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Abstract. Highly-interconnected networks of non- 
linear analog neurons are shown to be extremely 
effective in computing. The networks can rapidly 
provide a collectively-computed solution (a digital 
output) to a problem on the basis of analog input 
information. The problems to be solved must be 
formulated in terms of desired optima, often subject to 
constraints. The general principles involved in con- 
structing networks to solve specific problems are dis- 
cussed. Results of computer simulations of a network 
designed to solve a difficult but well-defined optimiza- 
tion problem - the Traveling-Salesman Problem - are 
presented and used to illustrate the computational 
power of the networks. Good solutions to this problem 
are collectively computed within an elapsed time of 
only a few neural time constants. The effectiveness of 
the computation involves both the nonlinear analog 
response of the neurons and the large connectivity 
among them. Dedicated networks of biological or 
microelectronic neurons could provide the compu- 
tational capabilities described for a wide class of 
problems having combinatorial complexity. The 
power and speed naturally displayed by such collective 
networks may contribute to the effectiveness of biolog- 
ical information processing. 

I Introduction 

A large class of logical problems arising from real 
world situations can be formulated as optimization 
problems, and thus qualitatively described as a search 
for the best solution. These problems are found in 
engineering and commerce, and in perceptual prob- 
lems which must be rapidly solved by the nervous 
systems of animals. Well-studied problems from com- 
merce and engineering include: Given a map and the 
problem of driving between two points, which is the 

best route? Given a circuit board on which to put 
chips, what is the best way to locate the chips for a good 
wiring layout (Kirkpatrick et al., 1983)? Analogous, 
but only partially characterized problems in biological 
perception and robotics include: ~ Given a monocular 
picture, what is the best three-dimensional description 
of the locations of the objects? Indeed, what are the 
"objects"? In each of these optimization problems, an 
attempt can be made to quantify the vague criterion 
"best" by the use of a specific mathematical function to 
be minimized. 

While a cost function may be specified, real world 
data used to evaluate it is generally not precise. Also, 
complex cost functions usually involve somewhat 
arbitrary weightings and forms of the various contri- 
butions. From an engineering viewpoint, these com- 
plications imply that little meaning can be attached 
to "best". Often, what is truly desired is a very good 
solution, which will be uniquely best only for simple 
tasks. In many situations, a very good answer com- 
puted on a time scale short enough so that the solution 
can be used in the choice of appropriate action is more 
iLmportant that a nominally-better "best" solution. 
This is especially true in the biological and robotics 
tasks of perception and pattern recognition, because 
these problems typically have an immense number of 
variables and the task of searching for the mathemat- 
ical optimum of the criterion can often be of consid- 
erable combinatorial difficulty, and hence time 
consuming. 

The computational powers routinely used by ner- 
vous systems to solve perceptual problems must be 
truly immense, given the massive amount of sensory 
data continuously being processed, the inherent dif- 
ficulty of the recognition tasks to be solved, and the 
short time (msec-secs) in which answers must be found. 

1 (Poggio and Torre, 1985; Terzopoulos, 1984; Ikeuchi and 
Horn, 1981i Julesz, 1971; Marr, 1982; Sebestyn, 1962) 
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Most general purpose digital computers would fail to 
provide this combination of power and speed. One of 
the central goals of research in neuroscience is to 
understand how the biophysical properties of neurons 
and neural organization combine to provide such 
impressive computing power and speed. An under- 
standing of biological computation may also lead to 
solutions for related problems in robotics and data 
processing using non-biological hardware and soft- 
ware. 

It is clear from studies in anatomy, neurophysi- 
ology, and psychophysics that part of the answer to 
how nervous systems provide computational power 
and speed is through parallel processing. The mam- 
malian visual system computes elementary feature 
recognition massively in parallel (Julesz, 1981; Ballard 
et al., 1983). At the level of neural architecture, 
anatomy and neurophysiology have revealed that the 
broad category of parallel organization is manifest in 
several different but interrelated forms. Parallel sen- 
sory input channels, such as the individual rods and 
cones in the vertebrate retina, allow rapid remote 
sensing of the environment and data transmission to 
processing centers. Likewise, parallel output channels, 
for example in corticocortical projections in the cortex, 
connect different processing modules (see, for example 
Goldman-Rakic, 1984). Another manifestation of par- 
alMism occurs in the large degree of feedback and in- 
terconnectivity in the "local circuitry" of specific pro- 
cessing areas (see, for example Shepherd, 1978). The 
idea that this large degree of local connectivity between 
the simple processing units (neurons) in a specific 
processing area of the nervous system is an important 
contribution to it's computational power has led to the 
study of the general properties of neural networks 2 and 
also several "connectionist" theories in perception 
(Ballard, in press; Feldman and Ballard, 1982). The 
connectionist theories employ logical networks of two- 
state neurons in a digital clocked computational 
framework to solve model pattern recognition 
problems. 

There is a major feature of neural organization 
which is not included in connectionist models but 
which can act synergistically with parallel feedback 
and connectivity to greatly enhance computational 
power. This feature is that the biological system 
operates in a collective analo9 mode, with each neuron 
summing the inputs of hundreds or thousands of 
others in order to determine its graded output. An 
analog system is made powerful in computation by its 
ability to adjust simultaneously and self-consistently 
many interacting variables (Poggio and Koch, 1984; 
Jackson, 1960; Huskey and Korn, 1962). Although 

2 (Hopfield, 1984; Gelperin et al., in press; Hopfield, 1982; 
Hinton and Sejnowski, 1983; Arbib, 1975) 

very fast, analog summation is inevitably less accurate 
than digital summation. This compromise is not 
critical, however, in perceptual tasks formulated as 
optimization problems. The computational load of 
rapidly reducing this sensory input to the desired 
"good" solution is already immense; inaccuracies and 
uncertainties are already present and the computa- 
tional load is meaninglessly increased by high digital 
accuracy. Parallel analog computation in a network of 
neurons is thus a natural way to organize a nervous 
system to solve optimization problems. 

In this paper we quantitatively demonstrate the 
computational power and speed of collective analog 
networks of neurons in solving optimization problems 
rapidly. We demonstrate that even for very difficult 
problems, making a collective decision is rapid, requir- 
ing an elapsed time of only a few characteristic times of 
the "neurons" comprising the network. This speed, 
needed for real-time processing of sensory information 
by a nervous system, can be provided by collective 
analog computational circuits because all of the 
neurons simultaneously and continuously change their 
analog states in parallel. When compared to modern 
digital general purpose computers constructed with 
conventional silicon integrated circuits (VLSI), the 
"neural" computational circuits we describe have 
qualitatively different features and organization. In 
VLSI the use made of analog calculations in minimal 
(Mead and Conway, 1980). Each logic gate will 
typically obtain inputs from two or three others, and a 
huge number of independent binary decisions are 
made in the course of a computation. In contrast, each 
nonlinear neural processor (neuron) in a collective 
analog computational network gets inputs from tens 
or hundreds of others and a collective solution is 
computed on the basis of the simultaneous interactions 
of hundreds of devices. 

Recognizing that the nature of perceptual problems 
is similar to other optimization problems (Poggio and 
Torre, 1985; Hinton and Sejnowski, 1983; Ter- 
zopoulos, 1984) and that computing power is best 
illustrated on a difficult but well understood problem, 
we will show here how to organize a computational 
network of extensively interconnected nonlinear ana- 
log neurons so that it will solve a well characterized, 
but non-biological, optimization problem. We have 
chosen as an illustration the "Traveling-Salesman 
Problem" (TSP), for which the computational dif- 
ficulty has been much studied (Lawler et al., in press; 
Garey and Johnson, 1979). The solution to the TSP 
problem, and indeed, the solution to many optimi- 
zation problems is a discrete answer. However, the 
neurons in the networks we describe operate in 
an analog mode. Hence, unlike "connectionist" ap- 
proaches to solving perceptual problems in networks 
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which use strictly two-state neurons, the formulation 
of problems to be solved by an analog computational 
network requires embedding what seemed to be dis- 
crete problems in a continuous decision space in which 
the neuronal computation operates. We demonstrate 
here how a continuous decision space and continuous 
computation can be related to discrete computation 
and why a continuous space can improve the quality of 
the solutions obtained by highly-interconnected 
neural networks. 

II Analog Computational Networks 

The general structure of the analog computational 
networks which can solve optimization problems is 
shown in Fig. lb. These networks have the three major 
forms of parallel organization found in neural systems: 
parallel input channels, parallel output channels, and a 
large amount of interconnectivity between the neural 
processing elements. The processing elements, or 
"neurons", are modelled as amplifiers in conjunction 
with feedback circuits comprised of wires, resistors and 
capacitors organized so as to model the most basic 
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Fig. la  and b. a The input-output relation for the "neurons" or 
analog amplifiers, b The analog circuit. The output of any neuron 
can potentially be connected to the input of any other neuron. 
Black circles at intersections represent resistive connections 
(Tq's) between outputs and inputs. Connections between inverted 
outputs and inputs represent negative (inhibitory) connections 

computational features of neurons, namely axons, 
dendritic arborization, and synapses connecting the 
different neurons. The amplifiers have sigmoid mono- 
tonic input-output relations, as shown in Fig. la. The 
function Vj=gj(uj) which characterizes this input- 
output relation describes the output voltage of 
amplifier Vj due to an input voltage uj. The time 
constants of the amplifiers are assumed negligible. 
However, like the input impedance caused by the cell 
membrane in a biological neuron, each amplifier j has 
an input resistor Qj leading to a reference ground and 
an input capacitor Cj. These components partially 
define (see below) the time constants of the neurons and 
provide for integrative analog summation of the 
synaptic input currents from other neurons in the 
network. In order to provide for both excitatory and 
inhibitory synaptic connections between neurons 
while using conventional electrical components, each 
amplifier is given two outputs, a normal (+)  output 
and an inverted ( - )  output. The minimum and 
maximum outputs of the normal amplifier are taken as 
0 and 1, while the inverted output has corresponding 
values of 0 and - 1. A synapse between two neurons is 
defined by a conductance T u which connects one of the 
two outputs of amplifier j to the input of amplifier i. 
This connection is made with a resistor of value 
Rij= 1/[Tu[. If the synapse is excitatory (Tu>0), this 
resistor is connected to the normal (+)  output of 
amplifier j. For an inhibitory synapse (Tu<0), it is 
connected to the inverted ( - )  output of amplifierj. The 
matrix T u defines the connectivity among the neurons. 
The net input current to any neuron i (and hence the 
input voltage ui) is the sum of the currents flowing 
through the set of resistors connecting its input to the 
outputs of the other neurons. Thus the normal and 
inverted output for each neuron allow for the construc- 
tion of both excitatory and inhibitory connections 
using normal (positive valued) resistors; biological 
neurons do not require a normal and inverted output 
since excitatory and inhibitory synapses are defined by 
use of different receptor/ion channel combinations. As 
indicated in Fig. lb, our circuits include an externally 
supplied input current I~ for each neuron. These inputs 
can be used to set the general level of excitability of the 
network through constant biases, which effectively 
shift the input-output relation along the ui axis, or to 
provide direct parallel inputs to drive specific neurons. 
Although this "neural" computational circuit is de- 
scribed here in terms of amplifiers, resistors, capacitors, 
etc., we have shown (Hopfield, 1984; Gelperin et al., in 
press) that networks of neurons whose output consists 
of action potentials and with connections modelled 
after biological excitatory and inhibitory synapses 
could compute in a similar fashion to this conventional 
electronic hardware. 
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The equation of motion describing the time evo- 
lution of this circuit is: 

N 

6(duJdt)= Z T jVs-u,/Ri + Ii (1) 
j = l  

= gj(uj) 

R i is a parallel combination of r and the R~j: 

N 

1/R~=I/o,+ Z 1/R, .  (2) 
j = l  

For simplicity, in the present work we have always 
chosen gi=g, Ri=R, and C~ = C, independent of i, 
though this is not necessary. Dividing by C and 
redefining Tq/C and I ]C  as Tq and Ii, the equations of 
motion become: 

N 

d u d & = - u J z  + Z TijVj+[i (3) 
j = l  

z = R C  

Vs = g( u s) . 

For an "initial-value" problem, in which the input 
voltages of the neurons are given values u~ at time t = 0, 
this equation of motion provides a full description of 
the time evolution of the state of the circuit. Integration 
of this equation in a digital computer allows any 
hypothetical network to be simulated. 

In earlier work (Hopfield, 1984) it was shown that 
the equations of motion for a network with symmetric 
connections (Tis = Tii) always lead to a convergence to 
stable states, in which the outputs of all neurons 
remain constant. Also, when the width of the amplifier 
gain curve in Fig. la  is narrow - the high-gain limit - 
the stable states of a network comprised of N neurons 
are the local minima of the quantity 

N N N 

e = - 1/2 E Z TqV~V s -  Z Vd~. (4) 
i = 1  j = l  i = l  

The state space over which the circuit operates is the 
interior of the N-dimensional hypercube defined by 
V~ = 0 or 1. However, in the high-gain limit, the minima 
only occur at corners of this space. Hence the stable 
states of the network correspond to those locations in 
the discrete space consisting of the 2 N corners of this 
hypercube which minimize [Eq. (4)]. 

Networks of neurons with this basic organization 
can be used to compute solutions to specific optimi- 
zation problems by first choosing connectivities (Tq) 
and input bias currents (I~) which appropriately repre- 
sent the function to be minimized. The methods in- 
volved in this selection are discussed below. Following 
this construction or "programming" of the network, an 
initial set of input voltages ui are provided, and the 
analog system then converges to a stable state which 

minimizes the function. We interpret the solution to 
the problem from the final stable state. For the 
problems considered here, the solutions are discrete 
(digital) and the gain is chosen high enough so that in 
the final stable state each neuron has a normal (+)  
output V~ very near 0 or 1. The set of outputs then 
provides a digital answer which represents a solution 
the problem. 

Before we consider the form of a network which 
solves the TSP, it is instructive to consider how a 
simpler optimization problem can be solved by one of 
these computational networks. Although not inter- 
preted as an optimization problem at that time, an 
example was actually provided in earlier work (Hop- 
field, 1984) where it was shown how the same compu- 
tational circuit described above could, with the proper 
choice of connection strengths, operate as a Content- 
Addressable-Memory (CAM). The normal outputs of 
the N amplifers comprising the memory circuit - 
which for that application were allowed the range - 1 
to + 1, instead of the 0 to 1 range described above - 
were always - 1 or 1 in the high-gain limit and the state 
of these outputs represented a binary word in memory. 
A memory, stored in the network by an appropriate 
choice of Tq elements, could be "retrieved" by setting 
the outputs of the amplifiers in the binary pattern of the 
recall key and then allowing the system to converge to 
a stable state. This stable state was interpreted as the 
memory word evoked by the key. Each recall "solved" 
the "problem" of which of the stored binary words was 
"closest" to the key word. 

We can understand how to construct an appropri- 
ate computational circuit for the CAM, considered 
now as a simple example of an optimization problem, 
by examining the E function. Since E [Eq. (4)] deter- 
mines the stable states of the network, then if we wish 
the stable states to be a particular set of m memory 
states V~s= {1,2, ..., m} we must choose the connec- 
tion strengths (Tq) and the input bias currents (Ii) of the 
network such that Eq. (4) is a local minima when the 
system is in each one of the states VL Since Eq. (4) is 
quadratic a guess might be: 

E = -  1/2 ~ (V s- V) 2 . (5) 
S = I  

If the state vector V (with components V~) is a random 
vector, then each parenthesized term is very small. But 
if Vis one of the memories V *, then one term in the sum 
is N z. Hence the network has an energy minima of 
depth approximately - 1/2N z at each of the assigned 
memories. Equation (5) can be rewritten in the stan- 
dard form [Eq. (4)] of the energy function if all Ii = 0 
and the T~j elements are defined as: 

r,= v:v;. 
S = l  
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This equation for T~s is the storage algorithm presented 
earlier (Hopfield, 1984) except for an additive constant. 
It is derived above by thinking of the CAM as an 
optimization problem and then making a judicious 
choice of the representation of the energy function in 
terms of the desired memories. In a practical applica- 
tion of a CAM, for example a network used to store 
telephone numbers, in addition to the storage al- 
gorithm above, a transformation used to code the real- 
world information into the binary word memory data 
representation is required. Taken together, the data 
transformation and the algorithm for the T~s can be 
considered the "map" of this problem onto the analog 
computational network. 

The basic property of the analog computational 
networks described above is the minimization of E. 
The CAM example illustrates that through the con- 
struction of an appropriate energy function for the 
circuit, and a strategy for interpreting the state of the 
outputs as a solution, a simple optimization problem 
may be "mapped" onto the network. We have recently 
found that these circuits can also rapidly solve difficult 
optimization problems which have both contraints in 
the possible solutions and also combinatorial com- 
plexity. A network designed to solve the "Traveling- 
Saleman Problem" illustrates this computational 
power. 

III The TSP Problem 

The "Traveling-Salesman Problem" (TSP) is a classic 
of difficult optimization. It is simple to describe, 
mathematically well characterized and makes a good 
vehicle for describing the used of neural analog compu- 
tational networks to solve difficult optimization prob- 
lems. A set of n cities A, B, C .... have (pairwise) dis- 
tances of separation dAB, dac . . . . .  dBc . . . .  The prob- 
lem is to find a closed tour which visits each city once, 
returns to the starting city, and has a short (or 
minimum) total path length. A tour defines some 
sequence B , F , E , G , . . . ,  W in which the cities are 
visited, and the total path length d of this tour is 

d = d~v + dFE +. . .  + dwB. 

The actual best solution to a TSP problem is 
computationally very hard - the problem is 
np-complete (Garey and Johnson, 1979), and the time 
required to solve this problem on any given computer 
grows exponentially with the number of cities. 

The solution to the n-city TSP problem consists of 
an ordered list of n cities. To "map" this problem onto 
the computational network, we require a representa- 
tion scheme which allows the digital output states of 
the neurons operating in the high-gain limit to be 

decoded into this list. We have chosen a representation 
scheme in which the final location of any individual 
city is specified by the output states of a set of n 
neurons. For example, for a 10-city problem, if city A is 
in position 6 of the tour which is the solution to the 
problem then, as shown below, this is represented by 
the sixth neuron out of a set of ten having an output 
V6 = 1 with all other outputs at 0: 

0 0 0 0 0  1 0 0 0 0 .  

This representation scheme is natural, since any 
individual city can be in any one of the n positions in 
the tour list. For n cities, a total of n independent sets of 
n neurons are needed to represent a complete tour. 
This is a total of N = n 2 neurons. The output state of 
these n z neurons which we will use in the TSP 
computational network is most conveniently dis- 
played as an n x n square array. Thus, for a 5-city 
problem using a total of 25 neurons, the neuronal state 

B 1 2 3 4 5  
A 0 1 0 0 0  

0 0 0 1 0  

1 0 0 0 0 (7) 
D O 0 0 0 1  

0 0 1 0 0  

shown above would represent a tour in which city C is 
the first city to be visited, A the second, E the third, etc. 
[The total length of the 5-city path is dcA + dAE + deB 
+dBo+dvc. ] Each such final state of the array of 
outputs describes a particular tour of the cities. Any 
city cannot be in more than one position in a valid tour 
(solution) and also there can be only one city at any 
position. In the n x n "square" representation this 
means that in an output state describing a valid tour 
there can be only one "1" output in each row and each 
column, all other entries being zero. Likewise, any such 
array of output values, called a permutation matrix, 
can be decoded to obtain a tour (solution). An example 
of the final state of a 10-city problem is shown in 
Fig. 2d. 

For an n-city TSP problem, there are n! states of the 
general form [Eq. (7)] above. However, a tour de- 
scribes an order in which cities are visited. For an n-city 
problem, there are 2n tours of equal path-length, for 
each path has an n-fold degeneracy of the initial city on 
a tour and a 2-fold degeneracy of the tour sequence 
order. There are thus n!/2n distinct paths for closed 
TSP routes. 

Because of our representation of neural outputs of 
the TSP computational network in terms of n rows of n 
neurons, the N symbols Vii will be described by double 
indicies Vx, j. The row subscript has the interpretation 
of a city name, and the column subscript the position of 
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Fig. 2a-d. The convergence of the 10-city analog circuit to a tour. 
The linear dimension of each square is proportional to the value 
of Vxv a, b, e intermediate times, d the final state. The indices ill d 
illustrate how the final state is decoded into a tour (solution of 
TSP) 

that city in a tour [cf. (7)]. We will use these two indices 
instead of one to label all of the neurons because it 
simplifies the interpretation of the equations describ- 
ing the energy function. Like in the CAM problem, this 
E function will aid construction of an appropriate 
computational network for the TSP. 

The TS.P Energy Function 

To enable the N neurons in the TSP network to 
compute a solution to the problem, the network must 
be described by an energy function in which the lowest 
energy state (the most stable state of the network) 
corresponds to the best path. This can be separated 
into two requirements. First, the energy function must 
favor strongly stable states of the form of a permu- 
tation matrix, such as those shown in Eq. (7) or in 
Fig. 2d, rather than more general states. Second, of-the 
n! such solutions, all of which correspond to valid 
tours, it must favor those representing short paths. An 
appropriate form for this function can be found by 
considering the high gain limit, in which all final 
normal (+)  outputs will be 0 or 1. As before, the space 
over which the energy function [Eq. (4)] is minimized 
in this limit is the 2 N corners of the N-dimensional 
hypercube defined by V~=0 or 1. Consider those 
corners of this space which are the local minima (stable 
states) of the energy function 

E = A / Z Z  Z Z VxiVxj+B/2E E Z Vx,Vrf 
X i j * i  i X X * Y  

where A, B, and C are positive. The first triple sum is 
zero if and only if each city row X contains no more 
than one "1", (the rest of the entries being zero). The 
second triple sum is zero if and only if each "position in 
tour" column contains no more than one "1" (the rest 
of the entries being zero). The third term is zero if and 
only if there are n entries of " t "  in the entire matrix. 
Thus this energy function evaluated on the domain of 
the corners of the hypercube has minima with E = 0 for 
all state matrices with one "1" in each row and column. 
All other states have higher energy. Hence, including 
these terms in an energy function describing a TSP 
network strongly favors stable states which are at least 
valid tours in the TSP problem, and fulfills the first 
requirement for E. 

The second requirement, that E favor valid t o u r s  
representing short paths, is fulfilled by adding one 
additional term to the function. This term contains 
information about the length of the path correspond- 
ing to a given tour, and its form can be chosen as 

1 / 2 D Z  Z ZdxyVxi(Vr, i+l + Vr, i -O.  (9) 
X Y * X  i 

For notational convenience, subscripts are defined 
modulo n, in order to express easily "end effects" such 
as the fact that the n'th city on a tour is adjacent in the 
tour to both city ( n -  1) and city 1: i.e., Vy,,+j= Vr.j. 
Within the domain of states which characterize a valid 
tour, the above term EEq. (9)] is numerically equal to 
the length of the path for that tour. 

An appropriate total energy function for the TSP 
network consists of the sum of Eq. (8) and Eq. (9). If 
A, B, and C are sufficiently large, all the really low 
energy states of a network described by this function 
will have the form of a valid tour. The total energy of 
that state will be the length of the tour, and the states 
with the shortest path will be the lowest energy states. 

Through Eqs. (3) and (4), the quadratic terms in this 
energy function define a connection matrix and the 
linear terms define input bias currents. Using the 
row/column neuron labeling scheme described earlier 
for each of the two indices, the implicitly defined 
connection matrix is (with brief descriptions of the 
meanings of the various terms): 

Txi, rj =- - AOxy(1 - bij) "inhibitory connections within 
each row" 

-B3u(1 -3xr )  "inhibitory connections within 
each column" 

- C "global inhibition" 

- D dxr(Sj, i + 1 + 5j, i - 1) "data term" 

E3u=l if i=j  and is 0 otherwise]. (10) 

The external input currents are: 

Ixi = + Cn "excitation bias". (11) 
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The "data term" contribution, with coefficient D, to 
Tx,, rj is the input which describes which TSP problem 
(i.e., where the cities actually are) is to be solved. The 
terms with A, B, and C coefficients provide the general 
constraints required for any TSP problem. With this E 
function guiding the dynamics of the circuit, the 
network should compute the solution by choosing a 
final state which has the form of a permutation matrix 
[Eq. (7)] after starting in some initial unbiased state. 
The "data term" contribution controls which one of 
the n! set of these properly constrained final states is 
actually chosen as the "best" path. 

IV TSP Simulation Results 

A network for a 10-city problem using the connection 
matrix defined in Eq. (10) and the input bias terms of 
Eq. (11) was simulated on a digital computer. The 
locations of the 10 cities were chosen at random (with 
uniform probability density) on the interior of a two- 
dimensional square of edge length 1. These choices 
defined a particular set of dxr and hence Txi, rj through 
Eq. (10). The analog network for this problem gen- 
erated the equations of motion 

duxi/& = - Uxi/Z - A 2 Vxj - B Z Vri 
j * i  Y * X  

- D Z dxy(V ,,+l + i) (12) 
Y 

Vxi = g(Uxi) = �89 (1 + tanh(uxi/Uo)) (for all X, i). 

These equations of motion have the form described in 
an earlier section, but show the specific contributions 
made by the Tx~,rj and Ix~ terms. The parameter "n" 
was not fixed as 10, but was used to adjust the neutral 
position of the amplifiers which would otherwise also 
need an adjustable offset parameter in their gain 
functions. The offset hyperbolic tangent form of the 
gain curve was chosen to resemble real neural input- 
output relations as well as the characteristics of a 
simple transistor amplifier. The set of parameters in 
these equations of motion is overcomplete, for the time 
it takes to converge is in arbitrary units. Without loss 
of generality, z can be set to 1. 

In our simulations, an appropriate general size of 
the parameters was easily found, and an ancedotal 
exploration of parameter values was used to find a 
good (but not optimized) operating point. Results in 
this section refer to parameter sets at or near 

A = B = 500 C = 200 

D =  500 Uo =0.02 n= 15. 

Since we have no a priori knowledge of which tours 
are best, and the network already has in the "data 
term" the necessary input to solve the problem, we 
want to pick the initial values of the neural input 
voltages (Uxi) without bias in favor of any particular 
tour. A sensible choice might seem to be Uxi=Uoo, 
where Uoo is a constant which is chosen so that at t = 0 

Z Z Vxi= 10 
x i 

which is also, approximately, the desired value of this 
sum at t=  ~ .  However, this unbiased choice is a 
disaster to the computation. Since each path has 2n 
equivalent tours describing it, the system has no way to 
choose one of them given an unbiased start, and thus 
cannot converge to a tour at all. The problem is 
equivalent to the fact (in classical physics) that a pencil 
poised exactly vertically on its point must not fall over, 
since to do so would be to choose a direction in which 
to fall. A similar problem of "broken symmetry" 
appears in magnetic phase transitions (Anderson, 
1984). It is therefore necessary to add some noise ~Ux~ 

Uxi =- Uoo -t- ~Uxi 

to the initial values. This has the desired effect of 
breaking the symmetry and allowing the system to 
choose a tour, but also inserts a small random bias into 
the choice of path. 

Figure 2 shows the results of a simulation which 
illustrate the convergence of a typical such starting 
state to a final path. The symmetry-breaking ~Ux~ were 
each randomly chosen uniformly in the interval: 

- O . l u o ~ 6 U x i < O . l u o .  

The linear dimensions of the squares in Fig. 2 are 
proportional to the outputs of the "neurons" in the 
array. Initially they are very nearly uniform and as time 
passes (Figs. 2a-c) they converge to a final time 
independent state (Fig. 2d). The set of Vx~ are not a 
permutation matrix of form [Eq. (7)] throughout the 
computation. This is because the actual domain of 
function of the network is not at the corners of the 
N-dimensional hypercube defined by Vx~ = 0 or 1, but 
rather in it's interior. However, notice that the final 
outputs (Fig. 2d) produce a permutation array with 
one neuron "on" and the rest "off' in each row and 
,column, and this state thus represents a legitimate tour. 
'The choice of network parameters which provides 
:good solutions is a compromise between always ob- 
taining legitimate tours (D small) and weighting the 
distances heavily (D large). Also, as expected, too large 
Uo (low gain) results in final states in which the values of 
Vxi are not near 1 or 0. These states are not permuta- 
tion matrices and hence represent invalid tours. Too 
small Uo yields a poorer selection of good paths. 
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Fig. 3a-c. a, b Paths found by the analog convergence on 10 
random cities. The example in a is also the shortest path. The 
city names A... J used in Fig. 2 are indicated, c A typical path 
found using a two-state network instead of a continuous one 
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Fig. 4a-c. a A random tour for 30 random cities, b The Lin- 
Kernighan tour. c A typical tour obtained from the analog 
network by slowing increasing the gain 
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Fig. 5a and b. a A histogram of the number of different paths 
between length L and L+0.1 for the TSP with 10 cities. The *'s 
below the x-axis give the histogram for the number of times a 
path between L and L + 0.1 was found by the analog network in 
20 tries (conditions as in text). The region for L< 3.0 has been 
magnified by a factor of 100 for clarity, b A histogram of the 
number of different paths between length L and L + 0.1 for the 
TSP problem with 30 cities. The arrow indicates the tour length 
for the Kernighan-Lin solution while the asterisk at 5.6 indicates 
the path length of a solution obtained by the analog network at 
fixed gain width. The asterisk at 5.0 indicates a better solution 
obtained by slowly increasing the gain 

A convergence from a given starting state is 
deterministic, but starting states which are different 
due to a different choice of 6x~ may lead to different 
final states. Figures 3a and 3b show two typical paths 
obtained with different 5x~. Although different, both 
are good solutions to the problem. Figure 3a is also the 

best path, found by exhaustive search of all paths in a 
separate calculation. 

To see how well a selection was being made of good 
paths, we compare the paths chosen by the network 
with the lengths of all possible paths. There are 10 !/20 
= 181,440 total distinct paths, and a histogram of their 
length distribution is shown in Fig. 5a. The paths 
found in 20 convergences from random states are also 
shown as the histogram (* symbols) below the x-axis. 
(Of these 20 starting states, 16 converged to legitimate 
tours.) About 50% of the trials produced one of the 2 
shortest paths. Hence the network did an excellent job 
of selecting a good path, preferring paths in the best 
10- 5 of all paths compared to random paths. 

Because a typical biological neuron may be con- 
nected to 1000-10,000 others, it is relevant to investi- 
gate how the computational power of the network 
grows with the number of neurons. We therefore 
studied a 900 neuron system describing a TSP on 
30 cities. Because the time to simulate the differential 
equations in a digital computer scales somewhat worse 
than n 3, our results are fragmentary. We are not yet 
well located in parameter space and parameter choice 
seems to be a more delicate issue with 900 neurons than 
with 100. The particular set of 30 random cities we 
used 3 are believed to have the minimum path length of 
4.26 for the path shown in Fig. 4b. The 30-city system 
converged to paths of length less than 7 commonly, 
and less than 6 occasionally. For  30 cities, there are 
30!/60 =4.4 x 103o paths. A direct evaluation of the 
length of 10 s random paths found an average of 12.5, 
and none shorter than 9.5. A path of about average 
path length is shown in Fig. 4a. The path length 
histogram of the random sampling is shown in Fig. 5b. 
From a statistical estimate and the known shortest 
path, there should be about 10 s paths shorter than 
length 7. Thus, in a single convergence, the network 
provided a very good solution to the problem, exclud- 
ing poor paths by a factor of 10 -z2 to 10 -z3. 

V The Computational Process 

The collective computations we have described using 
nonlinear analog circuits have aspects from both 
conventional digital and analog computers. In conven- 
tional analog computation, the differential equation 
which is solved by the electrical circuit is generally the 
same equation that the programmer wishes to solve in 
the real world (Tomovic and Karplus, 1962). The 
variables in the analog computer are closely related to 

3 The list of 30 cities used in these experiments and the solution 
shown in Fig. 4b computed using the Lin/Kernighan algorithm 
(Lin and Kernighan, 1973) were provided by David Johnson 
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the real-world variables whose behavior is sought. In 
the present case, however, the circuit differential 
equation to be solved is of no intrinsic interest. This 
differential equation is essentially a program by which 
an answer to a question can be found. Digital compu- 
tation conventionally involves finding a data represen- 
tation and algorithm for the problem, by which the 
fixed hardware will eventually construct the desired 
answer. The collective mode we have described com- 
bines the programming and data representation as- 
pects characteristic of digital computation, but re- 
places the usual stereotyped logical behavior of a 
digital system by a stereotyped form of analog 
computation. 

Why is the computation so effective? The solution 
to a TSP problem is a path and the decoding of the 
TSP network's final stable state to obtain this discrete 
decision or solution requires having the final Vxj values 
be near 0 or 1. However, the actual analog computa- 
tion occurs in the continuous domain, 0 < Vxj< 1. The 
decision-making process or computation consists of 
the smooth motion from an initial state on the interior 
of the space (where the notion of a "tour" is not even 
defined) to an ultimate stable point near enough to a 
corner of the continuous domain to be able to identify 
with that corner. It is as though the logical operations 
of a calculation could be given continuous values 
between "True" and "False", and evolve toward cer- 
tainty only near the end of the calculation. 

Although there may be no precise "tour" interpre- 
tation of a state vector which does not have the form 
[Eq. (7)], a qualitative interpretation can be made. 
Suppose row C has an appreciable value in columns 5 
and 6 and nowhere else, and no other row A has much 
greater value in these same columns. Then it might be 
said that city C was being considered (simultaneously) 
for both position 5 and position 6, that other possi- 
bilities were not as likely, and that later in time this 
positional ambiguity should be resolved. Figure 2a is 
an illustration of an intermediate time state in a TSP 
calculation on 10 cities using random noise initial 
conditions. At this stage of the calculation, it appears 
that A wants to be in position 6 or 7 in the tour. Cities 
B, C, and D want to be in positions 9, 10, or 1, but it is 
not at all clear which pairing orB, C, D with 9, 10, 1 will 
be present in the final state. Similarly, position 5 is 
going to be captured by either city F or E, but again the 
order is not clear. A decision is already apparent as to 
roughly where on the tour various cities will be, and 
this is of itself important information to convey to the 
other cities: it suggests restrictions on the possibilities 
which these others should be considering. The rough 
assignments in this example are plausible, as can be 
seen from looking at the 10 city map in Fig. 3a. Indeed, 
the computation works because the intermediate states 

so interpreted are reasonable. Though not precisely 
defined in terms of a tour, they represent the simulta- 
neous consideration of many similar tours. Interpre- 
ted in this way, during a convergence, the network 
moves from states corresponding to very roughly 
defined tours to states of higher refinement, until a 
single tour is left. This general computational strategy 
will work well in optimization problems for which 
good solutions cluster, and each excellent solution has 
many almost as good which are similar to it. 

In a direct test of the contribution which 
intermediate-state analog processing makes to the 
ability of the computational network to solve the TSP 
problem, separate simulations of a 10-city problem 
were performed using a deterministic network which 
minimized E using a decision space which consisted 
only of the corners of the 2 N dimensional cube. Such a 
procedure led to tours little better than random. An 
example of a solution for the 10-city problem is shown 
in Fig. 3c. Thus the analog characteristics and inter- 
mediate state processing are important for good TSP 
solutions. 

Unlike our analog network procedure, Kirkpatrick 
has approached constraint satisfaction problems on a 
discrete decision space by a Monte Carlo approach 
using an effective temperature and an annealing proce- 
dure (Kirkpatrick et al., 1983). This "simulated anneal- 
ing" method has several important features. First, it 
causes many configurations to be averaged near a 
given one, which has the effect of smoothing the surface 
along which a search is being done. This prevents the 
system from becoming stuck in minor energy minima, 
since these are smoothed out. Second, it gives the 
possibility of climbing out of a local minimum into 
another one if the annealing goes on long enough. (As 
the problem size gets larger, the truly best solution to a 
problem using simulated annealing is generally not 
found because the annealing procedure would take an 
infinite amount of time.) The analog procedure used by 
the computational networks also smooths the energy 
surface during the search but does not allow recovery 
from local minima in the solution space. Through the 
"spin representation" we have constructed in earlier 
work (Hopfield, 1982), there is a direct means of 
showing the smoothing effect. Consider the effective 
field solution to the expectation value of Vj for a set of 
Ising spins, each restricted to a value Vi = 0 or 1, at 
temperature T with an energy E as in Eq. (8) and 
Eq. (9). Effective field models (see Wannier, 1966) 
replace a variable (such as a particular Vi) which occurs 
in an energy by its expectation value (Vi) when 
evaluating the probability distribution of any other 
variable. This well-known approximation allows the 
statistical mechanics of complicated systems to be 
approximated by a closed set of equations relating the 
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expectation values. For the TSP problem, these equa- 
tions are 

<Vii ) = e+n'/gT/(1 q- e +n'/kT) = �89 [1 + tanh(HJ2kT)] 

H i = • T~j(Vj). (13) 
J 

If the analog system, with the gain function used, is 
allowed to come to equilibrium, one has 

U i/z = E TIjVJ ~ g -  l(Vi) = z E TIjVj = zhi (14) 
d J 

o r  

V~ = g(~hi) = �89 (1 + tanh zhi/uo) . 

The solution to our analog system at gain width Uo is 
thus equivalent to an effective field solution at temper- 
ature kT=uo/2Z. This relation between the present 
system and effective field models of spin systems forms 
a basis for understanding why the interior of the 
continuous decision space is smoothly related to the 
corners. In some spin glass problems, the effective field 
description followed continuously from high tempera- 
tures is expected to lead to a state near the thermody- 
namic ground state (Thouless et al., 1977; Gross and 
Mezard, 1984). In the analog network system de- 
scribed, the circuit does not literally follow the effective 
field solution from high temperatures, but instead 
jumps to the solution at a particular temperature by a 
dynamic means. In general this need not be the same 
branch of the effective field solution that would be 
obtained by equilibrium slow cooling. However, in 
addition to the smoothing effects which the analog 
system has at fixed gain widths, a computation ana- 
logous to following effective field solutions from high 
temperatures can also be performed by slowly turning 
up the analog gain (decreasing u0 and hence decreasing 
the effective "temperature") from an initially low value. 
This form of "annealing" has been applied to the 
30-city TSP problem. It results in even better compu- 
tational performance (Fig. 4c), though it has been only 
slightly studied. 

VI Heuristics and Variants 

Heuristics are rules of thumb which are not necessarily 
true but which are helpful guides to finding solutions. 
Digital computer algorithms which are designed to 
solve difficult computational problems frequently 
make use of heuristics. They can be added to analog 
computational networks by changing the connection 
matrix, changing the initial state, and changing steady 
state inputs. For example, in the TSP problem in two 
spatial dimensions on random cities, inspection shows 
that the best pathways essentially always connect a city 

to one if its four nearest neighbors. A heuristic 
embodying this rule can be added by replacing the true 
distance between cities which are further apart than 
that by augmented distances. This will lessen the 
possibility that such an unnecessary link occurs in a 
final path, while maintaining the appropriate distance 
measure for good paths. Another possible heuristic is 
that, in the usual TSP problem on a planar two- 
dimensional surface, if cities A and B are as far apart as 
possible, they will tend to occur near opposite sites of 
the tour, i.e., position m and near m + n/2. Correlations 
in the noise put into the initial state or modifications of 
the connection matrix can add this heuristic to the 
system. 

A person looking at the 10-city TSP problem 
quickly finds a very good path, and one might therefore 
feel that it is an easy problem. Our ability to do so is 
based on the fact that all the relevant relationships can 
be seen in a two-dimensional drawing. No such 
capacity is available to the analog network. The 
problem the network solves has no necessity of being 
geometrically "flat" or even of being described by a 
spatial geometry. The same numerical set of 45 dxr 
used in the 10-city TSP already described can be 
randomly assigned to letter pairs X, Y. If this is done, 
no geometric representation of the problem is possible, 
and our ability to solve the problem visually com- 
pletely disappears. In computer simulations of the 
10-city TSP we found that the network finds this 
problem somewhat more difficult, but nevertheless 
typically converges to solutions among the best 
60 paths. 

Although we have chosen to illustrate the capa- 
bilities of analog computational networks using the 
TSP, the applicability of the methods to other prob- 
lems appears broad. A variety of seemingly unrelated 
problems can be mapped onto the analog network. A 
simple example is the transposition code problem. 
Given an alphabet A... Z and a message in English 
which is written in a transposition code, (i.e., A,--~i, 
R ~ j ,  C ~ l ,  code l i j=word CAR), find the code. To 
solve the problem, let 

PA = the frequency of letter A in English 

PAB = the frequency of letter sequence AB in English 

P, = the frequency of letter i in the message 

P~j = the frequency of sequence ij in the message. 

A state matrix of the form of Eq. (7) describes a labeling 
of each particular row by the particular column in 
which that row contains a 1. If the column numbers are 
replaced by the code letters, then each such matrix 
describes a 1 : 1 correspondance between English let- 
ters and code word letters. Thus a permutation matrix 
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describes a transposition code. Therefore the appropri- 
ate energy function needs the same A, B, C terms as 
Eq. (8) and in addition 

D Z (PAs-P~j) 2 VAiVBj +E ~. (PA--Pi): VA*" (15) 
A,B A, i  
i , j  

This energy function should suffice to find the "correct" 
codes, or at least one nearly correct. While it would be 
nice also to use higher order correlations of letter 
frequency, the problem of implementing triples T~, in 
hardware is severe. The transposition code problem 
can thus be mapped onto a network using a slightly 
modified TSP E function. Other problems can also be 
mapped onto the network, but utilize quite different 
specific E functions. For example, we have found 
constructions by which the Vertex Covering Problem 
(see for example Garey and Johnson, 1979) and the best 
match with gaps between two linear sequences prob- 
lem can be mapped onto analog computational 
circuits. 

VII Conclusion 

Both analog networks of biological neurons and 
networks of microeleetronic neurons could rapidly 
solve difficult optimization problems using the 
strategies we have presented. "Rapid" is measured on 
the time scale of the devices used. Since the conver- 
gence time of the network will be a few characteristic 
times of the devices from which it is built, one may 
expect convergence times of 10-100 ms for networks of 
biological neurons, while semiconductor circuits 
should converge in 10 -s  to 10 -7  S. The time scale 
expected for biological systems is consistent with the 
known computation times in perception and pattern 
recognition problems which organisms solve quickly. 

The power of the computation carried out is 
demonstrated by the selection it makes between the 
possible answers it might give. In the TSP network 
consisting of 100 neurons, the selectivity was 10 -4 to 
10- 5. This is the fraction of all possible solutions which 
were put forward by the network as putative "best" 
answers. Since there were only about 2 x 105 possible 
paths, one of the best few was always selected. 

The computational power of the TSP network 
scales favorably with the size of the system. Under the 
most favorable circumstances, (and only then) the 
computing power, as measured by the selectivity 
defined above should be raised to the power of e when 
the size of the system is multiplied by e. We might then 
have expected a selectivity of (10-4"5)+9= 10-39.5 for 
the 900 neuron system. The actual selectivity of about 
10 -z2 corresponds to  (10-4'5) +5 or thus corresponds 
to the scaling expected for the ideal case and 500 

neurons. This should be contrasted with the case when 
the computation is not truly done in parallel and 
collectively, but is instead simply partitioned. In this 
case, the selectivity would change by a factor of 1/c~, 
and hence would only be about 10-5.5 for the 30-city 
problem. 

The combination of speed and power of the 
computational networks is based on the analog char- 
acter of the devices involved. Real neurons have the 
kind of response characteristic used here, and it is to be 
expected that biology will make use of that fact. 
"Simulated Annealing" (Kirkpatrick et al., 1983) on a 
digital computer or in models using two-state neurons 
(Hinton and Sejnowski, 1983) is intrinsically slow 
when measured in units of the time constants of devices 
from which the computer is constructed because of the 
long time necessary to calculate configurational aver- 
ages and to climb from one valley into another. This 
approach ignores the very important use that can be 
made of analog variables to represent probabilities, 
expectation values, or the superposition of many 
possibilities. Making use of the analog variables seems 
a key to the combination of high speed and compu- 
tational power in real networks. It was not necessary to 
plan such a use - the real physical systems naturally 
perform in this fashion. 

The inputs in the TSP problem (the distances 
between cities) occur as a modulation of the connec- 
tions between neurons. This form of input is rather 
different in concept from the usual way of viewing the 
inputs as additively driving a processing network. In 
real neurons, such a modulation could be done, for 
example, by attenuating distal signals in the dendritic 
arbor (Koch et al., 1983) by means of a proximal 
inhibitory shunting input. This new mechanism of 
inputing information is both biophysically reasonable 
and computationally effective. 

The elements of the computational networks we 
have described were given properties that biological 
neurons are known to possess, particularly the large 
connectivity and analog character. It is difficult to 
imagine a system which would more efficiently solve 
such complex problems using a small number of 
"neurons". Because many recognition tasks and per- 
ception problems can be set in the form of a con- 
strained optimum with combinatorial complexity, the 
effectiveness of neural computation in these problems 
may rely on casting the optimization problem into a 
format which can be done collectively by a network. 

Although we have demonstrated remarkable com- 
putational power in networks of simple neurons, real 
neurons are rather more complex. However, adding 
additional features to the neurons comprising the 
network should increase the complexity of a computa- 
tional task which the network can do. Nevertheless, it 
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should be recognized that  the working together  of  an 
entire nervous system involves a host  of  addit ional  
features, including hierarchy, ana tomy,  wiring limi- 
tations, non-reciprocal  connections,  and p ropaga t ion  
delays. The present work  describes only the simulation 
of a partial, but  powerful, compu ta t ion  which a 
module  of  intensely interconnected very simple 
neurons might  perform. 
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