, i.e. 
R d-, valued functions depending on the position x and the densities sN,q(x, t), 
~N,q(x, t), q =  1, ..., K, introduced in Sect. 2.A. More  precisely, we assume 

K 

FN,r(x , t )= GN,r(X, t)-- ~ DN, qr(X, t) VSN, q(X, t), 
q = l  

(2.6) 
GN,r(X , t ) = G r ( x  , SN, I (X, t), . . . ,  SN,K(X, t)), 

DN, qr(X , t ) = D q r ( X  , SN, I (X, t) . . . . .  SN, K(X, 12)), 
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where Gr(/)q,) are fixed R d -  (Rd| d - )  valued functions. The second contribu- 
tion to FN,r can be utilized to model repulsion or attraction between different 
species q and r. This may be particularly useful in the description of predator- 
prey systems. 

However, let us mention here that we have to assume certain relations be- 
tween the matrix valued functions bq, and the diffusion matrices a~ (cf. (3.7, 8)) 
to prevent the system from collapsing due to too strong attraction. Essentially 
this means that the main contribution to the second summand of FN,, should 
be repulsion between different individuals. 

Furthermore,  any individual k ~ M ( N ,  r, t) at position P~(t)=y may induce 
discontinuous changes in the population structure. At time t it is supposed to 

- leave M ( N ,  r, t) and enter M ( N ,  q, t), q4:r, with intensity tN, rq(Y , t), or to 
- give birth to a new individual k * ~ M ( N ,  q, t), which at the moment  of 

its birth is located at y too, with intensity bN,~q(y, t), or to 
- die with intensity dN,r(Y, t). 

As in the case of the drift parameters, we assume that these intensities depend 
on the densities of the N-particle system, i.e. 

tN, rq(X, t)='i~q(X, ~N, 1 (X, t) . . . .  , ~N,r(X, t)), 

bN,rq(X, t) = 13,q(X, S~,l (X, t), ..., :~N,K(X, t)), (2.7) 

dN, r(x, t)=?tr(X, ~N, I (X, t), ..., ~N,K(X, t)). 

Of course we suppose 

t , ( . . . ) - 0 ,  r =  1, ..., K. (2.8) 

To avoid technical complications, which would yield no further insight, we 
assume that 

the functions G,, Dq~, tq~, Dqr and ~/, are C~, (2.9) 

i.e. infinitely differentiable and uniformly bounded together with all their deriva- 
tives. 

To obtain a condensed description of the discontinuous changes in the popu- 
lation structure we now introduce for any k = 1, 2, ..., r, q = 1 . . . . .  K and N ~ N  
the processes 

tN, rq(U)--flN,,q S 1M(N,r,s)(k)tN,,q(P~(s),s)d , 
\0 

*,k --  b,k ( u ) bm,q(u)--flN,,q I * , 1M(N,~,s)(k) bmr~(P~ (s), s) ds 
\ o  

*,k -- d,k ( u S) dN, r (u) -- flN,~ ~ lu(N,~,~)(k) dN, ~ (pk (S), S) d , 
\ 0  

where c,g b,k d,k fl2V.r are flN, rq independent standard Poisson processes. Hence fiN, ~q, and 
t *'k " ~ b *'k " " d* k, . the point processes N,,qtuL N, rq[U], s:r[U), O ~ u <  o0, have intensities 

k 1M(N .... )(k)tN,~q(Pd(u), u), I~tN .... )(k)bN,~q(P~(u), u), 
1M(tr . . . .  ) (k) dN, , (P~ (u), u) 
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for a jump of size + 1 at time u. Therefore these processes mark the instants, 
where the kth individual leaves the r th  and enters the qth subpopulation, gives 
birth to an individual of the qth subpopulation, or dies. 

As final point in this subsection we now use It6's formula to collect the 
different contributions to the time evolution of the individuals in stochastic 
differential equations describing the dynamics of the empirical processes Su.r. 
Using the notation ( # , f )  = ~ f(x) I~(dx) for any measure/~ and realvalued func- 

Ra 

tion f on R d we obtain for f e  C~' 1 (R e x R +) 

(SN,r(t), f(., t)) 
1 

= ~ Z f(P~ (t), t) 
kcM(N,r , t )  

1 
- N Z f (pk (0), O) 

keM(N,r ,O) 

1 

0 k~M(N,r,s)  \ \  

- F~ DN, qr(P~(s), s) VsN, q(N(s), s) �9 Vf (N(s) ,  s) 
q = l  

+g 2 A .... Vm~f(N(s),s)+ f(P~(s),s) ds 
m , n ~  l 

1 +~- i F~ vf(N(s), s).~rdWk(s) 
0 keM(N,r ,s )  

N ~=~ t*:kq(ds) + d~'k(ds) 
0 keM(N,r ,s )  q 

( N,~(ds)+ N,~(ds)) + ~  ~ f(n~(s),s) t *'k b *'k 
0 q= 1 k~M(N,q,s)  

= ( S N ,  r(O), f ( . ,  0 1 )  

0 q = l  

+~ ~ A . . . .  VmV, f(.,s)+ f(.,s) 
m,?l ~ 1 

K 

+ ~ (SN,q(s), (tN, qr(-, s)+bN, q~(., s))f(., s)))ds 
q = l  

+ M 1 ,  ( f  t) + M 2 r  ( f  t), r = 1, ..., K, (2.10) 
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where 

A r = (7 r 6 T, 
Ml (f, t) 

1 
i ~ Vf  (P~ (s), s). ar d W k (s), 

N o k~M(N,~,~) 

M2,~(f, t) 

i ~l(t} ' ,~q(ds) _ 1 y" f(n~(s), s) -- tN,,q(P~(s), s) ds) 
N o k~u(m~,s) 

(d*:~(ds) - d~c,r(P~(s), s) ds)) 
k 

+ 
l 

1 i 2 
0 q = l  k ~ M ( N , q , s )  

* ,k  + (bN, q, (d s) - bN, q~ (P~ (s), s) d s)). 

Obviously these processes M~,r( f  .), M~,r(f, .) are martingales with respect to 
the natural filtration {~}t> o generated by the processes 

t~(P~(t),lM(N,q,o(k))ZN.k(t), k = l , 2 , ' . . . ,  q- -1 , . . . ,K ,  N e N ,  

where Zmk is the indicator function of the lifetime of the kth individual. 
(2.10) is a summarizing description of our model. The task in the remainder 

of this paper will be the investigation of the behavior of this equation in the 
limit N ~ oo. Of course, in the proofs of our results we later shall try to shorten 
the notation as far as possible. We shall consider mainly typical or most instruc- 
tive parts of the interaction, e.g. the cross diffusion part determined by the 
functions DN, q,. 

2. C. Heuristic Derivation of the Limit Dynamics 

First we observe that (2.2.4) imply 

lim VN= lim ~N=8o (in the sense of distributions). (2.11) 

Now we assume that in some yet unspecified sense 

lira S~v,~(t)=S,(t), r = l , . . . , K ,  t>O, 
N ~ o o  

where the measures St(t) have smooth densities st(., t) with respect to Lebesgue 
measure. Hence by (2.1, 11) for r = l  . . . . .  K, t_>0 

and 

lim sN,~ (., t) = lim gN,~ (., t) = s~ (., t), 
N ~  N ~ o o  

lim Vsm~(., t)= Vsr(., t). 
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Furthermore one may show that the quadratic variations of the martingales 
M~,r(f, .) and M2 r(f,.) tend to 0 as N ~ o o .  Hence they can be neglected in 
this limit and we formally obtain from (2.6, 7, 10) 

(s,(., t),f(., t)} 
= ( s *  (.), f ( . ,  0 ) }  

+ s~(.,s), G~,r(.,s)-- ~ Doo,qr(.,s) Vsq(.,s .Vf(. ,s) 
q=l  

+~ ~ A . . . .  VmV, f ( . , s )+ f( . ,s)  
l,n,tl ~ l 

K 
+ ~ (sq(., s),(t,,~(., s)+b~,q,(., s))f(., s)}] ds, 

q=l  / 

f e C 2 ' l ( R a  x R+), r=l , , . . ,K ,  t>=O, (2.12) 

where s*(,) is the density of St(0), and 

G o v , r ( X ,  t ) =  Gr(x,  s 1 ( x ,  t )  . . . . .  S K ( X  , t)), 

D ~o.rq (x, t)= D,q (x, S 1 (X, t) . . . . .  S K (X, t)), 

to~,,~(x, t ) = 7 ~ ( x ,  s~(x, t), . . . ,  sK(x, t)), (2.13) 

boo. ~q(x, t)= l)rq(x, s I (x, t), ..., sK(x, t)), 

d~,~(x, t)= ZUx, s~ (x, t), ... , si,(x, t)), 

Using integration by parts we notice that (2.12) is a weak form of the system 
of reaction-diffusion equations 

0t ' q=l 

1 d 
+ ~  y~ A . . . .  VmV, s,(x,t)  

111.,11=1 

(" ) -- q~=, too,,q(x, t)+do~,~(x, t) sr t) 

K 

+ ~ (too,qr(x,t)+boo,q~(x,t))sq(x,t), t>_O, (2.14) 
q=l  

s , ( x ,  0)  = s *  (x) ,  r = 1, . . . ,  K. (2.15) 

For  the exact derivation of (2.14, 15) we shall show that for Te(0, oo) the expres- 
K 

sion sup ~, IIsN,~(., t)-s~(., 0112 vanishes as N ~ o o .  
t<=T r= 1 
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3. The Results 

After some technical assumptions we present our main results and then conclude 
this section with a discussion, in particular, of the relations to other work. 

3.A. Assumptions 

We assume that the interaction potential Va can be written as a convolution 
product 

V I ( X ) = ( W 1  * W1)(x)= I WI(x--Y) WI(Y)dy (3.1) 
Ila 

for some symmetric probability density W1 satisfying 

and 

I7V1 ~ C2 (Ra), (3.2) 

I ~(z)l  ~ C exp(- C'l~l), (3.3) 

IA ~(01  ~ C(1 + 1~12)1 ~a(z)l, (3.4) 

v --+ 117V1 (v z) l, v > 0, is decreasing for any fixed z e R e. (3.5) 

Here and in the rest of this paper  y('c)=(270 -el2 ~ f ( x ) e x p ( - i z x ) d x  is the 
Ra 

Fourier transform off~LZ(Ra).  Moreover we denote by C, C', C", ... finite posi- 
tive constants, which may vary from place to place. Sometimes we write 
C(a, b . . . .  ) to express dependence of a constant C on parameters a, b, . . . .  In 
analogy to (2.1, 2) we define 

^ ^d w,,(x)=c4 w~ (~,,x), w,,(x)---c~ w~ (a,,x), 

hs, ~ (x, t) = (SN,~ (t)* WN) (x), r = 1 . . . .  , K. 

Like sN, r or ~N,r the functions hN,r represent densities for the N-particle system. 

Remarks: 

(i) (3.1-5) are satisfied, e.g. if V1 is a Gaussian probability density. 

(ii) (2.2), (3.1, 3) imply WN, VN, ~'N~C~ ~ for any N~N.  Therefore the functions 
SN,~(., t), ~N,~(', t) and hm~(., t) are smooth too with e.g. 

~kl +... + kd t) 
(~Xl)kl...(~Xd)kd ~,,.,(., <= C(kl . . . . .  ke) (S,,(t), 1) ~ '  +...+k~+e, 

k l , . . . , k d e N ,  r = l , . . . , K ,  t>O. (3.6) 

We still need some ellipticity of the principal contributions to the right 
side of (2.14), i.e., the highest order differential expressions. More precisely, we 
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assume the existence of a symmetric positive definite E =(Eij)i,j= 1 . . . . .  K, such 
that 

K 

2 Eij([)~li('")xq)'xJ>-~O' i=1  . . . . .  K, x l ,  ..., x ~ R  d, (3.7) 
j , q = l  

and 
K K 

Eqjxq.Ajxj>=C ~ Ixql 2, X 1 ,  . . . , xKeR  a. (3.8) 
j , q = l  q = l  

These conditions are satisfied for example in the following situations: 

(i) For d = 1, if the functions/),q(...) = d~0 are constant for some symmetric 
positive definite matrix (d,q)r, q= 1 ..... r and if A~ is independent of r. In this case 
we can choose Eia = ~/ij. 

(ii) For arbitrary d>=l and positive definite A,, i f /9~q(. . . )-0 for r+q, and 
if the d x d-matrices/)qq(...) are nonnegative definite. Here we can use Eij= a~j. 

Unfortunately, there seems to exist so far no general result assuring the unique 
existence of a sufficiently regular solution (Sl, ..., s~) of parabolic systems like 
(2.14, 15). For this reason we base our further considerations on the following 
hypothesis: 

For some T > 0 the system (2.14, 15) has a unique C~-solution 
(sl . . . .  , sK) in [0, T]. The functions s,(., t) are positive and together with (z4r ~) 
their partial derivatives of any order integrable uniformly in t__< 77. 

A discussion of this hypothesis can be found in subsection 3. C. 

3.B. The Limit Theorem 

First we formulate a result concerning the asymptotics of the densities hN, r 
as N ~ .  

Theorem 1. Assume (2.1-9), (3.1-5, 7, 8), (Jr 

lira P [Ih~,r(.,0)-s*(.)ll2z__>~ =0, ~5>0, (3.9) 
N ~ c ~  r 

and 
lira sup P [(SN(0 ), 1) > n] = 0. (3.10) 

n ~  N e N  

Then for any ~ > 0 

lim P Hhu,r(., t ) -sr( . ,  t)ll~ 
N ~ ~ 1 7 6  r 

+ I 1llZhN,~(.,t)-Vsr(.,t)ll~d >a =0, (3.11) 
o 

where the system sl . . . .  , s~ is the unique solution of (2.14, 15). 
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(3.9) is satisfied, e.g. if (3.10) holds, and if conditioned on M ( N ,  q, 0), 
q-: 1 . . . .  , K, for any r = 1, ..., K the positions Pg(0), k e M ( N ,  r, 0), are i.i.d, with 
density (s*, 1) - 1 s*, cf. [24]. 

A convenient metric on the space of positive finite measure JC/(R a) on R e 
is defined by 

d(#, v ) = s u p { ( # - v , f ) "  f s  C~ (Ra), Ilfll 0o + II VIII ~o < 1}, 

which generates the weak-*-topology, cf. [11]. As the convolution kernel WN, 
which transforms SN.~(t) into hN.r(., t), tends to 3o as N ~ o e ,  we obtain from 
(3.11) the following corollary. 

Theorem 2. Assume the conditions of  Theorem 1, and 

lim sup P (SN,~(0), ~b 2)__> =0, (3.12) 
n ~ o o  N~N 

where ~ (x) = log (2 + x2). Then 

lim P ~, supd(SN~(t) ,s ,( . , t ))  >3  =0,  3>0.  (3.13) 
N--+~ L r = l  \ t = T  ' 

3. C. Discussion 

1. The hypothesis (oeg). The main problem in the verification of (W) is the proof 
of the H61der continuity of the functions Sr constituting a weak solution of 
(2.14, 15). Together with (2.9) and classical results on linear parabolic systems 
(cf. [15]) this can be used to obtain step by step the existence and boundedness 
of higher partial derivatives of s,, r = 1, ..., K. This H61der continuity has been 
derived e.g. in cases, where the principal part on the right side of (2.14) is 
uniformly elliptic and diagonal, i.e. ~)qr(...)==-O for qOer, E~j=g)ij (cf. [30, 31]). 

K 

For systems with Eij~gcSij we define r t)= ~ E~isi(x, t), r=  1, ..., K. Then 
i = 1  

we can write (2.14) as 

Ot b~(~~ (x, t), ..., q~K(x, t))= V. b(~o~ (x, t) . . . . .  OK(x, t))) Vcpv(x, t) 

+ minor terms, r = 1, ..., K, (3.14) 
where 

b (y~ . . . .  , Yr) = (bl (y x , . . . ,  Yx), . . . ,  bK (y t, ..., y~)), 
K 

br(Yl . . . .  , YK) = ~" (E-1)rqyq=(E- 'y)~,  
q = l  

and 
K 

F~p(x, b) = b r ~ bqr(x, bl . . . .  , bK)(E- ')qp + A t ( E -  1)~ v. 
q = l  

(3.7, 8) and the positivity of the functions sr imply that (Fv,(...))p,r= 1 ..... K is uni- 
formly elliptic. Such systems are studied e.g. in [1]. To our knowledge however, 
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regularity results like the H61der continuity of the solutions of (3.14), which 
are applicable in the present situation, are not available so far. 

Notice that for our calculations ( ~ )  could be weakened by demanding less 
differentiability properties (e.g. C 3) of the functions st. However, as the analytical 
difficulties to verify these less restrictive properties remain the same, and in 
order to save some notation, we use our C~-assumptions, 

2. Possible Extensions.  Sometimes it is desireable to introduce long-range inter- 
action between different particles. The description of stochastic many-particle 
systems, which model such situations, leads in the limit of large population 
sizes to integro-differential equations. This limit is sometimes called McKean- 
Vlasov limit and has been studied extensively in the literature, e.g. in [6, 16, 
22], and in a situation involving different species in [19, 20]. It should cause 
no serious problems to derive results quite analogous to Theorems 1 or 2 for 
a model supplemented by such long-range interactions. 

Similarly, it is fairly easy to include certain jump components into the spatial 
motion of the particles, such that the intensities for the jumps depend on 

In cases, where some diffusion matrices Ar vanish, one has to expect difficul- 
ties. It seems that one may proceed along similar lines as here, as long as 
(~4 ~) is satisfied. However, in general ( i f )  can get false for some T > 0 ,  even 
if the initial data are smooth. This shows the fairly simple example of the porous 
medium equation, where the first spatial derivative may become discontinuous, 
cf. [3]. Then one has to do additional work to find useful estimates for the 
behaviour of the empirical processes in those regions of space, where the solution 
of the limit equation gets degenerate, cf. [25]. 

The use of two scaling parameters/~ and fl, and hence of two versions SN, r 
and ~u,~ for the particle densities, is a consequence of the desire to handle density 
dependent cross diffusion terms. A careful check of the proof of Theorem 1 

reveals that one can use 0 < / ? = f l < ~ a  ~ instead of (2.4), if the matrices bqr 
only depend on x. If the Dqr vanish, we even can allow 0</~< 1, similarly 
as in [17] or [23]. 

3. Relat ions to Other Work. As far as our model for the N-particle system is 
regarded, there exist relations to [7, 17, 23, 24], where for quite simple models 
the interaction between the particles, i.e. its range and strength, is rescaled in 
the same way as here as N--, oo. In particular, the proofs of our results are 
based on methods, which have been applied in [24] to the model with K = 1, 
where G1, D1 l, and ~, vanish and/311 is the identity matrix. 

Different approaches to derive reaction-diffusion equations as limit dynamics 
of many-particle systems are investigated e.g. in [2, 4, 8-10, 13, 14]. The model 
in [9, 10] corresponds to a situation, which in our notation may be described 
as follows: K = I ,  L)ll, ~11, and G1 vanish, ~ l l ( X , S ) = S  , / ? = f l = l .  This scaling 
is essentially the reason that our methods are not applicable in that situation. 
An extension of [9, 10] (i.e./;11 ~ 0) is studied in [4], and a further modification 
in [8]. These papers start with models in discrete space, like [2, 13, 14], which 
can be regarded as high density versions of [9, 10]. One has reactions within 
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small cells containing many particles and diffusion between these cells. The 
idea to let the number of particles in each cell tend to infinity corresponds 
to our use of (2.1-4) to rescale the N-particle densities SU,r and ~N,r" 

The system (2.14, 15) is a standard equation of population dynamics, cf. 
[26], p. 169ff. Very often such equations exhibit a strange behaviour like the 
formation of travelling waves or spatial and temporal patterns. Our results indi- 
cate that in stochastic descriptions of large populations such phenomena may 
occur too. Of course, it is a long way to exact results on e.g. temporal patterns 
of stochastic models. An interesting result in this direction is [29], where time 
periodicity of the distribution of a model for the so-called Brusselator is proved. 
Travelling waves in many-particle systems are discussed e.g. in [5, 27]. 

Furthermore, [27] and the references therein give a survey on hydrodynamic 
behaviour of many-particle systems. This means that a limiting reaction-diffusion 
equation is obtained by leaving the dynamics fixed and rescaling space and 
time. This is in contrast to the situation here, where the change of the dynamics 
as N --* oo can not be obtained by a pure space-time scaling. 

4 .  P r o o f s  

First we shall give the derivation of Theorem 1 without the proof of a technical 
lemma, which is deferred to the end of this section, together with the proof 
of Theorem 2. 

4. A. Proof of Theorem 1 

To simplify our calculations and shorten the formulas we first assume that 
Gr, trq, b,q and d, vanish for any q, r = 1, ..., K. Then the size of the different 
subpopulations remains constant in time, and interaction between the individ- 
uals comes in only through the cross diffusion matrices DN, q, At the end of 
this subsection we shall indicate how to handle the general case. 

The idea of the proof is 
K 

- to write down It6's formula for the random function t ~  Y" Eq~(hN, q(.,t) 
--sq(., t), hs,~(., t ) -sr( . ,  t)), q,r= l 

- -  to show that the martingale part vanishes in the limit N --* oo, 
- to derive a suitable estimate for the bounded variation part, such that an 
application of Gronwall's inequality gets possible. 

We obtain from (2.1, 2, 10), (3.1), the symmetry of the matrix E, the symmetry 
of VN, which implies VVN(0)=0, and It6's formula 

K 
Eq~ (hN,q(., t), hm~(., t) ) 

q , r = l  

1 K 
- N2 ~', Eqr ~ VN(pk(t)--P~(t)) 

q , r  = 1 k ~ M  ( N , q , t ) ,  
l e M ( N , r , t )  
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1 K 
- N2 y~ e . ,  ~ v~(nZ(o)-P,4(o)) 

q , r=  1 k e M ( N , q , O ) ,  
l e M ( N , r , O )  

, = 1  0 k e M  , q , s ) ,  p = l  
l e M ( N , r , s ) ,  

k~-l  

v v~(P~(s) -  P~(s)) 

1 '  ) 
+~ ~ Aq,,~. V,~ ~ vN(P~(s)-e~(s)) ds 

m,tl = 1 

2 
z 

q , r = l  0 k c M ( N , q , s ) ,  
l c M ( N , r , s )  

k * l  

v vN (P~ (s) - n~ (s)) ~q d W k (s) 

= ~ eq,<hn,q(.,O),hN,r(.,O)) 
q , r :  1 

K t [  K 

- 2  Z Eqr f ( Z <SN,q(s), (DN, pq(., s) VsN,p(., s))-VSN,,(., S)) 
q , r = l  0 \p=l 

+�89 <A a VhN,q(., s), V h N , r ( .  , s)>) d s  

1 K d t 

~__lEqq ~n: Aq, m'VmV'VN(O) S <SN, q(s),l)ds 
Nq 1 o 

2 
q , r = l  0 kEM(N ,q , s )  

(4.1) 

By addit ionally using (2.14) we obtain in the same way as in (4.1) 

K 
~ Eq,(hN.q(., t), s,(., t)) 

q,r = 1 

K 

= ~ Eq,<hN,q(.,Ol, s~(.,O)) 
q , r=  1 

- -  1 Eq~ (<SN,q(S), (DN, pq(., S) VSN, p(., S)). Vs~(., s)* WN) 
q , r=  1 

+ <sq(., s), (D~,vq(., s) Vs,(., s)). V h N ,  r ( .  , s)>) 

+ �89 <Aq Vhn,q(., s), Vsr(., s)> + �89 < Vhn,q(. , s), Ar Vs~(., s))) ds 

1 
+ ~  ~ Eq, i 2 V(sr(.,s)* WN)(P~(s)).aqdWk(s), (4.2) 

q , r = l  0 k ~ M ( N , q , s )  

and 
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K 

= Y E, ,%( . ,0 ) , sr ( . ,0 ) )  
q,r  = 1 

-- 2q ~ = 1 (Sq(., s), (Do~,pq(., s) Vsp(., s)). Vs,(., s) ) 

+�89 Ysq(., s), Vs~(., s)))ds. (4.3) 

After adding (4.1-3) and combining the different terms in a suitable way we 
obtain 

K 

Eqr (hN,q(., t)--Sq(., t), hN,~(., t)-- Sr(., t)> 
q , r = l  

K 

= ~ Eqr((hN,q(., t), hN,r(., t)> 
q,r = 1 

- 2 (hmq(.,  t), s,(., t)) + (sq(., t), s,(., t))) 
K 

= ~ Eqr(hN, q(., 0 ) - sq ( . ,  0), hm~(., 0 ) - s t ( . ,  0)) 
q , r=  l 

K t 

--2 ~ Eq, ~ ((SN, q(S), (DN, pq(., S) VSN, p(., S)). V(sm,(., s)--s~(., s)* WN)) 
p ,q , r  = 1 0 

+ (sq (., s), (D oo,,q (., s) Vsp (., s)). V (s r (.,s) - -  hN, r (.,S)))) d s 

-- ~, Eqr i (Aq V(hN, q(., s)--Sq(., s)), V(hN,~(., s)-s,(., s))) ds 
q , r=  1 0 

1 Eqq ~ Aq VmV~VN(O)(SN, q(O),I)t 
N , m n  

q = l  m , n =  l 

2 K t 
+ N q~,Eq~ = k~Mm, (VsN,r(P~(s)'s)--V(sr("s)*WN)(P~(s)))'aqdWk(s) �9 

For  the integrand of the first integral on the right side of (4.4) we obtain 

( SN,q(S), (Dm pq(., s) V smp(., s)). V(SN,r(., S)-- Sr(., S)* WN) ) 
+ (So(., S), (D~,,q(., s) Vsp(., s)). V(sr(., s)--hN,~(., S))) 

= (SN,q (s), (DN, pq (., S) V(SN, p (., S) -- Sp (., S) * WN) ) 
�9 V ( S N , r ( .  , S ) - - S r ( ~  , S ) *  W N )  ) 

+ (SN,q(s)--sq(., s), (DN, pq(., s) Vsp(., s)* WN) 
V(sN,,(., s ) - s , ( . ,  s) ,  wN)5 

+ (sq(., s), ((DN.pq(. , s)-- D~, ,q( . ,  s)) Vsp(., s)* WN) 
�9 V(SN,r(.  , S ) - -Sr ( .  , S)* WN) ) 

+ (sq(., s), (Oo~ ,pq(., s) V(sp(., s)* WN--S,(., S))) 
" V ( S N , r ( .  , S ) - - S r ( .  , S ) *  W N )  5 

+ (sq(., s), (D~,pq(., s) Vsp(., s)) 
�9 V ( S N , r ( .  , S ) - - S r ( .  , S ) *  W u - - h N , r ( . ,  S ) + S r ( . ,  S))>. 

(4.4) 

(4.5) 
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By the ellipticity conditions (3.7, 8) we conclude 

and 

K 

Y, G (SN,~(s), (0,,,~(., s) V(sN.,(., s)-s ,( . ,  s). w~)) 
p , q , r  = 1 

�9 V ( s u , ~ ( . , s ) - s , ( . , s ) * W N ) ) > O ,  0___<s< oo, 

K 

~, Eq,(Aq V(hN, q(., s)--sq(., s)), V(hN,,(., s ) - G ( . ,  s))) 
q , r =  1 

K 

> C  ~ IIVhNM.,s)--Vsk(.,S)II~, 0 < s < o o .  
k = l  

(4.6) 

(4.7) 

To obtain useful upper bounds for the remaining terms on the right sides of 
(4.4, 5) we need the following facts, which are proved in subsection 4. B. 

Lemma 1. Assume f, V f  eLE(R~). Then 

Il f - f * WNII2 <= Cc~[~ 2 H V f ll~. (4.8) 

An analogous result holds, if we replace WN, c~N by 17V N, ~N. 
Next  let UN(x)= Ixl W~(x). Then for any finite positive measure I~ on R e and 

any e > 0  

[I,u* UN[122 < C~r~-2 II ,u. WNII~ + @, 1) 2 e x p ( -  C' a~v). (4.9) 

Moreover, for any finite signed measure ~ on R e 

II~* V,, II ~ _-</l~* VNII~ = I1~* Wull ~. (4.10) 

The constants in (4.8, 9) are independent o f f  and #. 

By (2.1), (3.1) we can write the second term on the right side of (4.5) as 

( SN,q (S)-- sq(., s), (Dm pq(., s) V sp(., s) * WN) 

V(sN.r(., s)-sr(., s). w,,)> 
= (sN.q(s)-sq(., s), ~ w~,(u)(ON,,q(.-u, s) Vsp(. -u ,  s). wN) 

Ra 

�9 V(hmr (. - u ,  s ) - s r ( .  - u, s)) du )  

+ (s~.~(s)-sq(., s), I W~(u)(O~,p~(., s) Vsp(., s), wN 
Ra 

--DN, p~(. --u, s) Vs,,(. --u, s). VN) 
�9 V(hm~ (. - u ,  s ) - s r ( .  - u ,  s)) du )  

= j1 ,  pq~ (s) + J~, pq~ (s). (4.11) 

By (2.6, 9, 13), (3.6), (4.8-10), ( ~ )  we obtain for the terms on the right side 
of (4.11) and the remaining expressions in (4.5) the following estimates, which 



580 K. Oelschl/iger 

hold uniformly in O<_s<_T and N s N .  The constant  C will be choosen  later 
in a suitable way. 

I J~,,qr(s) l 

= I(SN, q(s)--sq(., s))* WN, (DN, pq(., s) Vsp(., s)* WN) 

V(hmr(., s)--Sr(., s)))l 

< C II hn,q(., s)-sq(. ,  s)* WNII 2 II VhN,r(., s)-- Vsr(., s)ll 2 

< C(llhN,~(., s)--s~(., s)[12 + Ils~(., s)--s~(., s)* WNII9 

�9 I[ Vhn,r( ' ,  s ) - -  Vsr(. ,  s)ll~ 

a 1 
< C~(llhN,q(., s)--sq(., s)ll~ + c ~  ) + ~  [I Vhm,(., s)-- Vsr(. , s)ll~, (4.12) 

IJ~,pqr(S)l 
< (SN~(s) + s~(., s), f WN(U) I u I II V(DN, pq(., s) Vsp(. ,  s)* WN)II 0o 

Ra 

�9 [ VhN,,(. --u, s)-- VSr(, --U, S) I du) 
C a  d+ I((SN(S),  1)-1- 1) 

" ((NN,q(S)+Sq (., S))* UN, I Vhmr(.,  s) - -  Vs,( . ,  s) l )  

~_~ C a  d+ I(<SN(S), 1) + 1) 

�9 (c~-l(llhN,q(.,s)ll2+l)+((SN(s), 1 ) +  1) e x p ( - - C ' ~ ) )  

II VhN,~(., s)-- Vsr(o , s)ll 
<= C C ~  d+: c~[ - 2 ((SN(s), 1 ) 4 +  1)(Hhmq(., s)-sq(. ,  s)[[~ + 1) 

1 
+ ~  II Vhm~(., s ) -  Vsr(., s)lt 2 

(with 0 < ~ < 1 -- fl(d + 1)/fi), (4.13) 

I (sq(., s), ((Dmpq(., s)--Doo,pq(., s)) Vsp(., s)* WN) 

V(s~,~(., s ) - s ~ ( . ,  s ) .  wN))I 
K 

___% C F~ I1~,~(., s ) -s~( . ,  s)[l~ [1VSN,r(., S)-- VSr(. , S)* W~l[2 
l=1 

K 
__< c ~ (tl~,z(., s ) -s~( . ,  s ) .  f'~ll ~ + list(., s ) .  ~N-s~(. ,  s)l19 

l=l  

II V hN,r ( ' ,  S) -- V sr(. , s)lI2 

<C IlhN, t(.,s)--st(.,s)ll2+a~ ~ I[VhN,,(.,s)-Vs,(.,s)H2 

<__C~ IIhN,t(.,s)-s~(.,s)lh+a~ +~HVhN, r(.,s)-VSr(.,s)II~, (4.14) 
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I (sq(., s), (Do~,pq(., s) V(s,(., s)* W•-st,(., s))) 

- V(sN, r(., s ) - sd . ,  s).  w~))l 

2 1 <<_CC~; + ~  IIVh~,~(.,s)- Vs~(.,s)ll~, (4.15) 

I (sq(., s), (D~,pq(., s) Vsp(., s)) 

V(s~,,(., s)-s,( . ,  s). G-h~ , , ( . ,  s)+s,,(., s)))l 

= I(sq (., s)D,:,o,pq (., s) V s, (., s)--(Sq (., s)Doo,pq (., s) V sp (., s))* Wu, 

. Vhm,(. ,  s ) -  Vs~(., s) ) l  

<__ c ~ ;  ~ + 1 II VhN,,.(., s ) -  Vs,.(., s)ll ~. (4.16) 

We note that it is essentially the estimate (4.13) for jzpq,., where we use the 
fact that su,r and ~N,, are obtained by employing different scalings of 1/1. Next 
we obtain from (2.2, 3) 

I V,~ V. VN (0) l < C N a(d + 2)/d. (4.17) 

For the martingale 

�9 2 K 
MN(t )=~-  Z Eq, i ~ (VsN,~(P~(s), s ) - (Vs , ( . ,  s)* WN)(P~(s))).a~dWk(s) 

q,r= 1 0 k~M(N,q,s)  

on the right side of (4.4) we derive from (2.2, 3), (3.t) and Doob's  inequality 

g [sup I M~v(t) l ~0] 2 
t<=T 

<4 EEIM*(T)I21~.~o] 

= i 6  F_, S~,,,,(s), s ) -  Vs,(., s). W~) ds ~o 
N q = l  r = l  ' 

< C  g (hn,q( . ,s) ,[Vhm,( . ,s)-Vsr( . ,s)12)dsl~o 
= g q,r= l 

C d K T 

Since the matrix E is positive definite, we have 

1 ~ K r 
• ]y,I 2_-< ~ E,jyiyj<=2 ~, ly,[ 2, y l , . . . , y r e R ,  (4.19) 

i = 1  i , j = l  i=1  

for some 2 > 0. Now we may collect the different contributions (2.3, 4), (4.4-7, 11- 
19) to arrive at 
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E[sup I]hN,,(-, t)--sr(., t)]]~ + []1 Vhm~(., s)--Vs~(., s)[]~ ds ~o] 
r =  t k t<-  T 0 

<= c((s~(o), 1>~+ 1) 

it( . IlhN,r(.,O)-s*(.)ll~+~ZE[sup[lhmr(.,t)-s~(.,t)llglYo] 
r =  t<=T 

+ ~;r(a~ +0.~+2 c~,-~ +N~(~+2)/2- a) 

1 7" ds ~o~. + e  E[!  [[Vhmr(.,s)--Vsr(.,s)l[2 z (4.20) 

Suppose now that additionally 

P [(SN(0), 1)_--> no] =0, N~N,  (4.21) 

holds for some no. Then by (2.4), (3.9), and since we may choose C arbitrarily 
large, we immediately derive (3.11), at least if T __< (2 CC(n4o + 1))- 1 = T,,o" By itera- 
tion of our arguments in the time intervals IT, o, 2 T,o], [2 T,o, 3 T,o], ... we obtain 
its validity for arbitrary T. Now we obviously can replace (4.21) by (3.10) to 
finish the proof of Theorem 1 in this particular case, where G,, tq,, bq~ and 
~/r vanish. 

In the case, where ~ q ~ 0 ,  we have to add to the right side of (4.4) the 
terms 

K 

2 ~ E~i(<SN,,(s),b~,w(.,s)(s~,r(.,s)-s~(.,s).W~)> 
p , q , r =  l 0 

+ (s~,(., s), b~o.,q(., S)(Sr(., S)-- hm~(., s)))) ds 
2 K t 

+ ~  ~ Ea. I ~ (sN,,(P~(s),s)--(s,(.,s),WN)(n~(s))) 
p , q , r =  l 0 k E M ( N , p , s )  

(b~:kpq(ds) - bmpq(P~(s ), s) ds). (4.22) 

These terms can be estimated in exactly the same way as the corresponding 
expressions in (4.4), cf. (4.5, 18). We only have to notice that now the size 
(,Star(t), 1), r = 1, ..., K, and (,SN(t), 1) of the subpopulations and the total popu- 
lation depend on time. In particular, we obtain instead of (4.20) an inequality 
involving sup (,SN(t), 1)4 in place of (SN(0), 1)4. However, the arguments follow- 

t _ < T  
ing (4.20) rfiay easily be generalized to the present situation, since the uniform 
boundedness of the functions ~rq (cf. (2.9)) implies that the process t ~ (,SN(t), 1) 

1 
is stochastically dominated by ~ YN<s~,(o),a>(t), where Yk(') is a Yule process 

K 

with birth rate ~ II~qrhl ~ and Yk(0)= k. Especially, (3.10) implies 
q , r  = 1 

lira sup P [sup (SN (t), 1) > n] = 0. (4.23) 
n ~ , o e  N ~ N  t<- T 

In the slightly more general case, where G~, t~o and d~ don't vanish, one 
has to find estimates for more expressions like (4.22). However, since (4.23) 
remains valid, one observes no further difficulties. 
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4. B. Proof of Lemma I 

1 I f - f *  WNII~ = S If(z)12 ] 1 --(2~z)e/2 1~VN(27)12 dr 
Ra 

= j If(~)1211-(2rc) a/2 Wl(z/eN)12d.c 
R a 

_- j ly(~)l 2 1 1 - ( 2 , 0  *2 W,(~/=N)I 2 i~/=Nl2d~ 

--<~;2(2~r)~ II V~,IIL j If(~)l 2 Ivl 2 & 
R a 

(since W t (0) = (2 re)- a/2). 

By (3.2) we obtain (4.8). Next  we observe 

[. ( ~ #(dy) WN(x-y)Ix-yl)2dx 
Ra Ra 

< ~ lz(dy) WN(x-y)  h l x - y l 2 +  dx, A > 0 ,  
Ra 

and 

(2re) -a/2 S e -i~x WN(x)x2dx=--AWN(Z)=--c~[~2(AWl)(z/eN). (4.24) 
Ra 

Hence (3.3, 4) imply 

[. ( [. ,u(dy) WN(X--y)Ix--yl)2dx 
R a R a 

1 17VN(z) 12 d z --<(2~) ~ ~ I~(~)I~F--A~;~(dCC~)(~/~N)+~ 
Rd 

< C  j" I~(z)l 2 1 +  + IWN(~)lZdz 
Rd 

A 2 z 4 _ \ 
- -  j [~(z)l = I WN(~)l:d 

~-  ~ 4  >" . . . .  ~ - N  

~ C  A2c~  e 4 +  1 [l~,Vr I I l f i l l~a4exp ( -C ' la l )~  d 
aN {1~1_>_~} 

< C(c~ ~-2 I1~* WNII~ + (/~, 15 2 exp(- -  C'c~v)) 
(if we choose  A = ~ - ~ ) .  

We still have to prove (4.10). 

II~* f~NII2=(2n) a j Ifi(z)[ 21 ~N(~)12d~ 
Ra 

= ( 2 ~ )  2d ~ 1~(~)12[17h(V~N)14dz 
Ra 

-<_(2~) =d j 1~(~)121rTv~(~/c~N)14d~ (by (3.5)) = [1~* V~II~ 
Ra 
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<(2~) d j Ifi(T)I2II~I(~/~N)I 2d~ 
Ra 

(since (2 ~z) a/211TV1 (z) l =< 1 for the probability density W0 

= I1~, wNII~. 

4. C. Proof of Theorem 2 

Without restricting generality we can assume that G,, t,q and d, vanish. Let 
us fix some 6e(0, 1) and define the stopping time 

To=inf{t>0: ~ (I]hm~(.,t)-s,(.,t)tl2+ i llVhN,~(.,s)-VS~(.,s)ll~ds)>= @. 
r = l  0 

Then we insert the function (x, t )~  0 (x) 2= (log(2 + x2)) 2 into (2.10). Calculations 
as in (4.11-16) yield 

K 

(Sn,,(t A TO), 0 2) 
r = l  

K tA  T~ K 

E (SN, r(O)'o2>-~-C I E (SN,,(s),O2)ds+C't+Mg(tAT~) 
r = l  0 r = I  

for some martingale M~. By taking expectations on both sides and applying 
Gronwall's inequality we obtain 

'~ 02> ] ': s u p E [ ~  (SN,,(t^ To), ~o <C ~ (SN.,(0),0e)+C '. (4.25) 
t<=T L r = l  J r = l  

Applying (2.10) to the function (x, t )~  0(x, t) shows 
K 

~, (Sm,(t ^ To), 05 
r = l  

K t A  T~ K 

<_ ~ (SN,,(O),O)+ C j ~ (Sm,(s),O)ds+C't+M4(tATo) (4.26) 
r = l  0 r = i  

for the martingale 
1 K t 

M~(t)=~- ~] f Z VO(P~(s))'ardWk(s) 
r = l  0 keM(N,r,s) 

1 g t ~ ~ O(pk(s))(b*:k~(ds)--bmq~(pk(s),s)ds) �9 
-t-lV~q,r=l 0 keM(N,q,s) 

Doob's inequality yields 

El- sup IM~(t)II~o]2<4E[IM~(TA To)I21~o] 
t<-TAT~ 

= ~  E I Z 0 2(P~(s))dsl~o 
r = 1 0 k~M(N,r,s) 

= ~  ~=~E o~ (Sin'(s)' 02) dsl �9 (4.27) 
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(4.25-27) imply 

E[Lt<TSUPA To r = l ( S N ' r ( t ) ' l / ] )  "-~0 ~-~ Cr~__ l (SN,r(O), O2)-l-Ct. (4.28) 

Similarly, we obta in  
K K 

sup ~ (s~(.,t),O)<=C ~ <s*(.),O), (4.29) 
t<=T r = l  r = l  

where the right side is finite by (3.9, 12). Since W N is a probabi l i ty  density, 
and by (3.2), (4.24), we obta in  a slight modif icat ion of  (4.8): 

I f ( x ) -  ( f*  WN)(x) I = I ~ WN(y) (f(x) - f ( x -  y)) dy I 
Ra 

_<-IIV/ll~ I lyIWN(y)dy 
Ila 

_-<C~ 1 II v/lifo. 

Obviously,  we can represent any f ~ M  1 = {gsCbl(Re) �9 [Igl[ o~ + [I Vglloo < 1} as f 
= fa + fR, where fR, fReN~, and supp(fR)~_BR= {xeRd: Ix[_-__R}, 
supp (fR) --- Rd\BR- 2, respectively. Hence for r = 1 . . . . .  K, t > 0 uniformly in f e N 1  

I(SN, r(t)--s,(.,t),J~l 

~ ] ( SN,r(t) -- Sr(. , t), fR~) l At- ( SN,r(t) -[- Sr(~ , t), If  R I> 
< I O N , , ( - ,  t)-- Sr(', t), fR) [ + ( SN,r(t), I fR-- fI~ * WNI ) 

C 
+ ~ - ~  <SN, r(t)+ sr(., t), ~t) 

__< c (11 hN,r (', t) -- S r (., t) ll 2 ed/2 + C~ 1 (,SN,r (t), 1 > 

c ~,>). 
+ ~ - ~  ( SN,~(t) + S~(., t), 

Consequent ly  (3.13) follows by (3.11, 12), (4.23, 28, 29). 
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