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Isolation, taxonomy and phylogeny of 
hyperthermophilic microorganisms 

E. Blijchl, S. Burggraf, G. Fiala, G. Lauerer, G. Huber, R. Huber, R. Rachel, A. Segerer, 
K.O. Stetter” and P. Vijlkl 

Hyperthermophilic Archaea and Bacteria with optimal growth temperatures between 80 and 110°C have been 
isolated from geo- and hydra-thermally heated terrestrial and submarine environments. 16s rRNA sequence 
comparisons indicate great phylogenetic diversity among the 23 different genera represented. Hyperthermophiles 
consist of anaerobic and aerobic chemolithoautotrophs and heterotrophs growing at neutral or acidic pH. Their 
outstanding heat resistance makes them as interesting objects for basic research as for biotechnology in the 
future. 
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Hyperthermophilic Bacteria and Archaea (formerly archae- 
bacteria) represent the organisms at the upper-temperature 
border of life (Brock 1986; Stetter & Zillig 1985; Stetter 
1992). As a rule, they grow fastest (optimally) between 
SO and 100°C. In contrast to moderate thermophiles (which 
are often also called ‘extreme’), hyperthermophiles are 
unable to grow below 60°C. The most extreme hyperther- 
mophiles known are so well adapted to high temperatures 
that they do not even grow at <SO”C (Stetter 1982; 

Huber et al. 1989b). Hyperthermophiles belong to phyloge- 
netically distant groups and may represent rather ancient 
adaptations to heat. They are interesting both in terms of 
heat adaptation and of biotechnology. 

Biotopes 

Hyperthermophiles have been almost exclusively isolated 
from environments with apparent in situ temperatures be- 
tween 80 and 115”C, although unknown temperature gradi- 
ents within the samples and possible mixing during sample 

recovery (e.g. by gas expansion at lower pressures) makes 
the determination of in sift growth temperatures unreliable. 
Well-known biotopes of hyperthermophiles are volcanic 
areas such as terrestrial hot springs and solfataric fields, 
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shallow submarine hydrothermal systems and abyssal hot 
vent systems, the so-called black smokers. Other biotopes 
are smouldering coal refuse piles and geothermally heated 
oil reservoirs (Marsh & Norris 1985; Stetter et al. 1993; 
Fuchs 1994). The low solubility of 0, at high temperatures 
and the presence of reducing gases mean that most biotopes 
of hyperthermophiles are anaerobic. However, the surface 
of terrestrial solfataric fields contains reasonable amounts of 
0, and, not surprisingly therefore, harbours aerobic organ- 
isms. Hyperthermophiles can usually survive in the cold in 

the laboratory for a long time and were successfully isolated 
from the (cooled down) submarine eruption plume of Mac- 
donald Seamount and from cold Beaufort Sea water (Huber 
el al. 1990a; Stetter et al. 1993). 

Sampling and Isolation 

In order to obtain samples suitable for enrichment of 
hyperthennophiles, samples from hot water, rocks and 
sediments can be taken anaerobically and aerobically (Stet- 
ter 1982; Stetter & Zillig 1985). The samples can then be 

carried to the laboratory without temperature control. Once 
in the laboratory, anaerobic and aerobic enrichment cultures 
should be prepared on various substrates and at the approxi- 
mate in situ temperatures. Organisms growing in the enrich- 
ment cultures should be cloned on solidified media. Agar is 
not a suitable substrate because of the high incubation 
temperatures; other, more heat-stable polymers such as 
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Figure 1. Hyperthermophiles within the phylogenetic tree; modified from Stetter (1992) after Woese et al. (1990). 

gellan gum (‘Gelrite’) or polysilicate have to be used 

(Viilkl et al. 1993). I f  plating is not successful, repeated 
serial dilutions may serve as an alternative but less safe 
cloning method. 

Phylogeny 

The pioneering work of C. R. Woese, based on 16s rRNA 
homologous sequences, has led to a universal phylogenetic 
tree for the living world (Figure I) (Woese & Fox 1977; 
Woese et al. 1990). Three domains are evident: the Bacteria 
(formerly the eubacteria), the Archaea (formerly the archae- 
bacteria) and the Euckarya (formerly the: eukaryotes). The 
Archaea consist of two major kingdoms: the Crenarchaeota 
(Sulfolobales-Thermoproteales branch) and the Euryarchaeota 

(extreme halophiles-methanogens branch). Short phyloge- 
netic branches indicate a rather slow evolution. Deep branch- 
ing points are evidence for early separation of two groups. 
The separation of the Bacteria from the Euckarya-Archaea 
lineage is the deepest and earliest branching point known 
so far. Hyperthermophiles are present within both the 
Bacteria and Archaea (Figure I, bold lines); they represent 
all the deep short lineages (e.g. Aquifex and Thewnotoga 
within the Bacteria; Pyrodictium, Pyrobaculum, Desulfurococ- 
cus, Sulfolobus, Methanopyrw, Thermococcus, Metkanotkermus 

and Archaeoglobus within the Archaea) and the last common 
ancestor of the Bacteria and Archaea may therefore have 
been a hyperthermophile. (Stetter, 1992; Stetter, 1994). 

Taxonomy of Hyperthermophiles 

So far, about 47 species of hyperthermophilic Bacteria and 
Archaea are known (Table 1). They are very divergent, 
both in terms of their phylogeny and physiological proper- 
ties, and are grouped into 23 genera in 10 orders. Within 
the Bacteria, Aquifex pyropkiltcs and Tkermotoga maritima 
(and its close relative T. neapolitcma) exhibit the highest 

growth temperatures of 95 and 90”C, respectively (Table 
1). Within the Archaea, the organisms with the highest 
growth temperatures (between 103 and 110°C) are mem- 

bers of the genera Pyrobactlhm, Pyrodictium, Pyrococcus and 
Metkanopyrus. 

Extreme Acidophiles 

Extremely acidophilic hyperthermophiles have only been 
found in low pH terrestrial and marine solfataric fields and 
smouldering coal refuse piles (see Brock 1978, 1986; Stetter 
1992; Fuchs 1994). They are irregularly lobed cocci which 
grow as aerobes, as facultative aerobes or as anaerobes at 



Table 1. Taxonomy of hyperthermophillc prokaryotes. 

‘Aquificales 

ARCHAEA 

Solfolobales 

Thermoproteales 

Desulfurococcales Desulfurococcus 

‘Pyrodictiales’ 

Thermococcales 

Staphylothermus 

Pyrodictium 

Hyperthermus 

Thermodiscus 

Thermococcus 

Pyrococcus 

Order (main phylogenetic lineage) 

BACTERIA 
Thermotogales 

Genus 

Thermotoga 

Thermosipho 

Fervidobacterium 

Species 

maritima 90 Huber ef al. (1986) 
neapolitana 90 Jannasch et al. (1988) 
thermarum 84 Windberger et al. (1989) 
africanus 77 Huber et al. (1989c) 
nodosum 80 Pate1 et al. (1985) 
islandicum 80 Huber et al. (1990b) 

Aquifex 

Solfolobus 

pyrophilus 95 Huber et al. (1992) 

Mefallosphaera 
Acidianus 

Desulfurolobus 
Stygiolobus 

Thermoproteus 

Pyrobaculum 

acidocaldarius 85 Brock et al. (1972) 
solfataricus 87 Zillig et al. (1980) 
shibatae 86 Grogan ef al. (1990) 
metallicus 75 Huber 8 Stetter (1991) 
sedula 80 Huber et al. (1989a) 
infernus 95 Segerer et a/. (1986) 
brierleyi 75 Brierley & Brierley (1973) 
ambivalens 95 Zillig et al. (1987b) 
azoricus 89 Segerer et al. (1991) 

Thermofilum 

tenax 97 Zillig et a/. (1981) 
neutrophilus 97 Stetter (1986) 
uzoniensis 97 Bench-Osmolovskaya et al. (1990) 
islandicum 103 Huber et al. (1987b) 
organotrophum 103 Huber et al. (1987b) 
aerophilum 104 V8lkl et al. (1993) 
pendens 95 Zillig et al. (1983a) 
librum 95 Stetter (1986) 

mobilis 95 Zillig et al. (1982) 
mucosus 97 Zillig et al. (1982) 
saccharovorans 97 Stetter (1986) 
amylolyticus 97 Bench-Osmolovskaya et al. (1985) 
marinus 98 Fiala et al. (1988) 

occulturn 110 Stetter et al. (1983) 
brockii 110 Stetter et al. (1983) 
abyssi 110 Pley et al. (1991) 
butylicus 108 Zillig et al. (1990) 
maritimus 98 Stetter (1986) 

celer 93 Zillig et al. (1983b) 
litoralis 98 Neuner et al. (1990) 
stetteri 98 Miroshnichenko et al. (1989) 
furiosus 103 Fiala & Stetter (1986) 
woesii 103 Zillig et al. (1987a) 

‘Archaeoglobales’ Archaeoglobus 

Methanobacteriales Methanothermus 

Methanococcales Methanococcus 

fulgidus 
profundus 

fervidus 
sociabilis 

thermolithotrophicus 
jannaschii 

igneus 

‘Methanopyrales’ Methanopyrus kandleri 

T max 
(‘C) 

92 
92 

97 

97 

70 

86 
91 

110 

Reference 

Stetter (1988) 

Burggraf et al. (1990b) 

Stetter et a/. (1981) 
Lauerer et a/. (1986) 

Huber et al. (1982) 

Jones et al. (1983) 

Burggraf et al. (1990a) 

Kurr et al. (1991) 

T,,,--Maximum temperature at which growth occurs. 
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Table 2. Energy conservation in chemollthoautotrophic hyperthermophlles. 

Energy-yielding reaction Genera 

4H, + CO, + CH, + 2H,O 

H, + SO-+H,S 
4H, + H,SO, + H,S + 4H,O 

H, + HNO, + HNO, + H,O 

H, + I-0, + H,O 
2s + 30, + 2H,O+2H,SO, 
(Fe& + 70, + 2H,O+2FeSO, 

Methanopyrus, Methanothermus, Methanococcus 

Pyrodictium, Thermoproteus, Pyrobaculum, Acidianus, Stygiolobus 

Archaeoglobus 

+ 2H,SO,) 

Pyrobaculum, Aquifex 

Pyrobaculum, Aquifex, Sulfolobus, Acidianus, Metallosphaera 

Aquifex, Solfolobus, Acidianus, Metallosphaera 

Table 3. Growth conditions and morphological and biochemical features of hyperthermophiles. 

Species Growth conditions Habitat* DNA 

Temperature (‘C) PH Aerobic 

W/ 
anaerobic 

(an) 

(mol% 

G+C) 

Sulfolobus acidocaldarius 

Metallosphaera sedula 

Acidianus infernus 
Stygiolobus azoricus 

Thermoproteus tenax 
Pyrobacolum islandicum 
Pyrobaculum aerophilum 

Thermofilum pendens 
Desulfurococcus mobilis 

Staphylothermus marinus 

Pyrodictium occultum 

Thermodiscus maritimus 

Thermococcus celer 

Pyrococcus furiosus 

Archaeoglobus fulgidus 

Methanothermus sociabilis 

Methanopyrus kandleri 

Methanococcus igneus 

Thermotoga maritima 

Aquifex pyrophilus 

60 

50 

60 
57 

70 
74 
75 

70 
70 

65 

a2 

75 

75 

70 

60 

65 

04 

45 

55 

67 

Optimum Maximum 

75 65 
75 80 

aa 95 
80 69 

88 97 
100 103 
100 104 

80 95 
a5 95 
92 98 

105 110 

86 98 

07 93 

100 105 

63 95 

88 97 

98 110 

86 91 

80 90 

a5 95 

1 to 5 

1 to 4.5 

1.5 to 5 
1 to 5.5 

2.5 lo 6 
5 to 7 

5.6 to 9 

4 to 6.5 
4.5 to 7 

4.5 to 6.5 

5 to 7 

5 to 7 

4 to 7 

5 to 9 

5.5 to 7.5 

5.5 to 7.5 

5.5 to 7 

5 to 7.5 

5.5 to 9 

5.4 to 7.5 

ae t 37 

ae t 45 

se/an t 31 
an t 38 

an t 56 

an t 46 
ae/an m 52 

an t 57 
an t 51 

an m 35 

an m 62 

an m 49 

an m 57 

an m 38 

an m 46 

an t 33 

an m 60 

an m 31 

an m 46 

ae m 40 

Morphology 

Lobed cocci 

Cocci 

Lobed cocci 
Lobed cocci 

Regular rods 

Regular rods 
Regular rods 

Slender regular rods 
Cocci 
Cocci in aggregates 

Discs with fibres 
Discs 

Cocci 
Cocci 

Irregular cocci 

Rods in clusters 

Rods in chains 

Irregular cocci 

Rods with sheath 

Rods 

l t--terrestrial; m-marine. 

acidic pH (optimally at about pH 3). They belong to the quires low ionic strength and therefore, Sulfolobus is not 

genera Sulfolobus, Metullosphaeru, Acidianus (and its close found in marine solfataric fields. Mefullosphaeru sedula, which 

relative Desulfurolobus) and Stygiolobus. Sulfolobus spp. are differs from Sulfolobus spp. by the much higher GC-content 

strict aerobes growing autotrophically by oxidation of So, of its DNA (Table 3), is a powerful oxidizer of sulphidic 

SZ- and H,, forming sulphuric acid or water as end product ores such as pyrite, chalcopyrite and sphalerite, forming 
(Tables 2 and 3). Sulfolobus brierleyi (now renamed Acidianus sulphuric acid and solubilizing heavy metal ions (Table 2). 
brierleyi) and Sulfolobus metallicus are able to grow by Acidiunus, like Sulfolobus, is able to grow by oxidation of 
leaching sulphidic ores (Brierley & Brierley 1973; Huber & So, sulphides, H, and organic matter but is also able to 

Stetter 1991). Several Sulfolobus isolates are facultative or grow anaerobically by reduction of elemental sulphur, with 

obligate heterotrophs, growing on sugars, yeast extract H, as electron donor (Segerer et al. 1985). Desulfurolobus 

and peptone (Brock 1978). Under microaerobic conditions, shows similar properties and DNA/DNA hybridization 
Sulfolobus isolates are able to reduce ferric iron and molyb- indicates it is a close relative of Acidianus infernos (Huber et 
date (Brierley & Brierley 198.2). Growth of Sulfolobus re- al. 1987a). Members of the genus Acidianus are able to 
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grow in the presence of up to 4% salt and have been 
isolated from a marine hydrothermal system (Segerer et al. 

1986). Sfygiolobus is a strictly anaerobic extreme acidophile, 
growing as an obligate chemolithoautotroph by reduction 
of So with H, (Segerer et al. 1991). 

Neutrophiles and Moderate Acidophiles 

Neutrophilic and slightly acidophilic hyperthermophiles are 
found in terrestrial solfataric fields, submarine hydrothermal 
systems and deep oil reservoirs (Stetter et al. 19%). They 

exhibit specific adaptations to their environments and most 
are strict anaerobes. 

Terrestrial solfataric fields contain members of the genera 
Thermoproteus, Pyrobaculum, Thermofilum, Desulfurococcus 
and Methanofhermus (Tables 2 and 3). Cells of Thermopro- 
teus, Pyrobaculum and Thermofilum spp. are almost rectangu- 

lar rods (Figure 2a). During the exponential growth phase, 
spheres protrude at the ends of the rods, producing ‘golf 
clubs’; this is probably a form of budding. Cells of Thermo- 
filum (‘the hot thread’) are only about 0.17 to 0.35 pm in 
diameter while those of Pyrobaculum and Thermoproteus are 
about 0.50 pm. Thermoproteus neutrophilus, Thermoproteus 
tenar and Pyrobaculum islandicum are able to grow chemo- 
lithoautotrophically by anaerobic reduction of So by H, 
(Table 2). In contrast, Pyrobacuhm aerophilum is a marine 
organism that is able to grow anaerobically, by reduction 

of nitrate by H,, and on H, and 0, under microaerobic 
conditions (Vtilkl et al. 1993). Strains of Pyrobaculum organo- 
kophum, Thermoprofeus uwniensis and Thermofilum are obli- 
gate heterotrophs growing on organic substrates by sulphur 
respiration. Thermoproteus tenax and Pyrobaculum islandicum 

are facultative heterotrophic sulphur respirers. Desulfurococ- 
cus, Sfaphylothermus and Thermodiscw are coccoid or disk- 
shaped and strictly heterotrophic sulphur respirers. Thermo- 
coccus and Pyrococcus gain energy by fermentation of pep- 
tides, amino acids and sugars, forming fatty acids, CO, and 
H,. Hydrogen is inhibitory to growth and can be removed 
by gassing with N, (Fiala & Stetter, 1986). Alternatively, 
hydrogen inhibition can be prevented by the addition of So 

whereupon H,S is formed instead of H,. Pyrococcus furiosus 
is able to ferment pyruvate, forming acetate, H, and CO, 
(Schifer & Schijnheit 1992). Pyrococcus and Thermococcw 
spp. have been found in oil reservoirs (Stetter et al. 1993). 

Many terrestrial and submarine hydrothermal fields con- 
tain members of the bacterial genus Thermotoga which are 
rod-shaped cells surrounded by a characteristic sheath-like 
structure (the ‘Toga’), which balloons out at the ends 
(Table 3; Figure 2b). The Toga which contains porins, is 
probably homologous to the outer membrane of gram- 
negative bacteria (Rachel et al. 1990). Thermofoga ferments 
various carbohydrates, forming acetate, L-lactate, H, and 
CO, as end products (Huber et al. 1986). 

Aquifex pyrophilw represents the deepest phylogenetic 

branch within the bacterial domain (Burggraf et al. 1992; 

Figure I). It is a rod-shaped, strict chemolithoautotroph 
(Figure .ZC) growing by hydrogen oxidation under micro- 
aerobic conditions (Huber et al. 1992). Aquifer can also 
grow by oxidation of sulphur, using 0, or nitrate as 
electron acceptors (Table 2). 

Archaeal coccoid sulphate reducers are members of the 
genus Archaeoglobus. Some species occur within hot oil 
reservoirs and may be responsible for H,S production or 
‘reservoir souring’ there (Stetter et al. 1993). Archaeoglobus 
fulgidus and Archaeoglobus lithotrophicus (Figure 2d) are able 
to gain energy by reduction of SO,“- by H,. Archaeoglobus 

profundus is an obligate heterotroph. Archaeoglobus fulgidus 
possesses several coenzymes which had been assumed to be 
unique for methanogens and 16s rRNA phylogeny puts 
Archaeoglobus among the methanogens (Figure 1). 

The organisms with the highest growth temperature are 

members of Pyrodictium and Methanopyrus, growing at 
110°C. Cells of Pyrodictium are disk-shaped and are con- 
nected by a network of ultrathin hollow tubules (Figure 2e). 
Strains of Pyrodictium are usually chemolithoautotrophs, 
gaining energy by reduction of So by H,. Pyrodictium abyssi 
is a heterotroph growing by peptide fermentation. Mefhano- 
pyrus kandleri is a rod-shaped methanogen (Figure 2f) which 
represents the deepest phylogenetic branch-off within the 

archaeal domain (Huber et al. 1989b; Burggraf et al. 1991; 
Kurr et al. 1991; Figure 1). Other marine methanogenic 
hyperthermophiles are Methanococcus igneus and Methano- 
coccus jannaschii (Table 1). 

Conclusions 

There is an unexpectedly diverse variety of hyperther- 
mophiles in high-temperature environments. This diversity 
is evident in 16s rRNA studies and in the range of unusual 
metabolic and physiological properties of the organisms. 
Hyperthermophiles are either primary producers or consum- 
ers of organic matter. Energy conservation in the primary 
producers involves both anaerobic and aerobic respiration, 

and the use of molecular hydrogen as the main electron 
donor. Consumers gain energy by anaerobic or aerobic 
respiration or by fermentation. 

The principles of heat stabilization of cell components, 

such as DNA, RNA, proteins, ATP and NAD, are still 
unknown and are a challenging topic for basic research. 
Hyperthermophiles are also suitable for use in novel biotech- 
nological processes in the future, including oil, coal and 

waste-gas desulphurization, heavy metal leaching and bio- 
conversion of crude oil. Thermostable enzymes such as 
DNA polymerases (as used in PCR), amylases, xylanases, 
proteases and lipases are required in basic research and 
biotechnology. Further efforts should be made to isolate 
uncultivated hyperthermophiles for possible use in novel 
applications in the future. 

WorldJournal of Mioobiology 6 Biotechnology Vol II, 1995 13 



E. Bliichl et al. 

Figure 2. Electron micrographs of hyperthermophilic microorganisms. (a) Pyrobaculum aerophilum. (b) Thermotoga marifima. (c) 

Aquifex pyrophilus. (d) Archaeoglobus lithotrophicus. (e) Pyrodictium abyssi. (f) Methanopyrus kandleri. Prepared by freeze-etching 
(a, c), Pt-shadowing (d) or uranyl acetate staining (b, f) or for scanning microscopy (e). Bar = 1 (a, b, c, d) or 2 pm (e, f). 
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