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Summary. A transformation by means of a new type of multiplicative func- 
tionals is given, which is a generalization of Doob's space-time harmonic 
transformation, in the case of arbitrary non-harmonic function r (t, x) which 
may vanish on a subset of [a, b] x IRe. The transformation induces an addi- 
tional (singular) drift term V r162 like in the case of Doob's space-time har- 
monic transformation. To handle the transformation, an integral equation 
of singular perturbations and a diffusion equation with singular potentials 
are discussed and the Feynman-Kac theorem is established for a class of 
singular potentials. The transformation is applied to Schr6dinger processes 
which are defined following an idea of E. Schr6dinger (1931). 

w 1. Introduction 

In this paper we consider space-time diffusion processes in an open subset D 
of [a, b] x IR e, where - o e  < a < b < 0% and their transformations by means of 
multiplicative functionals in connection with Schr6dinger processes (1931), the 
definition of which will be given in Sect. 6. It is well known that the theory 
of transformations of Markov processes plays an important r61e in constructing 
new processes from known ones and analysing them. A celebrated transforma- 
tion is Doob's space-time harmonic transformation (cf. e.g. Doob (1983)): Let 
{(t, Xt), W(s,x)} be a space-time Brownian motion, and h(s, x) be a non-negative 
space-time harmonic function satisfying 

h(s,x)=W(s,x)[h(t,X(t));t<TJ, for a<=s<t<=b, (1.1) 

where T~ is the first hitting time to the nodal set of h(s, x), N= {(s, x): h(s, x) =0}, 
and W[f; A] denotes the expectation of f on A with respect to a measure 
W. The space-time harmonic transformation is defined by 

[ h(t,X(t)). ] 
p(s, x; t,f)= W(~,x) f(t, X(t)) h ( s , ~ '  t< Ts , for (s, x)eD, (1.2) 



110 M. Nagasawa 

where D={( s ,  x): h(s, x):#0} and  f ' s  are bounded  cont inuous  funct ions on D. 
The  t r ans fo rma t ion  induces a drift te rm V h/h, tha t  is, p satisfies 

Op 1 1 
as ~-2 A p + ~  Vh. Vp=O, in D. (1.3) 

Tak ing  account  of  (1.1), it follows immedia te ly  f rom the definition (1.2) that  
the t r ans fo rmed  process  does not  hit the noda l  set N of h. 

If  a drift coefficient b(s, x), which is not  necessarily of  the form V h/h, satisfies 
the N o v i k o v  condi t ion  (1973) 

W~,x ) exp �89 Xv)[lNd <0% 
8 

(1.4) 

then we can ob ta in  a new space- t ime diffusion process {(t, Xt), P(~, ~)} with t rans-  
fo rmed  probabi l i ty  measures  

P(~,~) = M~ W(~,~), (1.5) 

where  M~ is the M a r u y a m a  densi ty (1954), 1 

t M ~ -  exp b(v, X,).dX~ - 1  1 lib(v, Xv)l]2dv (1.6) 
s 

The  t rans i t ion funct ion of the t r ans fo rmed  process defined by 

p (s, x; t, f )  = P(~,x) I f  (t, Xt)3 

= W(~,x) If(t ,  Xt) MtJ 

satisfies in a weak sense a diffusion equa t ion  with drift b(s, x) 

(1.7) 

In  o ther  words  

ap + l  Ap+b.  Vp=O. (1.8) 
as 

t 

B(t)= X ( t)-  X (s)- S b(v, X (v)) dv (1.9) 
s 

is a Brownian  m o t i o n  with respect  to P(s,x) defined by  (1.5). 
Therefore,  if Vh/h satisfies the N o v i k o v  condi t ion (1.4), one can app ly  the 

drift t r ans fo rma t ion  of M a r u y a m a - G i r s a n o v  instead of D o o b ' s  ha rmon ic  t rans-  
format ion .  However ,  there are difficulties in showing the N o v i k o v  condi t ion  
for Vh/h if h has zeros. 

1 Some probabilists first called this "Girsanov formula" without refering to (or not aware of) Maruya- 
ma's paper which had been published in 1954. Girsanov's and Motoo's paper on this subject were 
published at the same time but six years later in 1960. For Maruyama's formula see also Ikeda- 
Watanabe (1981), Liptser-Shiryayev (1977) 
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Now, given an arbitrary non-negative function ~b (s, x), which is not assumed 
to be a space-time harmonic function of a space-time Brownian motion, we 
consider a diffusion equation 

c3 s t- l A q + 71 V (p . V q = O, in D, (1.10) 

where D={(s, x): ~b(s, x)+0}. This equation has been investigated by many au- 
thors in connection with probabilistic treatment of Schr6dinger equations (cf. 
e.g. Zheng-Meyer (1982, 84), Carlen (1984), Nelson (1985), Carmona (1985), Blan- 
chard-Golin (1987)). Due to the singularity caused by the nodal set of the func- 
tion q~(s, x), the drift coefficient V(~/4) does not satisfy the Novikov condition 
(1.4). Furthermore, Doob's space-time harmonic transformation can not be 
applied, since ~b(s, x) is not a space-time harmonic function. Nevertheless it 
has been shown, under certain regularity conditions on the drift coefficient, 
that a diffusion process governed by (1.10) does not hit the nodal set of q~(s, x) 
and then the process is constructed based on this fact. However, proofs which 
have been given are more or less involved. It is, therefore, desirable to find 
out a simple transformation such as Doob's one for non-harmonic qS(s, x). In 
this paper it will be shown that such a transformation exists, and then it will 
be applied to Schr6dinger processes. 

In Sect. 2, a multiplicative functional N] is defined and a transformation 
by means of N t is discussed. In Sect. 3, the existence and uniqueness of solutions 
of an integral equation is treated and shown that the transformed process by 
means of N] is governed by (1.10). A diffusion equation with creation and killing 
c (t, x) is discussed in Sect. 4. Section 5 treats the inaccessibility of the transformed 
processes to the nodal set of ~b(t, x) based on the results in Sects. 3 and 4. 
Sections 6 and 7 are devoted to Schr6dinger processes, to which the transforma- 
tion by means of N~ t is applied. 

w 2. A Transformation of Space-Time Diffusion Processes 

Let a(s, x) be a bounded continuous function on [a, b] x IRa taking values in 
IR d, which has bounded uniformly H61der continuous derivatives in x. Then 
there exists a fundamental solution g(s, x; t, y), a<=s<t<=b, x, y~ lR  d, which sat- 
isfies as a function of (s, x) 

~u 1 
~?s ~-~ A u + a .  Vu=O,  (2.1) 

and as a function of (t, y) 
0u 1 

t-~ A u - -  V.(au)=0 (2.2) 
0t  z 

(cf. e.g. Friedman (1964)). Let {Xv, P(s,x)} be the diffusion process which has 
g(s, x; t, y) as the transition probability density. In other words, P(~.x) can be 
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obta ined  f rom the s tandard  Brownian  mo t ion  {X~, W~s,~)} 2 by means  of the 
drift t ransformat ion  of M a r u y a m a - G i r s a n o v ;  or f rom a solut ion Y, of a stochastic 
differential equat ion  

t 

Y,=Xt+ ~ a(v, Y~)dv, 
$ 

with respect to {X t, W~,x)}. We will use these facts freely in the following without  
ment ioning it explicitly. 

F r o m  now we consider  processes in space-time, which will be denoted  by 
(t, Xt). Let  N be a closed subset of [a, b] x R d and define the first hitt ing t ime 
to N after s by 

T _  ~'inf{w(s,.~ b]: (v, Xv)~N}, if such v exists, 
(2.3) 

- -  (o% otherwise, 

where N will be specified below. 
Let  ~b (s, x) be a non-negat ive  cont inuous  funct ion on [a, b] x IR d, which m a y  

diverge at  s = b, where - oo < a < b < oe. If r (s, x) diverges at s = b, then taking 
b'< b, we can consider r on I-a, b'] x IR d and hence we will assume that  r (s, x) 
is defined on  [a, b] x R d. Let  us denote  

(2.4) 
D =  {(s, x): O(s, x):t:O, (s, x)e[a, b] x lRd}, 

N = {(s, x): r (s, x ) =  0, (s, x)e  I-a, b] x Na}, 

and assume that  q~ECI'2(D). 3 
We shall discuss a t ransformat ion  of space-time diffusion processes 

{(v, Xv), Pt,,x)} by means  of a multiplicative funct ional  which will be given in 
the following 

Definition 2.1. A multiplicative funct ional  {N~t: a _  s < t < b} is defined by 

N ] = e x p  - (v, X(v))dv (o(t,X(t)) 4 
r X(s)) a~,<~}, (2.5) 

where L is a parabol ic  differential opera to r  

0 1 
L=ff~s + ~ A +a(s ,  x). V (2.6) 

which governs the diffusion process {X~, P~,x)}- 
It is clear that  N] is a multiplicative functional  which is cont inuous  in t < T,, 

but  may  have a j u m p  at t = T, to zero. 

2 W(s,x) is the Wiener measure starting at (s, x) 
3 C1,2= {f(s, x): continuously differentiable once in s and twice in x}. This differentiability require- 
ment on r has been loosened by R. Aebi 
4 It should be read that N]=O, on {t> T~} 
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Theorem 2.1. Let N~ be defined by (2.5). Then 

P(~,~)[-N~]__<I, for (s,x)eD and s<_t<_b, (2.7) 
and 

N]=exp {l~t<r)~ i ff~-(v'X~)'dB~--l ~ - ( v '  X~) 2dv} l(t<r`)' P(~'~)-a's'(2"8) 

where B t is a Brownian motion with respect to P(~,~) defined by 

t 

B , = X , - X ~ -  ~ a(v, X~)dv, (2.9) 
s 

l~t<T/O ~ (V, X~).dBv=P-lim lct<r~ llv<r,) (V, X~).dB~, 5 (2.10) 
s n ~ ~ 1 7 6  8 

and 

inf u: (v, X~) d v >= n , if such u <= b exists, 
T,=  ~ (2.11) 

t 0% otherwise, 
T= lim T,. (2.12) 

n--* oo 

Proof It is clear by the definition that  

T~<T. (2.13) 

An application of It6's formula to log q$, up to T, ~ = T,/x T~, yields 

cb(tAT"~'X(tAT"~))exp( t^r="LO ) 
O(S,X) -- ! ~- (v ,X~)dv  =Mrs ̂ r~, P(~,x)-a.s., (2.14) 

where Mrs ̂  r~ is an exponential  mart ingale with respect to P(~,x) defined by 

Mts^r~"=exp (v, Xv)'dBv--�89 S (v, Xv) d , (2.15) 
s s 

where Bt is given by (2.9). Mult iplying (2.14) by l~t< r ,< r~), we have 

g s t A  T n  __  M t A  T n  l ( t <  ~" ~/rt/ ,  r ~  
- -  ~ ' - s  T n  < Ts}  ~ xvl  s (2.16) 

and because of (2.13) 

N~ t = lim Ns t " T.. (2.17) 
n - ~ o o  

5 We are using a notation different from Liptser-Shiryayev (1977) 
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Therefore, by Fatou's  lemma 

P{,, ~) [N, t] __< lim P(s, x) [Nts ;" Tn] ~_~ lim P(~, x) [Mt, ̂  r~,] = 1. 
n ~ o o  n--+ oo 

(2.18) 

Thus (2.7) holds. It is known (cf. Liptser-Shiryayev (1977)) that l{t<T}Mts ̂ r"  
converges in probability to the exponential factor of (2.8), and hence we have 
(2.8) because of (2.13). 

Corollary 1. {N, t, oj, t, te[s, b], P(s,~)} is a super-martingale, where ~ denotes the 
a-field generated by X,, s < u <_ t. 

Corollary 2. For (s, x)e D it holds that 

P(s,x) [c)(t, Xt) exp (-- ! ~ - ( v ,  Xv) dv); t < T,]<=~(s, x). (2.19) 

Definition 2.2. The function defined by 

c(s, x)= - - ~ -  (s, x), for (s, x)eD, (2.20) 

will be called a reference potential of qb (with respect to the parabolic differential 
operator L in (2.6)), which may diverge on N. 

Definition 2.3. The process with creation and killing c(s, x) (as defined at (2.20)) 
killed at T~ will be called a reference process. 

Corollary 2 means that q~(s, x) is a space-time superharmonic function 
of the reference process. The reference process is a process with creation 
and killing, 6 and probabilistic meanings of its super-harmonic transforma- 
tion are not clear. Therefore, it is inadequate to decompose N, t into 

( ! )  exp c (v, Xv)d v l{t < Ts} and c~ (t, Xt)/~o (s, Xs). 

Because of (2.7) in Theorem 2.1, we can apply a Theorem of Dynkin (1961) 
and Kunita-Watanabe (1963), which implies 

Theorem 2.2. There exists a diffusion process {Xt, Q{s,x), ~} 7 on D such that for 
(s, x)eD and te[s, b] 

Q~s,x) If(t, Xt); t < ~] = P(~,~) If(t, Xt) Nt~], (2.21) 

for feN(D) = {f: bounded measurable functions on D}. 

In general, the transformed process {Xt, Q~,~), (} hits the nodal set N of 
q5 and is killed there. For example, it is well known that a Bessel process on 
[0, oo) of index 1 _<d<2 hits the origin {0}. In this case q5 is time-independent 
and given by ~)(s,x)=x (d-1)/2, x>O, and N=[a,b] x{0}. If d__>2, the Bessel 

6 For this process see Nagasawa (1969), Mitro (1979), Getoor-Glover (1986), Kuznetzov (1973), Dyn-  
kin-Getoor (1985) 
7 ( is the life time of the process and Q(s.x~ [ ( =  T~] = 1 
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process does not hit the origin {0}, because {0} is an entrance boundary point 
of the process. In Sect. 5 it will be shown that the transformed process 
{(t, Xt), Q(~,x), (} does not hit the nodal set N of q5 under certain conditions 
o n  q~. 

Remark. For a Brownian motion and time-independent q5 (x), a similar transfor- 
mation was employed by Donsker-Varadhan (1975) and by Carmona (1979), 
and developed later by Fukushima-Takeda (1984) and Oshima-Takeda (1986) 
for time-homogeneous symmetric Markov processes in terms of Dirichlet spaces. 
The formula (2.14) appeared first in I t6-Watanabe (1965) for a Brownian motion 
and excessive functions qS(x) as a decomposition formula of a multiplicative 
functional (o(X~)/4)(Xo) into a Maruyama density and an exponential killing. 
Cf. also Jamison (1975). 

w 3. An Integral Equation 

Let {(v, X~), P(~,~)} be the diffusion process treated in Sect. 2, N be a closed 
subset of [a, b] x IR a, and T~ be the first hitting time to the subset N after s 
defined in (2.3). 

Definition3.1. For a closed subset N c[a,  b] x IR d, a transition density 
gO (s, x; t, y) is defined by 

g~ (3.1) 

for a < s < t < b  and x, yMR e, where g(s, x; t, y) is the transition density of the 
process {(v, X~), P(~,~)}. 

Proposition 3.1. g~ x; t, y) satisfies (2.2) as a function of (t, y), and 

P(~,~)[f(t, Xt); t <  T~] =~g~ x; t, y)f(t ,  y)dy, for (s, x )eN  c, (3.2) 

where f~lB([a, b] x IRd) with s u p p ( f ) c N  c. 

Proof Let g(t, y) denote g(T~, XT~; t, y). Then 

1 

1 1 
=~ ~s,x)[g(t+ h, y); t+h> Z> t] +~ ~s,x~Eg(t+ h, y)-g(t, y); t> Z]. 

i 
The first term vanishes as h+0, since ~P(T~,X(rs))[Xt+h~U]--*O, P~s,x)-a.s. on 

{ t+h>T~>t}  by the path-continuity, where U is a neighbourhood of y such 

that U x [t, t + hi c D. The second term converges to (s.:,) g(t, y); t > . 
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Therefore the second term of (3.1) satisfies (2.2) and hence so does g~ x; t, y). 
The left-hand side of (3.2) is equal to 

P~s,~) I f  (t, Xt) ] - -  P(s,x) I f  (t, Xt); t > TJ - P(~,~) [ f  (t, Xt); t = T~], 

where the third term vanishes, since s u p p ( f ) c N  c. By the Markov property 
the second term is equal to 

P(s,x)[P(rs,x(r~))[f(t, Xt)]; t >  T~] =~ P(s,x)[g(t, y); t >  T~]f(t, y)dy, 

and hence (3.2) holds. 
We consider an integral equation 

t 

p(s, x)=~ g~ x; t, y) d y f (t, y) + ~ dv ~ g~ x; v, y) d yc(v, y) p(v, y), (3.3) 
$ 

for (s, x )~D=N c and s<t<b,  where c(v, y) is a contiuous function on D which 
may diverge at N, and f( t ,  x) is a continuous (or measurable) function in xeD~ 
= {x: (t, x)ED}. We impose two integrability conditions 

and 
P(~,x)[[p(v, Xv) l ;v<TJ<o% for (s,x)eD, s<v<t  (3.4) 

t 

~dvP~.~)Ulc(v, Xv)p(v,X,)l;v<T~]<oo, for (s,x)eD. (3.5) 
s 

For brevity p(v, x) denotes a solution p(v, x; t , f)  of (3.3). It is easy to see that 
p(v, x) satisfies 

u 

p(s, x)=~ g~ x; u, y) d y p(u, y) + ~ dv~ g~ x; v, y) d yc(v, y)p(v, y), (3.6) 
s 

for s < u__< t. Accordingly, for non-negative p(v, x) it is enough to assume, instead 
of (3.4), 

~g~ x; t, y) dyf( t ,  y)<  0% for (s, x)eD, s<t<b,  (3.7) 

where t is fixed. 

Theorem 3.1. Under conditions (3.4), (3.5) and 

~duP(~.x) exp Ic(v, Xv)[dv [cp(u,X,)l;u< <oe, 
s 

(3.8) 

the solutions of the integral equation (3.3) are uniquely determined. 



Transformations of Diffusion and Schr6dinger Processes 117 

Proof. 8 Let pl(s, x) and pz(s, x) be solutions of (3.3) with (3.4), (3.5) and (3.8), 
and denote p(s, x)=lpl (s, x ) -  p2(s, x)]. Let us denote Ic] by c for brevity in 
the following. Therefore c > 0. Then p (s, x) satisfies 

t 

p(s, x)___ y d v qs,x)[c (v, X.) p(v, Xv); v < Z] 
s 

<__ ~ dvS~,~ ~ c(v, x~) S dv~ 8v,xo~[cp(v~, X~,); v~ < ~];  v< 
8 V 

t U 1 

8 8 

where the Markov  property and Fubini 's  theorem have been applied. Then 
we have, by induction, 

t V n ~1 

p(s, ~)----Y dv. l d v . - ~ - -  I dv 
S $ $ 

-~,~ [c(v, x~) c(v~, xo )  ... c(v,, xo,) p(v~ x~~ v,< r~] 

= f d v P(s,x) 1 c (u, X,) d u c (v, X~) p (v, X~); v < , 

which vanishes as n ~  0% because of (3.8). 

Theorem 3.2. (i) Let f (t, x) be a non-negative function satisfying (3.7) and assume 
that 

t 

satisfies the condition (3.5). 
Then, if(s, x; t , f)  is a solution of (3.3) with (3.4) and (3.5). 
(ii) Let f (t, x) satisfy 

~g~ l f ( t ,y)[dy<oe,  for (s,x)~D, a<s<t<b .  (3.10) 

Assume that 

[ ( ! )  ] ~(s,x;t,  lfl)=P(s,x) [f(t, Xt)lexp c(v, Xv)dv ; t < T ~  (3.11) 

satisfies (3.5). 
Then, ~(s, x; t,f) is well-defined and is a solution of (3.3). 

Proof We have remarked already that  (3.7) is enough for non-negative p(s, x) 
to satisfy (3.4). Let i6(s, x) denote ~(s, x; t,f) for brevity. Under  (3.5) the second 

8 There was an error in my proof, which is corrected by Wakolbinger. 
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term of the right-hand side of (3.3) is well defined and equal to, by the Markov 
property and Fubini  theorem, 

!duP~s,x)[c(u, Xu)P(u,x.)[f(t, Xt)exp(!c(v,X~)dv); t < T@ u <  T~] 

[ ( ! )  ] =~duP(~,~) c(u,X,)exp c(v,X~)dv f(t, Xt);t<T~ 
s 

=P(~,~) duc(u, ~" (n-1)! c(v, X~)dv f(t, Xt); t< 
= 1 ~ u  

= P~,~) ~. c(v, X~)d f(t, Xt); t< . 

Therefore together with the first term, the right-hand side of (3.3) is equal to 

I -~ 1 / t  X~)dv)f(t,  Xt); 

which is nothing but/~(s, x). Thus p(s, x) satisfies (3.3). 
(ii) Under  the stated conditions i0(s, x; t, l/I) is a solution of (3.3) with I/I 

in place o f f  by the first assertion of the theorem. Especially 

Since 
~g~ dyff(u,y;t, lfl)<o% for (s,x)eD, s<u<t. (3.12) 

IP(s, x; t,f)l <fi(s, x; t, I f  I), (3.13) 

iO(s, x; t,f) is well defined and satisfies (3.3). Because of (3.12) and (3.13), it satisfies 
(3.4) and (3.5). 

Remark. It is easy to see that  

t 

dv e~s.x)[I c(v, X~)l p(v, Sv; t, I f  I); v<  TJ 
s 

<2P(s,x)[If(t, Xt) I exp ( / c  + (v,X~)dv); t < T~], 

where c + = c v 0. Therefore, 

t 

(3.14) 

is a sufficient condition for/5(s, x; t, I f  I) to satisfy (3.5). 
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Lemma 3.1. Assume that p(s, x) satisfies (3.5). Then, for any e>0 ,  there exists 
~o>0  and an open subset U of D with the compact closure U c D  such that 
(v, x)eU for ve(s-6o,  s] and 

1 i dv~g~ s-cS, x; v,y) dy Icp(v,y)] lw(v,Y)<e, for 0<6<c5o.  (3.15) 
~s- -6  

Proof Let (s,x)~D and choose c5o>0 small enough so that (v, x)~D for all 
v e [ s - 6 o ,  s]. Define a measure #a by 

1 0 #o(dv dy)=~ g (s-cS, x; v, y) l(~_~,~l(v ) dv dy. 

Since cpELl(#ao) by (3.5), there exists an open subset U of D with the compact 
closure [ Te D such that (v, x)~U for w(s--c5o, s] and 

~S#ao(dvdy) ]c(v, y) p(v, Y)I 1uc(V, y)<e.  (3.16) 

Then (3.15) follows from (3.16), since #a(UC)$0 as C550 by the continuity of paths 
of the process {X,, P(s,~)}- 

Theorem 3.3. Let c(s, x) be continuous in D and p(s, x) be a solution of the integral 
equation (3.3) satisfying (3.4) and (3.5). Then, p(s, x) is continuous in x, once differ- 
entiable in s, and satisfies 

~?P ~- lAp+a.  Vp+cp=O, (3.17) 
Os 

in the sense of distributions (locally in D). 9 

Proof It is easy to see that the second term of the right-hand side of (3.3) 
is continuous in x, and hence p(s, x) is continuous in x, since the continuity 
of the first term is clear. As we remarked in (3.6) we have 

p(s--cs, x)=fg~ x; s, y) dyp(s, y)+ i dvSg~ s-c5, x; v, y) dycp(v, y). 
s--,5 

(3.18) 

Let U be the open subset in Lemma 3.1, and take another open subset U1 
such that tTc  U l c ~ t c D .  Let k(v, y) be a continuous function taking values 
in I-0, 1], k(v, y)=  1 for (v, y)eU, and k(v, y ) = 0  for (v, y)6Uf. Then, Lemma 3.1 
implies that the second term of the right-hand side of (3.18) divided by C5>0 
is equal to 

1 i dvlg~ dyc(v,Y)P(v,y)k(v,y)+O(C5), (3.19) 

9 Since D is not cylindrical, the space of test functions depends on s. "Local" indicates this, but 
will not be repeated hereafter 
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where the integral converges to c(s, x)p(s, x)k(s, x)=c(s, x)p(s, x) and 0(6)$0 
as 6]0. Let h(x) be a C~~ with a compact support K such that there 
exists 6 > 0 and {(v, x): v s [ s -  6, s], x e K} c D. Then, combining (3.18) and (3.19), 
we have 

( l  {h g~ s)-h},  p(s))+(h, ~ {p(s ) -p(s -b)} )+ (h, c p(s)) + O(6)=O, (3.20) 

where 
h g~ s)=f h(x ) dx g ~  x; s, ") 

and 
(f ,  h ) = I f ( x )  h (x) d x. 

The first term of (3.20) converges to (�89 h -V- (ah ) ,  p(s)) as 6+0. This implies 

that the limit of the second term of (3.20) exists and is equal to h , ~ -  s (s) . 
Consequently, we have 

/ ) h, ~-s (s) + (1  A h -  17. (a h), p(s)) + (h, c(s) p(s)) = O, (3.21) 

that is, p(s, x) satisfies (3.17) in the sense of distributions. 

Theorem 3.4. Let (a(s, x) be a non-negative function on D satisfying (3.4), (3.5) 
and 

t 

for (s, x)e D, a < s < t < b. Then, for bounded continuous f on D, 

t 

(3.23) 

is a solution of (3.3) with f c~ in place of f, satisfying (3.4) and (3.5). Moreover, 
it satisfies (3.17) in the sense of distributions. 

Proof It is clear that f~b satisfies (3.10). 
By (3.22) we have 

t 

I dv ~s,x~EI c(v, Xv)p(v, Xv; t, f40l;  v<  T~3 
8 

t 

< Ilfll I dv P~s,x)[I c(v, X=)l q~(v, X~); v < TJ < oo. 
8 

Thus (3.5) is satisfied. Therefore, ~(s, x; t, fO) is a solution of (3.3) by Theorem 3.2 
and (3.17) holds in the sense of distributions by Theorem 3.3. 

Remark. By Corollary 2 of Theorem 2.1, if q5 satisfies the conditions in Sect. 2 
and if e(s, x) is the reference potential of ~b, then the inequality (3.22) holds. 
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NOW we apply Theorems 3.3 and 3.4 to the transformed process 
{(v, Xv), Q(~,x), if} (by the multiplicative functional N] in (2.5) defined by a given 
4b(s, x) subject to the conditions in Sect. 2). 

Theorem 3.5. Assume that for (s, x)sD and s <v<-t<-b 

P(s,x) I-q5 (v, Xv); v < TJ < oo (3.24) 
and 

t 

dv P(s.~) [I Lq$ (v, Xv)l; v< T~] < oo. (3.25) 
$ 

Then, for bounded continuous functions f (t, x) on D, 

q(s, x; t , f )=Q~.x)[f  (t, Xt); t <  T~] (3.26) 

is continuous in x, differentiable in s, and satisfies 

~gq 1 ff~_ 
t- Aq+a.  Vq+ .Vq=O, (3.27) 

~s 2 

in the sense of distributions, that is, the transformation by the multiplicative func- 
tional N] induces an additional drift V O/dp, and 

lim q(s, x; t , f )=f( t ,  x), for (t, x)eD. (3.28) 
s S t  

Proof We first remark that q$ (s, x) trivially satisfies 

LO + c(s, x) q$ = 0, in D, (3.29) 

where c(s, x) is the reference potential of 4b defined by (2.20). Let us define 
p (s, x) by 

p(s, x)= q$(s, x) Q(s,x)[f (t, xt); t< T~] 

=P(~,x)[f(t, Xt) O(t, X t ) e x p ( - i ~ ( v , X , ) d v ) ; t < T ~  j . (3.30) 
8 

Then it is clear by Corollary 2 of Theorem 2.1 that 

Ip(s, x)l < Ilfll 4(s, x). (3.31) 

Therefore, keeping Corollary 2 of Theorem 2.1, (3.24) and (3.25) in mind, we 
apply Theorem 3.4 and conclude that p(s, x) satisfies (3.29) in the sense of distri- 
butions. Moreover, it is clear that 

p(s, x) 
q(s, x)= 4(s, x) ' in D, (3.32) 

and q (s, x) is differentiable in s. Now we need a simple lemma. 
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Lemma 3.2. Let O(s, x) and p(s, x) be in C1'2(D) and r x ) > 0  in D. Define 
q by (3.32). Then 

1 
L q + ~  V r 1 6 2 1 6 2 1 6 2 1 6 2  inD, (3.33) 

where L is a parabolic differential operator in (2.6) and c(s, x) is arbitrary. 

Proof is routine and omitted. 

Let 7 e C 1' 2 (D)c~ CK(D), ~o and p, be a sequence of smooth functions converg- 
ing to p on supp(7). We apply Lemma 3.2 to q5 and p,, obtaining 

1 
Lq. += V c~. V q ,=r  l(Lp, +c p,)-d? -2 p,(L(o+c r 

q~ 
(3.34) 

where qn = P,/O and c is the reference potential of r The second term of the 
right-hand side of (3.34) vanishes. Multiplying (3.34) by 7 and integrating over 
D, and then passing to the limit n~oo ,  we have 

(3.35) 

where the right-hand side vanishes. Therefore q(s, x) satisfies (3.27) in the sense 
of distributions. To show (3.28) it is enough to notice 

]q(s, x)- f (s ,  x)] __< P(~,~ [1 f ( t ,  Xt)-f(s ,  x)lN~ t] +O(t--s) 

<~P~s,x)[N~]+O(t--s). 

Theorem 3.6. The transformed process {(t, Xt), Q(~,~), ~} never hits the nodal set 
N of r if and only if 

Pr [NIl = 1, for (s, x) ~D and t ~ Is, b], (3.36) 
that is, 

c~(s, x)= P(~,~) [O(t, Xt) exp (-- ! ~ -  (v, Xv) dv); t < T~ ] . (3.37) 

Proof Because of (2.21) and lo(t, X~)N ] = N], we have 

Qt~,x)[1D(t, Xt); t<~]  = P(~,~)[1D(t, Xt) Ut~] 

= P~s,x~ EU~q. 

Therefore, (3.36) is equivalent to Q(~,x)Et<~] = 1, for t<b, which is equivalent 
to that the transformed process {(t, Xt), Q(s,x)} does not hit the nodal set N 
of r 

lo CK(D)= {continuous functions with compact supports in D} 
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If we know in advance that (3.36) holds, then the additional drift term Vr162 
can be identified in terms of drift transformation as follows: ~ ~ If we set 

where 

t 

Bt=Xt--Xs  - ~ b(v, X~) dr, (3.38) 
8 

b (s, x) = a (s, x) + ~ (s, x), on D, (3.39) 

then/3t is a Brownian motion with respect to (~s,x)=Z]Q(s,x), where Z~ is the 
Maruyama density with respect to Q(s,~) given by 

(i b ) Z~=exp b(v, Xv).dXv - 1  ~ lib(v, Xv)ll2dv . (3.40) 
\ 8  S 

There is no problem in defining/3t in (3.38) and Z~ in (3.40), because the process 
{(t, Xt), Q(~,x)} does not hit the nodal set N of q~(s, x) (cf. Liptser-Shiryayev (1977)). 

w 4. Diffusion Equations with Creation and Killing 

We consider a diffusion equation with drift a(s, x) and with creation and killing 
c (s, x) in an open subset D ~ [a, b] x IR d, where - oo < a < b < oo ; 

0p 
4 -1  Ap+a.  Vp+cp=O, in D. (4.1) 

0s 

We assume that c(s, x) is continuous in (s, x)6D and 

Ic(s,x)l<oo, for (s,x)eD, 

but it may diverge at N = D  c. An example of c(s, x) is the reference potential 
of a function r (s, x) given by (2.20), which diverges at the nodal set of r For  
a fixed re(a, b], we consider solutions of (4.1) which do not vanish in 

D[a, t] ={(s, x): (s, x)eD, s<t}, 

and are continuous on /5  [a, t] under a terminal condition 

limp(s, x)=f(t,  x), 
sSt 

and a "boundary"  condition 

p(s, x)=0,  

11 R e m a r k e d  b y  W a k o l b i n g e r - S t u m m e r  ( p r e p r i n t )  

for (t, x)~D, (4.2) 

on N. (4.3) 
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Let us define T~ by 

inf{u~(s,b]:[p(u,X,)l<=l-orl,X,H>=R} if such u exists, (4.4) 
r l ~ =  n ' 

o% otherwise. 

Then T~< T~ and T~ tends to T~ as n ~ o e  and R ~ o e ,  because of (4.3). 

Theorem 4.1. Let p(s, x) be a solution of (4.1) with (4.2) and (4.3) subject to (3.4) 
and (3.5). Then p(s, x) satisfies the integral equation (3.3). 

Proof Let T~ be defined by (4.4). An application of It6's formula to p(s, x) 
yields 

t^  r ~  t ^  T~ 

p(s, Xs)=p(tAT~,Xt^r~)-- ~ Vp(v, Xv)'dBv+ ~ -Lp(v, Xv)dv, (4.5) 
8 

where Bt is a Brownian motion defined by (2.9). Therefore, we have 

p(s, x)=P(~,x~[p(tA T~, Xt^r~)] +P(~,x) --Lp(v, X~)dv . (4.6) 

Since p is bounded on [a, b] x SR, where SR= {X" [Ixll <R}, and -Lp=cp,  tend- 
ing n ~ o e  in (4.6) for a fixed R, we have 

p(s, x)= P(~.x)[p(t A T~, Xt^ r~); t <  T~] 
gtAT~ 

+P(~,~)[ !cp(v,X~)dv]+P~s,x)[p(T~,Xr~);t>T~] (4.7) 

where the third term vanishes and the second one converges to 

l ~ ,  ~ c p (v, x~) d v 

as R ~ o o ,  because of (3.5), and the first term can be decomposed into 

P(~,~) [p(t A r~ ~ Xt^ T~); X,^ r~eSR, t <  T~] (4.8) 
and 

P(~,~) [p (t a Tff, X t ̂  T~); Xt ^ T~ ~ ~ SR, t <  rs]. (4.9) 

If T~ =<t< Ts, then XT~eSSRuN, and hence (4.8) is equal to 

P~,~)[p(t, Xt); XtA T~SR, t< T~], 

which converges to 

P(~,~)[p(t, Xt); t< T~] 
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as R ~ oe. Moreover, (3.4) implies 

~ g~ x; u, y)du dy I p(u, y)l< o0. 
D 

Therefore, (4.9) vanishes as R--+ oo and hence we have 

p(s, x)= P(s,~)[f (t, X~); t <  TJ + i dvPts,~)[c(v, X~) p(v, X,); v< T~], 
s 

since p(t, x)=f(t,  x) by (4.2). Thus p(s, x) satisfies the integral equation (3.3) 
under the conditions (3.4) and (3.5). 

Remark. Setting R = n in (4.4), we denote T"=  T, n and assume in addition 

{p(t/x r", Xt,, r-): n > 1} is uniformly integrable with respect to P(~.x). (4.11) 

Then p(s, x) satisfies (3.3). In fact, we can take limit in (4.6) with T" in place 
of T~ under the assumption (4.11). A sufficient condition for (4.11) is 

P~,x) [P (t /x T", Xt ^ r,) 2; t < T~] < const. < oo. (4.12) 

It is clear that the condition (4.12) is satisfied, if p(s, x) is bounded. 
Let us denote 

k(s, x)=p(s, x ) -Ns ,  x), 

where p(s, x) is a non-negative solution of (4.1) and 

t 

is the minimal solution of (3.3) (cf. Corollary of Theorem 2.1). By the definition 
c (s, x) is the reference potential of p (s, x), and hence 

k(s, x) __< i d v q~,x) [c + (v, Xv) k(v, Xv); v < r,]. 
g 

(4.13) 

Therefore, applying the same arguments of the proof of Theorem 3.1, we have 

Theorem 4.2. Let p(s, x) be a non-negative solution of (4.1) with (4.2) and (4.3) 
subject to (3.4) and (3.5). Assume 

~duPts,x ) exp c+(v,X~)dv c+(u,X,)p(u,X,);u< <co. 
s L ~ s  

(4.14) 

Then p(s, x) is a unique solution of the integral equation (3.3) and represented 
in the form of 

t 
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Remark. For a bounded p(s, x) a sufficient condition to (4.14) is 

P(~,~) [exp ( !  c + (v,X~)dv);t<T~J<oe. (4.16) 

This condition is fullfilled, if Lp(s, x)>O in a neighbourhood of N, because 

c(s, x)= _ L p  (s, x). The condition (3.5) follows from (4.16), i f f  is bounded (cf. 
(3.14)). P 

w 5. Inaccessibility to the Nodal Set 

Let N~ t be the multiplicative functional defined by (2.5) in terms of a given 
function qS(s, x), and {Xt, Q(~,~), ~} be the transformed process discussed in 
Sect. 2. Our problem is to show P~s,~)[N~] = 1, from which follows that the trans- 
formed space-time process (t, Xt) does not hit the nodal set N of qS(s, x), Q~,~)-a.s., 
by Theorem 3.6. Let q5 (s, x) satisfy conditions in Sect. 2, and define the reference 
potential c(s, x) by (2.20). Then ~b(s, x) satisfies trivially the diffusion equa- 
tion (4.1) with the reference potential c(s, x) of ~b, and also (4.2) and (4.3). 

Theorem 5.1. Assume (3.24), (3.25) and (4.14). 12 Then the normalization condition 
of the multiplicative functional N t holds: 

P(,,~)[N~ t] = 1, for (s, x)~D and tE[s, b], (5.1) 

and hence the transformed process {Xv, Q(~,x), ~} does not hit the nodal set N 
of 4). 

Proof. By Corollary 2 of Theorem 2.1 q5 (s, x) satisfies (3.9) and hence Theorem 4.2 
(and its Remark) can be applied to q5 to get 

t 

(5.2) 

for (s, x)eD and a < s < t < b. Dividing (5.2) by q5 (s, x) we have (5.1), which implies 
the inaccessibility (cf. Theorem 3.6). 

Theorem 5.2. Under the assumption of Theorem 5.1, { N t , ~  t, t~[s, b], P(s,~)} is a 
martingale with (5.1), and hence it is continuous in t, P(~,xTa.s., and given by 

' 1 i ~ - ( v ,  Xv)2dr},  P(s~)-a.s. N~=exp {lt~<r}~ ! ff~-(v, Xv) 'dBv-~ (5.3) 

where T is defined by (2.12) and 

12 (4.16) is sufficient for bounded q~ 

T~ = T, P(s,~)-a.s. (5.4) 
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Proof Because of (5.1) it is clear that { N t , ~  ', te[s, b], P(~,x)} is a martingale 
which is right continuous, and moreover ~st=a(Bv;  re[s, t]). Therefore, it is 
continuous by the martingale representation theorem of Clark (1970). This 
implies that T must coincide with T~, P(~,x)-a.s., and hence we can take off the 
factor l{t< rs} in (2.8). Thus (5.3) holds. 

Remark I. (5.2) indicates that ~b(s, x) is a space-time harmonic function of the 
reference process (cf. remark after Definition 2.3). But this does not mean that 
we can obtain the transformed process {Xv, Q(~,~)}, applying the space-time har- 
monic transformation to the reference process. We should transform {Xt, P(s.~)} 
directly by the multiplicative functional N~ to get {X,  Q(~,~)}. 

Remark 2. Let q~ (s, x) be a function satisfying 

Lc>(s, x)=0,  for (s, x)eD. (5.5) 

Then, by Theorem 5.1, it holds that 

qS(s, x)=P(~,x)[q~(t, Xt); t <  T~], (5.6) 

and ~b is a space-time harmonic function of {(t, Xt), P~,x)}. In this case the refer- 
ence potential c(s, x) vanishes and the transformation in terms of N/ reduces 
to Doob's  space-time harmonic transformation. 

w 6. Sehr6dinger Processes 

In a paper entitled "Ueber  die Umkehrung der Naturgesetze" (1931) Schr6dinger 
considered diffusion processes conditioned by prescribed probability distribu- 
tions at the initial and terminal time to establish a time reversible formulation 
of diffusion processes. He considered the case of a Brownian transition probabili- 
ty but one can formulate them in general for a given "transition density" 
p(s, x; t, y), which is non-negative and satisfies the Chapman-Kolmogorov equa- 
tion but 

Sp(s, x; t, y) dy<=l 

is not required. A typical example is the transition density of a diffusion process 
with creation and killing. 

Definition 6.1. A diffusion process {Xt, re[a, b], ]P} will be called a Schr6dinger 
process prescribed by a pair of functions {q~(a, x), ~b(b, x)} and a transition den- 
sity p(s, x; t, y), if the distribution of the process X t is factorized by the pair 
of functions ~(t, x) and q~(t, x): For  a bounded measurable function f 

lP[f  (Xt)] = S r x) dp(t, x) f (x) dx, (6.1) 
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where q~(t, x) and qS(t, x) are space-time harmonic and co-harmonic functions 
of the transition density p(s, x; t, y), respectively; namely 

~o(t, x)=~ p(t, x; b, y) d y ~o(b, y) 

q~(t, x )=~ q~(a, z) dz p(a, z; t, x). 
(6.2) 

The factorization (6.1) of Schr6dinger process has a significant resemblance 
to Born's statistical interpretation of wave functions in quantum mechanics, 
in which probability distribution densities are factorized by complex-valued 
wave functions as ~, 0,, where 

O, = U(t, b) Ob (6.3) 

~kt=t~, U(a, t), 

U(s, t ) =e  -im*-~) with a Hamiltonian H, and t~b=O, U(a, b). In  both cases the 
probability of present events (at t) is predicted by the data at an initial time 
a and a terminal time b. 13 In fact, ~(t, x) (resp. fit) is the prediction from the 
past and q~(t, x) (resp. ~p~) is the prediction from the future (i.e. time reversed 
prediction). In other words, the factorization (6.1) combined with (6.2) is a real- 
valued counterpart  of Born's statistical interpretation of wave functions in quan- 
tum mechanics. 

We will construct Schr6dinger processes, assuming that 14 a transition den- 
sity p(s, x; t, y) and a pair of functions {q~(a, x), qS(b, x)} subject to 

~S dx  ~o(a, x) p(a, x; b, y) ~b(b, y) dy=  1, (6.4) 

are given in advance. We follow Kolmogoroff 's  way: For  a < t 1 < t 2 < . . .  < tn < b 
and Borel subsets Ai, i-- 1, 2, ..., n, define 

p(tl ..... t-)(A 1 x . . .  x A , ) =  I . . . ~ d x  ~o(a, x) p(a, x; t,, YO d yx 

�9 p(tl, Ya; t2, Y2) dyz ... p(t., y,; b, y) dy  49(b, Y)Iq la,(Yi)" 
i = 1  

(6.5) 

Then,  p ( t l  . . . . .  t~) is a probability measure on S", where S=IR  d, because 

p~t ...... t , ) ( Sx . . . xS )=S~dxq~(a , x )p (a , x ;b , y )qb (b , y )= l ,  (6.6) 

by the required condition (6.4), and hence there exists a unique probability 
measure �9 on O = S  ~ such that IP[Xt, eA1, ..., X t e A , ]  is equal to the right- 
hand side of (6.5), where Xt(o) ) = o)(t) for o)eO and t e [a, b]. Under certain regu- 
larity conditions on p(s, x; t, y) we can show the continuity of paths, though 
we do not discuss it here. 

la This is a Markov-field like prediction in one dimension 
14 This assumption is not realistic in some applications as will be seen 
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Theorem 6.1. A Schr6dinger process { X ,  t~ [a, b], IP} is a Markov process with 
a transition probability density 

1 
- - p ( s , x ; t , y )  c~(t,y), for (s,x)~D, s < t < b  

q (s, x; t ,  y)= (~ (s, x) 
O, otherwise, 

(6.7) 

where D = {(s, x): q$ (s, x)=~ 0, s e [a, b] }, and with an initial (resp. final) distribution 
density 

#,(x)= ~a(a, x) ~a(a, x), (resp. #b(X)= ~(b, x) q$(b, x)), (6.8) 

where q~(t, x) and (~(t, x) are given in (6.2). 

Proof Multiplying and dividing by q$ (t, x) at t = a and ti, i = 1, 2, ..., n, on the 
right-hand side of (6.5), we have 

]P[Xtl ~A 1 . . . .  , Xt 6 A J  =~ ... ~ dx  ~)(a, x) (a(a, x) q(a, x; t l ,  Yl) d Yl 
n 

"q(tl, Y~; t2, Y2) d y2 ... q(tn, Yn; b, y) d y I- [ 1A,(Yi), 
i = l  

which proves the assertion of the theorem. 
Knowing Theorem 6.1 we can release the condition (6.4). If 

(6.9) 

#t(A)=~ dx  ~)(t, x) r x) 1A(X) (6.10) 

is a-finite, then a a-finite measure lP can be constructed, since {#~} is an entrance 
law at a of q(s, x; t, y) of (6.7) (cf. Getoor-Glover (1986), cf. also Kuznetzov 
(1973), Mitro (1979), Dynkin-Getoor (1985)). 

Remark 1. A class of more general processes was considered by Bernstein (1932) 
and Jamison (1974) in connection with Schr6dinger processes. 

Remark 2. Suppose that probability distribution densities #a(x) and #b(x) are 
given instead of q~(a, x) and q$(b, x). Then one must find out q~ and ~b satisfying 
a system of equations 

#a(x) = q'~(a, x) ~ p(a, x; b, y) d y ~(b, y) 

#b(x)=~ ~(a, z) d z p(a, z; b, x) 4J(b, x), 
(6.11) 

which was called "Schr6dinger's system" and treated by Fortet (1940), Beurling 
(1960) and Jamison (1974) showing 

Theorem 6.2 (Fortet-Beurling-Jamison). I f  p(s, x; t, y) is positive and continuous 
in (x, y)~S x S, where S is a a-compact metric space, then there exists a unique 
solution {$(a, x), ~b(b, x)} of the Schr6dinger's system of Eqs. (6.11) for a given 
pair {#a, #b}" 
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Let us now assume that q~(s, x) is given and that p(s, x; t, y) is a fundamental 
solution of 

~p 
t- 2 Ap+a. Vp+cp=O. (6.12) 

~s 

Because of the first equation of (6.2), ~b(s, x) must satisfy (6.12). In other words, 
c(s, x) in the Eq. (6.12) must be the reference potential of ~b(s, x), that is, 

c(s, x) = - ~ -  (s, x). 

If c(s, x) is H61der continuous, there exists a fundamental solution p(s, x; t, y), 
assuming a(s, x) is nice (cf. e.g. Friedman (1964)). However, if ~b(s, x) has zeros, 
that is, if c(s, x) diverges on a subset of [a, b] x lR~, there is no classical existence 
theorem of a fundamental solution. One possibility to get it is to apply Theo- 
rem 3.4. 

Theorem 6.3. Let (o(s, x) be non-negative and satisfy (6.12) in D = {(s, x): ~b(s, x) 
~0}, that is, c(s, x) is the reference potential of (o. I f  (o(s, x) satisfies (3.24), 
(3.25) and 

qS(s,x)=P~,x) c~(t, Xt) exp ~c(v, Xv)dv ; t <  ,15 (6.13) 
~ s  

for (s, x)6D, a<=s<t<b, where {Xv, P(~,x)} is a diffusion process governed by L 
(cf Sect. 3). Then, there exists p(s, x; t, y) such that 

p(s, x; t , f  (o)=S p(s, x; t, y)dy c/~(t, y) f (t, y) (6.14) 

satisfies the integral equation (3.3) with Of  in place of f where f is a bounded 
continuous function, and 

p(s ,x; t ,y)= ~ p(s ,x;u,z)dzp(u,z; t ,y) ,  for a.e. yeDt, (6.15) 
Du 

for a<s<u<t<b ,  where D,={x :  q~(u, x)+0}. Moreover, p(s, x; t, c~f) satisfies 
(6.12) in the sense of distributions. 

Proof It remains for us to prove that there exists p(s, x; t, y) which satisfies 
(6.14), since the remaining assertions of the theorem follows from Theorem 3.4. 
Let p(s, x; t, f4)) be the solution of the integral equation (3.3). Then (6.14) follows 
from Riesz-Markov theorem and Radon-Nykodym theorem, where we take 
a regular version so that p(s, x; t, y) is measurable in (x, y). 16 To show (6.15) 
notice that (a(s,x)-ip(s,x;t ,  f4)) satisfies the integral equation(3.3) with 
g0 (s, x; t, y) defined by 

gO (s, x; t, y )=  q5 (s, x)- 1 gO (s, x; t, y) ~b (t, y), in D x D (6.16) 

15 (3.22) is sufficient, when we apply Theorem 3.4. We assume (6.13), because it is nothing but (6.2) 
necessary for Schr6dinger processes 
16 Cf. e.g. Dellacherie-Meyer (1978) 
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in place of g~ x; t, y). Therefore, we have 

O(s, x) -1 p(s, x; t , f  ~)= ~ O(s, x) - I  p(s, x; u, z) dp(u, z) dz O(u, z) -1 p(u, z; t, f O), 
(6.17) 

from which (6.15) follows. 
We have shown the existence of a transition density p(s, x; t, y) in order 

to construct a Schr6dinger process. For this purpose, however, it is better to 
employ the transformation which we have discussed in Sect. 2, since it offers 
information on paths of transformed processes and on their transition probabili- 
ties. 

Theorem 6.4. Let O(s, x) be a non-negative function satisfying (3.24), (3.25), and 
(4.14). Let {(t, Xt), Q(s.x)} be the transformed space-time diffusion process by means 
of the multiplicative functional Nts defined by (2.5), and set 

IP[F]=S~)(a,x)O(a,x)dxQ.~,~[F],  for F e ~ ,  (6.18) 

where ffa(a, x) is a non-negative function on D. Then {X~, te[a, b], P} is a Schr6- 
dinger process such that its transition probability 

q(s, x; t , f)=Q(s,~)[f  (t, xt)  ] 

=P(,.~)[f(t, Xt)Nt~], f~Cb(D), (6.19) 

is represented in terms of q(s, x; t, y) in (6.7) with p(s, x; t, y) given in Theorem 6.3 
and it satisfies 

1 
Lq + ~  V O. V q=O, (6.20) 

in the sense of distributions. Moreover, 

(t, Xt) does not hit the nodal set of O, ~-a.s. (6.21) 

t 

Proof For brevity let us denote c(s, t )= ~ c(v, Xv) dr. Then, forfeCb(D), 
s 

~ ~(a, x) O(a, x ) d x  Q(a,x)[f (t, Xt)] 

= ~ q~(a, x) dx  P(,,x)[f(t, Xt) e c(a'~ (~(t, Xt) P(t,x0 [Ntb] ; t <  TJ  

= ~ ~o (a, x) d x P(a,x)If (t, Xt)  e ~"'~ P(t,x~)[ e~(t'b) 4) (b, Xb); b < Tt]. t < T j  

= ~ ~a(a, x ) d x  p(a, x; t, y )dy f ( t ,  y)~p(t, y; b, z )dz  (a(b, z) 

=~ q~(t, y) f (t, y) ~b(t, y) d y, 

where q~(t, y) is defined by the second equation of (6.2), and we have used the 
first equation of (6.2), which is nothing else but (6.13), and 

P(s,x)[eC(S't) f ~(t, Xt); t< T~] = ~ p(s, x; t, y ) d y f ~ ( t ,  y), 

with p(s, x; t, y) which is given in Theorem 6.3. (6.20) has been shown in Theo- 
rem 3.5. (6.21) follows from Theorem 3.6. 
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w 7. Schriidinger Processes Associated with Sehriidinger Equations 

We consider  a Schr6dinger  equa t ion  

. a O . 1  
z ~ - s  + ~ A ~, + i a .  V~b-V~, =0 ,  (7.1) 

where V= V(s, x) is a A-va lued  funct ion and a = a(s, x) is a bounded  lRd-valued 
funct ion with cont inuous  derivatives in x satisfying a gauge condi t ion  

V- a (s, x) = 0.17 (7.2) 

L e m m a  7.1. Let t~=e ~+ip be a solution of a SchrSdinger equation (7.1), then the 
pair of functions {ct, fl} satisfies a system of equations 

Off. 1 1 2 1 2 
v= --~s+~ A ct+~ (vct) -~  (v~) -a. v~ 

(7.3) 
Oct 1 

O=~s+~ Afl+(Vfl+a)'Vct, 

in O = {(s, x): O(s, x)#0}.  

Proof The  real (resp. imaginary)  par t  of (7.1) divided by 0 is given by (7.3). 

L e m m a  7.2. Assume the gauge condition (7.2). 
(i) q5 = e ~+~ satisfies a diffusion equation 

Op 
~-lAp+a. Vp+cp=O, in D={(s,x): qS(s, x ) # 0 } ,  (7.4) 

~s 

if and only if the pair of functions {ct, fl} satisfies 

f ~ct 1 } 
c=  -~(T~s + ~ ~/~+ (v/~+ a). w 

f ~fl 1 A 1 2 1 2 +~-Tgs+~ ~+~(w)-~(v~)-a.V~}-{Act+(Vct)2}. (7.5) 

(ii) q~ = e" -~ satisfies the formal adjoint equation of (7.4) 

#P F1Ap--a.V~+cp=O, inD, (7.6) 
Os 

if and only if the pair of functions {ct, fl} satisfies 

(~ct 1 V@ c = l ~ - s  + ~ Afl+(Vfl+a)- 

( Off 1 1 2 1 2 +l--~s+-~ A~+-2 (Vct) --~(Vfl) --a. Vfi}-{Aa+(Vct)2}. (7.7) 

17 This condition is set mercly technically, because Schr6dinger processes are gauge invariant (cf. 
Wakolbinger-Stummer (preprint) 
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Proof is routine and omitted. 

We assume that a solution of the SchrSdinger equation (7.1) exists and is 
represented in the form of O(s, x )=e ~(s'x)+iz(s'x) by a pair of functions {e, fl}. 
Let us define 4) and ~ by 

(s, x) = e ~(s'x) +p(s,~:) (7.8) 

q~(s, x ) = e  ~(s'~)-p(s'*), in D. 

Then they are continuously differentiable once in s and twice in x for (s, x)eD. 
1 

Let c(s, x) be the reference potential of r x) with L = ~ s +  ~- A + a .  V, that 
is, 

1 
c(s, x)= Lr x). (7.9) 

r x) 

Theorem 7.1. (i) In terms of or (resp. fl) of a solution O=e ~+iB of a SchrSdinger 
equation (7.1) and of a potential V(s, x) in (7.1), the reference potential c(s, x) 
is represented in D with 

c(s, x)= - A  ~-(Vc~)2 + V 

= - 2  ~ s - ( V f l ) 2 - 2 a .  V f l -  V, respectively. (7.10) 

(ii) The functions r and ~) defined by (7.8) satisfy the diffusion equations (7.4) 
and (7.6), respectively, where c(s, x) is the reference potential given in (7.10). 

Proof. By (7.9) r = e  ~+p satisfies trivially the diffusion equation (7.4), and hence 
(7.5) holds for the pair {c~, fl}. On the other hand the pair satisfies the system 
of Eqs. (7.3), because ~ - - e  ~+~p is a solution of the Schr6dinger equation (7.1). 
Therefore, on the right-hand side of (7.5) the first line vanishes and the second 
bracket is equal to V. Thus we have 

c = v -  {A. + (V 

which is the first formula of (7.10), the second formula of which in terms of 
fl follows from the first equation of (7.3). Because of the same reasoning (7.7) 
holds, and hence q~= e ~-~ satisfies the formal adjoint Eq. (7.6). 

Remark. It is shown in Carmona (1985) that r ~+p satisfies (7.4) with c(s, x) 
given by (7.10) in the case of a=0 .  Zambrini (1986) defined c(s, x) by (7.10) 
and called it modified potential. 

Definition 7.1. The SchrSdinger process {Xt, te [a, b], P} determined by the pair 
{r q~} of (7.8) will be called a SchriSdinger process associated with a Schri~dinger 
equation (7.1). 

To define a Schr6dinger process we must have a transition density p(s, x; t, y) 
with which 4) and q~ satisfy (6.2). However, the existence of p(s, x; t, y) is not 
trivial and we refer to Theorem 6.3. Applying Theorem 6.4, we have 

Theorem 7.2. Let O=e ~+ip be a solution of  a SchrSdinger equation (7.1). Define 
{r ~o} by (7.8) and assume that r satisfies the conditions (3.24), (3.25), and (4.14) 
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(or bounded with (4.16)). Then there exists a Schr6dinger process {Xt, te [a, b], ]P} 
associated with a Schr6dinger equation (7.1) such that 

�9 [X,~A] = ~ ~(t, x) r x) 1A(x)dx 
= ~ q~(t, x) qS(t, x) la (x  ) dx, (7.11) 

where ~ is a solution of the Schr6dinger equation (7.1) and ~ its complex conjugate; 
and the transition probability density q(s, x; t, y) of the Schr6dinger process is 
given by 

1 
q(s, x; t, y)=  p(s, x; t, y) O(t, y) (7.12) 

4(s, x) 
and satisfies 

Oq + l A q + ( a + V c ~ + V f l ) . V q = O ,  inD, (7.13) 
Os 

in the sense of distributions. Moreover, 

(t, Xt) does not hit the nodal set of O, ]P-a.s. (7.14) 

Remark 1. Another  approach is known to get the Eq. (7.13), which is a diffusion 
equation with singular drift 17 c~ + V fi = V 4)/0, or Schr6dinger processes: We con- 
sider a pair of space-time diffusion processes which are in duality with respect 
to a measure with a density ~(s, x) r (s, x) (then, they are time reversal of each 
other cf. e.g. Nagasawa (1985)). The duality implies that the transition probability 
density of one of the pair processes satisfies the diffusion equation (7.13) (another 
one of the pair satisfies the dual diffusion equation with the dual additional 
drift Va-V f i ) .  Cf. Nelson (1966), Albeverio-Hoegh-Krohn (1974), Zheng-Meyer 
(1984/85), Carlen (1984), Nelson (1985), Carmona (1985), Zheng (1985), Zambrini 
(1986), Blanchard-Golin (1987). 

Remark 2. We naturally raise a question whether there is any physical meaning 
of Schr6dinger processes. One possible answer is this: Since they are diffusion 
processes, we interprete them as random motion of representative particles in 
a system of large number of interacting particles. For  a trial in this direction 
see Nagasawa (1985), Nagasawa-Tanaka (1985, 86, 87). 

Remark 3. We have assumed that a solution of a Schr6dinger equation (7.1) 
exists. Let us assume conversely that p(s, x; t, y) in D x D satisfying the condition 
of Theorem 6.2 is given and a pair {#,, #b} of distribution densities is prescribed 
(or a pair of functions {qS(t, x), qS(t, x)} subject to (6.2)). Let us assume that 
q~ and q~ are continuously differentiable once in s and twice in x in D. Set 
c~=�89 and fi=�89 -1 in D. Then O = e  "+ia is a solution of a Schr6- 
dinger equation (7.1) with a potential V= c + A c~ + (17c0 2, where c is the reference 
potential of ~b. 

Remark 4. For  the least action principle of Schr6dinger processes see Nagasawa 
(preprint). 
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