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Summary. In this paper we consider two-stage sampling from a finite popula- 
tion, and associated estimators of the population total, in a general setting 
which includes most two-stage procedures in the literature. The main result 
gives general conditions for asymptotic normality of the estimators. The 
proof is based on a martingale central limit theorem. It is indicated how 
the result can be extended to multi-stage procedures. 

O. Introduction and Outline of the Paper 

Two-stage sampling is a well established technique for sampling from a finite 
population; another term is "cluster sampling with subsampling". Most statisti- 
cians would conjecture that the corresponding estimator of the population total, 
being a sum of random variables, is approximately normally distributed when 
the first-stage sample size is large. When the variables forming the estimator 
are independent, this conjecture may be verified by application of the ordinary 
Liapunov central limit theorem, see Fuller (1975). However, in most cases the 
variables are dependent and hence the ordinary central limit theorem can not 
be directly applied. For an important special instance of the dependent case, 
viz. two-stage procedures with "succesive sampling with varying probabilities 
without replacement" at the first stage, asymptotic normality has been estab- 
lished by Sen (1980). To the best of our knowledge, no proof of asymptotic 
normality can be found in the literature when other procedures are used at 
the first stage. 

For some single-stage procedures (which might be used at the first stage) 
asymptotic normality has been proved by different authors, for a list see 
Remark 2.2. However, it is not self-evident how these results can be generalized 
to two-stage sampling, where further randomness is introduced by sub-sampling. 
In the main theorem of the present paper general conditions are given, under 
which asymptotic normality for the first-stage procedure (regarded as a single- 
stage procedure) ensures asymptotic normality of the estimator in two-stage 
sampling. The proof of the theorem utilizes a martingale central limit theorem. 

Here is an outline of the paper. In the next section we give a detailed descrip- 
tion of two-stage sampling. Section 2 contains our main result, Theorem 2.1. 
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We also indicate how this result can be used to prove asymptotic normality 
for multi-stage procedures with more than two stages. Theorem 2.1 is proved 
in Sect. 3; the martingale central limit theorem used in the proof is stated in 
an appendix. 

Theorem 2.1 is applicable to quite a wide class of two-stage sampling proce- 
dures. As an illustration, in Sect. 4 we discuss cases where simple random sam- 
pling without replacement is used at the second sampling stage. Throughout 
the paper, special attention is paid to the two-stage analogue of the Horvitz- 
Thompson estimator. 

1. Two-Stage Sampling 

We consider a finite population with N primary stage units (psu) labelled 
1, 2 . . . . .  N. Each psu is a cluster of second stage units (ssu), the i th psu consisting 
of M~ ssu's, i=  1, 2, ..., N. To each ssu there is associated a variate value (i.e. 
a real number), denoted aij for the jib ssu within the i th psu, i=  1, 2 . . . .  , N, 
j - -  1, 2, ..., Mi. The corresponding psu totals and psu means are 

ml 

ai. = ~ ai~, gh .=a, /Mi ,  i= 1, 2, ..., N,  (1.1) 
j = l  

and the population total and mean per psu are 

N 

a.. = Z ai., gt.. = a../N. (1.2) 
i = l  

The a-values are supposed to be unknown; in order to estimate their total 
a.. a two-stage sampling procedure is employed. We assume that this procedure 
is of the following type (as most two-stage procedures in the literature in fact 
are). 

In the first stage a sample I (i.e., a collection of integers from {1, 2 . . . . .  N}) 
of psu's is generated by some arbitrary but specified sampling procedure //1- 
A psu may occur several times in I, in particular H 1 may be a "with replacement" 
procedure. 

To each psu there is associated a drawing procedure, denoted H2i for the 
i th psu. In the second stage of the two-stage procedure a subsample from the 
i th psu may be generated by H2i. In many cases, e.g., those in Sect. 4, / /al  
is completely determined before the execution of H 1. However, in our general 
setting we include the possibility that H2~ depends on the outcome of H1, i.e., 
/ /ai  is random (see Remark 1.1 below for an example). 

For each i let T~ be an estimator of a ,  based on the a-values of the ssu's 
drawn by Ha~. In practice//2~ is executed and T~ is observed only for i e I .  

Let (q be a a-algebra such that I is (q-measurable. We shall think of (q 
as containing all information on the first stage procedure. A natural choice 
is (q= a(I), i.e., the a-algebra generated by I, but this choice is not always ade- 
quate (see Remark 1.3). 
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The T{s are assumed to be conditionally independent given f# and to be 
conditionally unbiased, i.e., 

E(T~I f#) = a , ,  i=1,  2, ..., g .  (1.3) 

We denote the (possibly random) conditional variance and fourth moment of 
Ti by 

cr~ = V(Ti I f#), /z14) = E [(T~-a,)41 f#], i=1 ,  2, ..., N. (1.4) 

Remark 1.1. One example of a random //2~ is simple random sampling with 
a sample size m~ which depends on the first-stage sample I; this is the case 
e.g., if mz is to be chosen proportional to Mi, ieI, and the total sample size 

m~ is to be kept fixed. If in this case T~ is the "inflated" sample mean then 
i ~ I  

(1.3) is fulfilled; note that o -2 and #!4) are random here. 
We consider estimators of the population total a.. of the following form, 

where W1, W2 . . . . .  WN are N-measurable random variables such that 141//=0 for 
ir 

N 

r=  F. w, r ,= (1.5) 
i = 1 i ~ I  

Thus W/is a (random) weight for the i th psu. The if-measurability means that 
W~ only is allowed to depend on the outcome of the first stage sampling. As 
noted above, T~ is observed only for i~1; hence the requirement that W~=0 
for ir 

We will refer to a population and a two-stage procedure of the above type 
together as a two-stage situation. 

Remark 1.2. As an illustration of the choice of W~ we mention the familiar two- 
stage analogue of the Horvitz-Thompson estimator. Suppose that the psu's are 
drawn without replacement with inclusion probabilities lh=P(isI)>O. With 
1 { .} denoting the indicator function, let W~= 1 {i~I}/7 h. For these W[s, T takes 
the form 

N T/, 
T= ~E=, 1 {ieI} --=rc~T~ if;. __7c~ (1.6) 

which we shall call just the Horvitz-Thompson estimator. For further discussion 
of this case see Remarks 2.4 and 4.2. 

Remark 1.3. Suppose that the psu's are drawn by the RHC procedure (Rao, 
Hartley, and Cochran, 1962). Then the first-stage procedure contains a random 
stratification of the psu's which is performed before the actual drawing of the 
first-stage sample. Thereafter one psu is drawn from each stratum with probabili- 
ty proportional to some variable p~, i=  1, 2, ..., N. Let ~ be the total of the 
p-values in the stratum to which the i th psu belongs. Then the usual two-stage 
RHC estimator is given by (1.5) with W~= 1{i~I} ~/Pi. Here W~ depends on 
both the first-stage sample I and on the random stratification. If f# is the ~r- 
algebra generated by I and the stratification together, then W~ is N-measurable 
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but not a(I)-measurable. Hence, in order that the above general description 
of a two-stage procedure and our results below should apply to this case, the 
setting with a general ff is required. The setting usually found in the literature, 
e.g. in Raj (1966) and Rao (1975), allows the W~'s to depend only on I. Hence 
Raj's and Rao's applications of their results to the RHC case are not quite 
justified. 

Next we introduce a decomposition of T, which will be fundamental in our 
discussion of asymptotic normality. Set 

N 

Q = y', W i ai., (1.7) 
i = 1  

N 

M =  ~ Wi(Ti-a.).  (1.8) 
i = 1  

The decomposition in question is 

T= Q + M. (1.9) 

As will be shown in Sect. 3, M is a sum of martingale differences. Hence we 
have E ( M ) = 0  and 

N 

E(T) = E(Q)= ~ E(W~) a. .  (1.10) 
i = I  

From (1.10) it is seen that T is unbiased for a.. if and only if E(W~)=I, 
i = 1, 2, ..., N. For  the variance of T we have the following well-known formula, 

N 

V(T)= V(Q)+ ~ E(W~ 2 02). (1.11) 
i = l  

A version of the last result was derived by Raj (1966) and extended by Rao 
(1975). However, our version is slightly more general than these two, as seen 
from Remark 1.3. In Sect. 3 we will derive (1.11) as a by-product of other results. 

Suppose that instead of subsampling from the psu's we could measure the 
a, 's  exactly, i.e., Ti=-ai.. Then by (1.7)-(1.9) we would have T-Q.  Hence Q 
can be interpreted as an estimator of the population total based on single-stage 
sampling according to the procedure Ha. Hereby (1.11) can be given the follow- 
ing interpretation. In order to get the variance of T for the two-stage procedure, 
first find the variance of the estimator based on the first stage procedure, i.e., 
V(Q)I Then find the second-stage variances, a~, and combine them with the 
first-stage quantities W~ 2, take expectations, and obtain V(T) by adding every- 
thing. In the next section we will give a somewhat similar result on the asymptot- 
ic normality of T. There the recipe is: first prove asymptotic normality of Q, 
next verify two conditions concerning expectations of some functions of a~, 
#I 4) and W~; then the asymptotic normality of T will follow. 
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2. The Main Result 

Let 5e(-) denote probability distribution and N(#, o -2) the normal distribution 
with mean # and variance 0-2. The aim of this paper is to justify the approxima- 
tion 

Y (r )  ~ N(E(T) ,  V(T)), (2.1) 

by asymptotic considerations. In order to give our results a stringent formulation 
we consider a sequence of two-stage situations, i.e., for each k (k= 1, 2, 3, ...) 
we have a two-stage situation as described in Sect. 1. By attaching the sequence 
generating index k to any quantity we will indicate that it relates to situation 
k. To prepare for the presentation of our main result we present three conditions. 

d 
Let C(-, ") denote covariance and , denote convergence in distribution. 

(Qk-- E(Qk)] d 
(C1) ~ ~ ~ ] ,N(0, 1) as k~oo,  (2.2) 

I ~ k i  I 

(C2) lim i k+~ V(Tk) 2 - 0 ,  (2.3) 

Z 4.  4j) 
(C3) lim '*J <0. (2.4) 

~++  v ( ~ )  ~ 

The conditions are discussed after the next theorem, which is the main result 
of the paper. 

Theorem 2.1. For a sequence of two-stage situations which satisfies the conditions 
(C 1)-(C3) we have 

~ V ~  ] ~ N(0, 1) as k~oo .  (2.5) 

The proof of the theorem will be given in Sect. 3. 

Remark 2.2. By the discussion at the end of the preceding section, condition 
(C1) is seen to require asymptotic normality of an estimator of a.. based on 
single-stage sampling. For some particular (single-stage) procedures conditions 
for asymptotic normality can be found in the literature. Below we list the (with- 
out replacement) cases that are known to us; we do not claim the list to be 
complete. For simple random sampling without replacement conditions are 
found in e.g., H/tjek (1960) and Hfijek (1961); for rejective sampling in H/tjek 
(1964) and for " random replacement sampling" in Ros6n (1967). Successive sam- 
pling with varying probabilities without replacement using different estimators 
is treated in several papers: with the sample total as estimator (this actually 
includes the Horvitz-Thompson estimator) in Ros6n (1972), this result is general- 
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ized in Holst (1973) and also treated in Gordon (1983); with Des Raj's estimator 
in Ros6n (1974) and with Murthy's estimator in H6gfeldt (1980). The Rao- 
Hartley-Cochran procedure is considered in Ohlsson (1986 a). 

In order to facilitate applications of Theorem 2.1 we now give some sufficient 
conditions for (C 2) and (C 3) to hold. 

2 and ,(4) are non-random, cf (1.4). (a) I f  Proposition 2.3. Assume that aki t~ki 

Z (4) 

lira i = 0, (2.6) 
2 

i 

then (C2) holds true. 
(b) I f  

C(Wk],Wk})<O, i+-j, k = l ,  2, 3 . . . .  , (2.7) 

then (C 3) is fulfilled. 

The result in (a) follows readily from (2.3) and (1.11). Part (b) is trivial but 
nevertheless useful: since Wki is zero if ir  one may expect (2.7) to be true 
in many cases. For  example, when the first-stage procedure is simple random 
sampling without replacement, (2.7) is valid. 

Remark 2.4. For a two-stage situation with the Horvitz-Thompson estimator 
(introduced in Remark 1.2) set nij = P(i, j~I). Here it is readily seen that 

c(w?, wf) :  

Hence the covariances are non-positive, as required in (2.7), if and only if 

nij<n i nj, i+-j. (2.8) 

The validity of (2.8) for different sampling procedures has been investigated 
by many authors in connection with discussions on the Yates-Grundy variance 
estimator (Cochran, 1977, p. 261). The reason for this is that (2.8) is sufficient 
also for the Yates-Grundy estimator to be non-negative, which is a desired 
property of variance estimators. For references and some results see Lanke 
(1974) where also an example showing that (2.8) does not always hold true 
is given. 

For illustrations of the "Liapunov type" condition (C2) (or rather (2.6)) 
see Sect. 4. 

Remark 2.5. Although Theorem 2.1 only deals with two-stage procedures it can 
be used to prove asymptotic normality for arbitrary multi-stage procedures 
as indicated below. The quality of the theorem is, as noted earlier, that given 
asymptotic normality of the first-stage procedure (i.e., given (C 1)) we get asymp- 
totic normality of the two-stage procedure by imposing the conditions (C2) 
and (C3). Now there is no restriction against the first-stage procedure actually 
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being a multi-stage procedure itself. Hence Theorem 2.1 can be used inductively 
to prove asymptotic normality of procedures with any number of stages, each 
stage requiring its own versions of the conditions (C 2) and (C 3). 

3. Proof of Theorem 2.1 

First we derive some auxiliary results. For this purpose we return to the case 
with just one two-stage situation so that we may drop the k's. We introduce 
some further notation. With N,  v N2 denoting the minimal a-algebra containing 
both N1 and N2, set 

~o = f#, . ,~=fgva(T1, Tz,...,Ti), i=1 ,  2, ..., N. (3.1) 

Note that { ~ ;  i=0,  1 . . . . .  N} is a filtration i.e., ~ _ 1 c . ~ ,  i=1 ,2 ,  . . . ,n. Also 
let 

X~ = Wi(T i - ai. ). (3.2) 

Note that by (1.8) 

M = Z X  ~. (3.3) 
i 

Lemma 3.1. {X~; i=  1, 2, ..., N} is a martingale difference sequence relative to 
the filtration {~//; i=0,  1, ..., N}, i.e., each Xi is ~-measurable and satisfies 

E (X i 1 ~ -  1) = 0. (3.4) 

Proof The ~-measurabil i ty follows from the fq-measurability of W~. Since the 
Ti's are independent given f# we have E(Ti I~-1)=E(Ti l  f#), which by (1.3) equals 
ai.. This readily yields (3.4). 

From Lemma 3.1 and (3.3) we see that E (M ) = 0  as claimed in Sect. 1. 

Lemma 3.2. 

(at 

(b) 

v(T) = v(Q) + v(m). (3.5/ 
N 

V(M) = ~, E(X2). (3.6/ 
i=1 

Proof By (1.7), the N-measurability of the W}s imply that Q is N-measurable. 
From this fact, (3.3) and (3.4) it is readily seen that M and Q are uncorrelated 
so that we get (3.5) from (1.9). Since the Xi's are martingale differences they 
have zero means and are uncorrelated. This and (3.3) yields (3.6). 

Note that by (3.2) and (1.4) 

E ( x {  I ~r = w ?  e ( ( ~  - a~.) 21 ~r = W~ 2 a} .  (3.7) 

By taking expectations in (3.7) and using (3.5) and (3.6) we get (1.11); this consti- 
tutes the proof of (1.11) announced in Sect. 1. 
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Lemma 3.3. 

E(X'~)=E(W~ 4"1~r i=  1, 2, . .., N. (3.8) 

This result follows directly by using (3.2), conditioning on ~ and recalling (1.4). 

Lemma 3.4. 

E { ~  E ( X 2 l ~ i i  _ 1) - V(M)} 2 ~ Z E(W/4 ]-'/14)) ~- Z C(W/2 02, WJ 2 ~ 
i i i * j  

(3.9) 

Proof. Since the T~'s are independent given ~ and since Wi is g-measurable, 
we can replace ~ _  1 by ~ in the left-hand side of (3.9). This fact together with 
(3.6) yields that the left-hand side of (3.9) equals 

v {Z E (x2 IN)} = Z v {E (x2 IN)} + Z c {E (x21 ~), E (x] I ~r 
i i i * j  

(3.10) 

By the elementary formula V(Y) = E [V(Y] N)] + V[E(Y] ~)] we have 

V (E (X 2 I~r v (x  2) <= E (X~). (3.11) 

From (3.10), (3.11), (3.8) and (3.7) we now get (3.9). 

Proof of Theorem 2.1. In this proof we shall use a version of the martingale 
central limit theorem which is presented as Theorem A.1 in the appendix. We 
shall verify that for a sequence of two-stage situations satisfying (C1~(C3), the 
conditions of Theorem A.1 are fulfilled with 

~k~ = X k j ~ ,  f12 = V (Mk)/V (Tk), 

Yk = (Qk -- E (Qk))/ VI/V~k), 5r o = N (0, 1), (3.12) 

and ~ i  as defined in (3.1). By Lemma 3.1, {~kl} is a martingale difference 
sequence relative to {~i}.  As noted earlier, Qk is Nk-measurable; hence by (3.1) 
Yk is ~0-measurable .  

Next we show that (i) and (ii) in Theorem A.1 are implied by (C2) and 
(C3). By (3.8) condition (C2) is equivalent to (i) in the present case. By (3.5) 
sup fl~ __< 1 < oe. From (3.9) it is readily seen that (C2) and (C 3) together imply 

k 

(ii). 
By (3.12) and (3.5), ( e l )  implies (iii) with 5f 0 =N(0 ,  1). 
By (3.12) and (3.3), Sk in (A.1) here takes the form Sk=Mk/V~g~k). By this, 

the definition of Yk in (3.12), (1.9) and (1.10) we have Y~ + Sk = (Tk-  E ( T k ) ) / ~ .  
Since all the conditions of Theorem A.1 are fulfilled we now get (2.5) from 
(A.5). 
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4. Applications to a Special Class of Two-Stage Procedures 

In this section we shall illustrate the usage of Theorem 2.1, and in particular 
condition (C 2), by considering two-stage procedures where simple random sam- 
pling without replacement (henceforth srs) is used at the second stage. Such 
two-stage procedures are often discussed in the literature. First we treat this 
case without making any additional assumptions on the first-stage procedure, 
beside those made in Sect. 1. Then we specialize to cases with the Horvitz- 
Thompson estimator. 

We first specify what we mean by assuming that srs is used at the second 
stage. Let the second-stage sample sizes ml, m2 . . . .  , m N be fixed integers such 
that l<=m~<=Mi, i=1, 2 . . . .  , N; in particular the mi's must not depend on the 
outcome of the first-stage procedure H 1. For each i, the outcome of the second- 
stage procedure H2i is a size m i simple random sample J/of ssu's drawn without 
replacement from the i th pSU. The J}s are assumed to be mutually independent 
and independent of (~. An unbiased estimator of the psu total ai. is given by 

Ti = M i  ~, ai~. (4.1) 
m l  j eJ i  

The variance within psu's is denoted by 

1 Mi 
S~i = ~ Z (aiJ- ai.) 2. (4.2) 

j= l  

The division by M~ instead of M~--1 is made for convenience in the formulas 
2 of T/ is well known, see e.g. Cochran (1977, formula below. The variance a~ 

(11.13)). 
Now let there be given a sequence of two-stage situations with second stage 

procedures as described above. We are interested in the validity of the conditions 
(C 1)-(C 3) of Theorem 2.1. The condition (C 1) only concerns the first stage proce- 
dure; the same is true for (2.7) which implies (C3). Hence we concentrate on 
(C2) here and we shall give sufficient conditions for it to hold. We will not 
try to give the best (weakest) conditions, but rather to give comparatively simple 
ones. 

Proposition 4.1. Suppose that srs is used at the second stage. I f  the following 
two conditions are fulfilled then so is (C 2): 

O< lim min mki <_ lim max ~ <  1, (4.3) 
k ~ m  i M k i  - - k ~ o o  i ki  

M 4 
ki  4 4- Y, ~ s~_~ E(~)  

lim i ki =0. (4.4) ) k ~ m  { ~  ki  ~ 2  2 2 

\ i  ki 

This proposition follows from Proposition 2.3(a), see Ohlsson (1986b) for a 
detailed proof. In that paper we also give a weaker version of (4.3). 
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Remark 4.2. In practice it appears to be common to draw psu's with varying 
probabilities (pps) and then draw ssu's with srs as described above. Suppose 
that the Horvitz-Thompson estimator is used (cf. Remarks 1.2 and 2.4). Then 
it is readily seen that condition (4.4) is implied by 

M~ S~2~ 
max 

i mki  ~2k i 
lim 2 2 --0. (4.5) 
k~~176 E M k i  Sk2 i  

i mki  7~ki 

Here the rCki'S depend on the particular pps procedure which is used. In order 
to simplify our conditions even further we consider the important special case 
when the first-stage sample size n k is prescribed and ~ki is proportional to Mki , 
i .e.  7~ki : n k Mki /2  Mki. In this case (4.5) reduces to 

i 

$22i  
1 (~Mki)  max 

�9 i mki  
lim = 0, (4.6) 
k--,oo n k Z M k i  $221 

i mk i 

which is fulfilled e.g., when the second-stage sample sizes mki are equal, the 
variances $22 ~ within psu's are of the same magnitude and the first-stage sample 
size nk-.Oe. 

Appendix 

Here we state a version of the martingale central limit theorem which is used 
in the proof of Theorem 2.1. 

Theorem A.1. For k =  1, 2, 3, ... let {~ki; i----- 1, 2 . . . .  , Nk} be a martingale difference 
sequence relative to the filtration { ~ i ;  i=0,  1, ...,Nk} and let Yk be an 
~ko-measurable random variable. Set 

lVk 

Sk= ~ ~ki- (A.1) 
i=1 

Suppose that the following three conditions are fulfilled. 

Nk 
(i) lim ~ E(~k4~)=0. 

k--* co i=1  
(A.2) 

(ii) For some sequence of non-negative real numbers (ilk; k=  1, 2, 3, ...}, 
with sup flk < oO we have 

k 

( Nk 32  
2 ~ 2 

l i m  E ~ ~ E ( ~ k l  ]~Z~k, i_  1 ) -  f l k~  = 0. (A.3) 
k-~c~ k i = l  J 
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(iii) For some probability distribution ~q~o, * denoting convolution, 

~ (Yk)*  N(O, f12) a , ~L,r ~ as k ~ .  (A.4) 

Then we have 

d 
s ' ~ 0  as k ~ .  (A.5) 

We shall not give a complete proof of this result, but merely indicate how 
it can be derived from the ordinary martingale central limit theorem (see e.g., 
Hall and Heyde, 1980, Corollary 3.1). By the latter we have under (i) and (ii), 
in terms of characteristic functions, 

E e " S k - e - ~ ' ~ / Z ~ o  as k ~ m .  (A.6) 

Assume that we also know that 

E IE(eUSk l~ko) - -e -a i f /2[~O as k--,oe. 

Then (A.5) follows from (A.4) and the o~ko-measurability of Yk since 

[ E e i t(rk +s~) - -  E ( e itrk) e-#~t2 /21  

= I E( e/tr~ {e (  eitsk I~%o) - e -  m2/2}) I 
< E I E (e itsk I~kO)-- e-~'2/21 . 

(A.7) 

(A.8) 

That (A.7) is in fact true under (i) and (ii) can be brought back on the ordinary 
martingale central limit theorem. A closely related result is given in Eagleson 
(1975, Corollary 2, p. 560). For  a detailed proof of Theorem A.1 we refer the 
reader to Ohlsson (1985). Since (i) and (ii) imply the conditions (L) and (Q*) 
there, the present Theorem A.1 follows from Corollary 4.1 in that paper. 

Acknowledgement.  I am grateful to Professor Bengt Ros6n for suggesting the problem and giving 
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