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Abstract. A tensor product for complete lattices is studied via concept lattices. A characterization as a 
universal solution and an ideal representation of the tensor products are given. In a large class of con- 
cept lattices which contains all finite ones, the subdirect decompositions of a tensor product can be 
determined by the subdirect decompositions of its factors. As a consequence, one obtains that the 
tensor product of completely subdirectly irreducible concept lattices of this class is again completely 
subdirectly irreducible. Finally, applications to conceptual measurement are discussed. 
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1. Introduction 

The fundamental interpretation of lattices as hierarchies of concepts has been elaborated 
in [ 141 based on the notion of the concept lattice b (G, M, I) for a given context 
(G, M, I). In [ 151, it is shown how subdirect decompositions ofqj(G, M, I) can be seen 
within (G, M, I). This gives rise to a construction method for concept lattices via sub- 
direct products. In this paper we analyse tensorial decompositions of concept lattices 
which again provide us with construction methods. In a large class of concept lattices 
which contains all finite ones, the subdirect decompositions of a tensor product can be 
determined by the subdirect decompositions of its factors. In particular, it will be shown 
that the tensor product of completely subdirectly irreducible concept lattices of this 
class is again completely subdirectly irreducible. 

2. A Tensor Product for Complete Lattices 

A. G. Watermann [ 131, D. G. Mowat [7], and Z. Shmuely [ 111 have introduced a tensor 
product for complete lattices where the complete lattices are considered as V-semilattices 
with 0. Since it is the character of concept lattices to treat meets and joins equally, we 
propose for the analysis of concept lattices a tensor product which respects both opera- 
tions. For complete lattices L, and L2 we define the tensor product by 

l Dedicated to Ernst-August Behrens on the occasion of his seventieth birthday. 
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L, 8 L2 :=@(L, x L2,LI x L,,V) 

where 

for (x1, x,), (yr, ya) E L1 x L2. This construction was first considered by G. N. Raney 
[lo] to study completely distributive complete lattices. It was named ‘the topological 
product’ by G. Kalmbach [6] and H.-J. Bandelt [2] because, if L1 and L, are the lattices 
of all closed (open) subsets of topological spaces, L1 8 L2 is isomorphic to the lattice of 
all closed (open) subsets of their product space. This is an immediate consequence of 
Theorem 1 and the fact that the lattice of all closed subsets of a topological space S is 
isomorphic to d(S, ‘3 , &) for every base *% of open sets. For the formulation of The- 
orem 1, we define the direct product of contexts lKr : = (G,, Mr , Zr ) and IK, : = (G,, 

Mz. 12) by 

IK1 x IK, := (G, x G2, M, xM,, v) 

where 

(g,,g2)V(ml,m2):og,Zlm, or g2Z2m2 

for(g,,g2)EG, xG2 and(m,,m,)EMI xM2. 

THEOREM 1. %(IK,) S’%?(IK,) r’B(IK, x IK,) 

pt-oofi To apply the basic theorem of concept lattices in [14; p. 4491, we define 
mappings y and P from ‘P(IKr ) X’a(K,) into’B(IKr X IK2) by 

Firstwehavetoshowthat(A,~A~uG,~M~uMM;~G,,B~xM~uM~xB,)isa 
conceptofIK,xIK2.(mr,m2)EB,xM2uM1~B2meansmrEBi orm,EB,.This 
is equivalent to g, Zr ml or g2Z2 m2 for all (gr , g2> E Al x A2 u G1 X MG u MI X G2 
because ml 6? B, and m2 & B2 would imply lg, Zr ml and lg, Z2 m2 for some (gr , g2) E 
Al x A2. Hence, 

BlxM2uM,xBz=(AlxA2uG,xM;uM;xG2)‘. 

Now,let(g,,g2)EAIxA2uG1xM~uMM; xG2.SinceG1xMJuM; xG,C_X’for 
every Xc M, x M2, we may assume that (gr, g2) E Al x A2. This is equivalent to 
g,Zim, for allmr EBI andg2Z2m2 forallm, EB,.Hence,(g,,g,)E(B, xM2 uM1 x 

B,)‘. Let (h,, h,)E(B, xM2 uMr x B,)‘. If(hr, h,)@A, xA, thenw.l.o.g.lh,Z,mr 
for some ml E B1. It follows that h2Z2m2 for all m2 EM,, whence h2 EMi and 
(h, , h, ) E Gt x Mi _ We conclude 
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Therefore, we have that y (and dually /J) is a mapping from +a(lK,) x +a(IK,) into 
‘B(lK, x IK,). Since 

it follows that 

Y((bl I”. cg1 )‘I? (Cgzl”, I&l’)) = (I(g1, g,)}“, {(g1, &)I’). 

Thus, the image of y is supremum-dense in Q(IK, x IK,); dually, the image of /J is 
infimum-dense inqa(IKi x IK,). Finally, ((Ai, B,), (A,, B,))V ((Cr, Or), (C,, Dz)) is 
equivalent to Ai C C, or AZ 5 C, and so, because of (*), equivalent to ?((A,, B,), 
(A,, &))~11((Cl, DA CC,, 6)). N ow, the asserted isomorphism is a consequence of 
the theorem cited above. 0 

Theorem 1 shows the independence of the tensor product (up to isomorphism) with 
respect to underlying contexts. If we comprehend the supremum-dense subset given by 
the objects and the infimum-dense subset given by the attributes as a ‘double base’ of 
the concepr lattice, we may understand the tensor product to be constructed by the 
‘direct product of double bases’. This is the reason why we prefer the name ‘tensor 
product’ for Lr 0 Lz . It is natural to introduce two ‘tensorial operations’ between L1 
and L2 (cf. (*)): 

~l~xz:=(~4x1lx~o,x,luLlx~o~u~o~xL~,~x,,1lxL,uL,x~x,,1l), 

Xl 68x, :=([O,x,l XL, u L1 x [0,x,], [Xl,]] x [xz,ll u L1 x{l)u {l)xLa). 

As direct consequence of these definitions we obtain the following identities: 

Xl a 1 v 10x, =x1 0x,, Xl @Or, 0&3x, =x1 ax,, 

These identities form a basis for calculating in the tensor product L1 0 L2. This follows 
from Theorem 2 which we prefer to formulate with the complete embeddings ei: L1 + 
L1OLzande,:Lz+L1OLzdefinedby 

er(xr) :=x1 GY 1 =x1 0 0 and e2(x2) := 1 0x, =00x, 

(notice that x1 @9x, =ei(xi)~ ez(xz) and x1 8x, =er(xi)v &x2)). el and es pre- 
serve 0 and 1, which, in general, we assume for complete homomorphisms in this paper. 
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THEOREM 2. Let Et: L1 + L and ~2~: L2 --f L be complete homomorphisms between 
complete lattices satisfying the distributive laws 

l%en there exists a unique complete homomorphism (Y : L 1 8 L2 -+ L with GI = cx - e1 and 
e, = a o E2. 

Pro05 First we show that the following is valid for all XC L 1 x L,: 

(x,, yEx (El(Xl) A Z2(x*N = (y 2 cE*, (Gtil) v izti2)) 1, 2 (**I 

By assumption, 

v (h(Xl)A iz(x2)) (x,. X,)EX 
= s& ((X Y)GS E1(X1)V (x*,xJyLX,S e2(“2)) 1, * 2 
= s& (q(x,y&SX1) vE2((x,,~Ex\sx2)) . 

For 

SC_X, yf := V x1 and yf := V x2, 
(Xl. x,1- @I. X,)EX\S 

wehave(x,,x2)~~~,y~)forall(xl,x2)EXandso(y~,y~)EX’.If 

CY~.Y~)EX’ and S :={(Xl,X?)EXlXl GYlI, 

then P,Qf) v P2(y$)G el(yl) v G2(y2). All together yield (**). Now we define (II: 
L1 @La+Lby 

&(A, B) := (x,,i& (@I( I,) = /\ (I” ~2b’z)). 
1 (YlPYJEB 

Using (**), we obtain 

v Wt,&) 
tET 

and dually 
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Thus cr is a complete homomorphism. By definition, 

4%(X1 >> 

hence PI = 010 er and analogously 6, = (Y 0 e2. Since el(LI) u e2(L2) is a generating subset 
of the complete lattice L1 0 L2, 01 is unique. 0 

We conclude this section by listing some laws for the tensor product which can be easily 
deduced from Theorem 1; we use the notation ll for a one-element lattice, 2 for a two- 
element lattice, and L* for the dual of the lattice L: 

L,QLz”LzQL,; Ll Q(L2 @LJ)“(Ll QL2)@&, 

nsL-n, 20L=L, 

L10(L2XL3)“(L,0L2)X(L10L3), (L10L?)*NLfQLf. 

3. An Ideal Representation of Tensor Products 

Since L1 0 L2 is supremum-dense in L, 0 L2, we obtain a set representation of L1 0 L2 
by assigning to each of its elements w the subset 

of L1 x L,. To use this representation as a construction method for tensor products, we 
have to characterize a(L1 0L2). For that purpose we introduce the following defini- 
tions: If 0 is an order filter of the power setb(S) of the set S, then &# is the order 
filter (S\ T) Tc S and T& 21). A subset J of L1 x L2 is called a G&deal (cf. [ 111) 
where K is any cardinal number, if J satisfies the following conditions: 

(i) (0, l)EJand(l,O)EJ. 
(4 (xl,x2)~J~d(~1,~2)~(x,,x2)alwaysimplyOt~,~2)~J. 
(iii) For each index set S with I S I Q K and every order filter 2: ofp(S), (XT, xg ) E J 

(s E S) implies 

A complete lattice L has V-breadth K if K is the smallest cardinal number such that for 
every family (xt)tET of elements of L there exists a subset U of T with J U 1 <I( and 
V tET*t =vuEUxu. 

THEOREM 3. u is an isomorphism from L1 0 L2 onto the lattice of all G,-ideals of 
L, x L2 where K is the V-breadth of L1 0 Lz . 
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Proof. Clearly, a(w) satisfies condition (i) and (ii). Let (x;, A$)E u(w) for all 
s E S and let be an order filter of (S). Then 

hence 

(A Vd, A VX:)Eu(W). 
TEZ tET TE$+ tET 

This shows that a(w) is a GA-ideal of Lr x L2 for each cardinal number A, in particular 
for X = K. Conversely, let J be a G,-ideal of Lr x L2 and let 

w := V Xl (3x2. 0,. X,)EJ 
Then there exists a family of elements (xf , xz ) (SE S) in J with 1 S I< K and w = 
v SES XT @J xz. Now, let (yr , ys) E u(w). It follows: 

=T$ (tkkx’)‘(ski,TX+ 

Therefore, for rC_ S, [yI, l] x L2 u L1 x [yz, l] contains [VtET xi, I] x [VsESiT x:, 
11 and so 

y,<vx: or yz=-G v x;. 
tET sES\T 

For the order filter % : = { T C_ s 1 Y 1 < vt, T Xl 1 Of’@(s), we Obtain 

hence (yr, yz) E J. This proves J = u(w). Because 
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for all n EL, 8 Lz, we conclude that u is a bijection from L1 8 Lz onto the lattice of 
all G,-ideals of L1 x L2. As u and 6’ are order-preserving, u is an isomorphism. q 

To each G,-ideal J of L1 X L2 we may assign a mapping TJ: L1 -+ L2 defined by TJx : = 

V{y E L2 1 (x, y) EJ} (x E L1). Since J is already a G-ideal of L1 x L, in the sense of 
Z. Shmuely [ 1 I], i.e., J satisfies, besides (i) and (ii), the following condition: 

(iv) (xf , xi ) E J (s E S) implies 

(choose Z or 2# equal to {S}), we obtain (x, TJx) E J. From this, it easily follows that 
~~~~~~~~~~~~~ TJxr(cf. [11,Lemma3.3]).ForaEL1,1et S:={XCLIIa<VX}. 
Then %#={Li\XlagVX}. As a=r\x-zVX, we have (a, ArE-2#VrEy TJY)EJ 

and so 

hence TJa = A,$, V,, Q X ?Jy. Now let T: L1 --f L2 be a map satisfying 

forallx,EL, (tET)andaEL i ; such mappings are called tight Galois maps. We define 
J7 :={(x, y)EL1 xL,~y~~x}.Clearly,(1,O)E~,and,becauseofT~=~V~=~~~= 
A@ = 1, also (0, 1) E J,, i.e., J, satisfies (i). If (x, y) E J, and (u, V) Q (x, y), then 
ZI < y Q TX < TU and so (u, v) E J, ; hence J, satisfies (ii). Let (x,, y,) E J, (s E S) and 
let 2 be an order filter onb(S); we set a : = AT= z VtET xt. For x Pa in L1, it follows 
that& :={sESlx,<x}&%andsoS\S,E21#.Therefore, 

This yields 

i.e., J, satisfies (iii). Thus, J7 is a G,-ideal. Obviously, T = 7~~ and J = JTJ; furthermore, 
TV Q 72 for tight Galois maps is equivalent to Jr, c JT, . In this way we obtain from 
Theorem 3 the following theorem of G. N. Raney [lo]. 

THEOREM 4. l%e mapping W* TV is an isomoJphism from L1 @ L2 onto the lattice 
of all tight Galois maps from L 1 in to L 2 . 

In [ 111, Z. Shmuely has shown that the lattice of all G-ideals of L1 x L2 is isomorphic 
to the lattice of all Galois connections between Li and L2. This lattice can be considered 
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as the tensor product of L, and Lz in the category of complete lattices and complete 
join morphisms (cf. [l, 7, 81). We like to denote this tensor product by Lr @ L2. In 
connection with Theorem 4, Raney deduced the following corollary in [lo]. 

COROLLARY 5. If L, or L2 is completely distributive then L1 Q L2 = L1 8 L2. 

This corollary is an immediate consequence of Theorem 3 and the fact that every G-ideal 
J of L1 x L, is already a G,-ideal if L1 is completely distributive. To show this fact, let 

(x:3 x,S)~J(sES)andlet%beanorderfilterofwS).Then(A~~~ xfT,VTEz x~,‘)E 
J for each element S of the direct product II zand so 

hence 

Thus, J is a G,-ideal of Lr x L2. For applying Corollary 5, the following characterization 
of completely distributive concept lattices might be helpful (cf. [lo], Theorem 5). 

PROPOSITION 6. Z’he concept lattice ‘a(G, M, I) is completely distributive if and only 
ifforgEGandmEMwith(g,m)4IthereexisthEGandnEMsuchthat(g,n)~I, 
(h,m)&I,andhE{k}“forallkEG\{n}‘. 

Proof: In each concept lattice we have 

TG i%' 
At,&)> ,J/% Tcz (&T,&T). 

Suppose that the two sides are not equal. Then there exist g E nTE r (n,, T B,)’ and 
m Ens EnZ (nTEz &T)’ with (g, m) 6? I. Let us assume the existence of h E G and 
n EM such that (g, n)&I, (h, m)&I, and h E(k)” for all ICE G\(n)‘. Then (g, n)&1 
implies n & nrET t B for all TEg and so n 4 B6T (TE%) for some 6 E n%; hence 
hEAsT for ah TEZ. This together with rnE(n,,r A&T)’ contradicts (h, m)&Z. 
Thus, the ‘if’-part of the assertion is proved. Now, let us assume that%(G, M, Z) is com- 
pletely distributive. We choose g E G and m EM with (g, m) 6? I. By distributivity, 

whence there is an n EM with (g, n) 4 I and m & (ncs h)g r {/cl”)‘; furthermore, there 
is an h E rick, njgl (k}” with (h, m) 6i! I. This shows the ‘only if’-part of the asser- 
tion. 0 
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Now, let L1 and L2 be completely distributive and let (x1, x2), (yr, y2) E L1 x L2 such 
that (x,, x2) V (yr, y2) is not valid which is equivalent to x1 $yr and x2 %y2. By 
Proposition 6, there are Uj, Vi E Li with Xi $ vi, .Y[ p Uj, and Li = [0, Vi] u [ui, 1] (i = 
1,2). It follows that (x,, x2)V(v1,v2) and (u,, u?) V (yr, y2) are not valid; further- 

more, L1 0L2 = [O, v1 @v2] u [ul 04, 11. Therefore, by Proposition 6, L1 0 L2 is 
completely distributive too. This together with Theorem 2 yields the following charac- 
terization of tensor products of completely distributive lattices (cf. [3, 121). 

THEOREM 7. For completely distributive complete lattices L, and L2, the tensor 
product L1 0 L2 is a free product of L1 and L, in the category of completely distributive 
complete lattices wtth complete homomorphisms preserving 0 and 1, 

4. Subdirect Decompositions of Tensor Products 

In this section we restrict our considerations to doubly founded complete lattices. We call 
a complete lattice L doubly founded if, for every pair of elements x <y in L, (L\ [0,x]) n 
[0, y] contains a minimal element and (L\ [y, 11) n [x, I] contains a maximal element. 
Such minimal and maximal elements are just the V-irreducible and A-irreducible elements 
of L, respectively, and every element of L is the supremum of V-irreducible elements and 
the infimum of A-irreducible elements in L. If J(L) denotes the set of all V-irreducible 
elements of L and M(L) the set of all A-irreducible elements of L, then L -+a(J(L), 
M(L), <) by the basic theorem of concept lattices in [ 141, p. 449. 

Let us recall that a context (G, M, Z) is reduced if *yg := ((g)“, {g}‘) (g E G) defines 
a bijection y: G + J(‘B(G, M, I)) and if urn := ({m}‘, {m}“) (m EM) defines a bijection 
p: M + M(mG, M, I)). We call a context (G, M, I) doubly founded if, for each (g, m) E 
G x M\I, there exists an h E G such that yh is minimal in { yk 1 k E (g}” and (k, m) &Z} 
(notation: m L h) and there exists an n EM such that ~.tn is maximal in (up I p E (m}” 
and (g, p) 6! I} (notation: g ? n). Clearly,‘8 (G, M, I) is doubly founded if (G, M, Z) is 
doubly founded and, for each doubly founded complete lattice L, the context (J(L), 
M(L), <) is reduced and doubly founded. For this section we make the general assump- 
tion that all contexts (G, M, I) are reduced and doubly founded. 

In 1151, it is shown how to study the complete congruence relations of the concept 
lattice ‘a(G, M, I) within the digraph of weak perspectivities (G in M, ? ti 4). A subset C 
ofG~MissaidtobeclosedifgECandg~mimplymECandifmECandm~g 
imply g E C. Obviously, the closed subsets of the digraph (G i, M, P ti L) form a complete 
sublattice of the complete lattice of all subsets of G cj M. To each complete congruence 
relation 0 ofs(G, M, 1) we assign a subset G(0) ci M(B) of G ti M defined by 

G(B) : = {g E G I ̂ /g is the smallest element of a f3-class}, 
M(B) : = {m EM (Mm is the greatest element of a &class}. 

A slight generalization of Theorem 6 in [ 151 (proved by the same arguments) is the 
following theorem. 
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THEOREM 8. 19b G(e) 6 M(B) describes an antiisomorphism from the lattice of all 
complete congruence relations of ‘23(G, M, I) onto the lattice of all closed subsets of 
(G 0 M, 7 ir 4). 

COROLLARY 9. For a doubly founded complete lattice L the lattice (5;(L) of all 
complete congruence relations of L is completely distributive. 

Under the antiisomorEhism of Theorem 8, the A-irreducible elements of @(+B( G, M, I)) 
correspond to the U-irreducible closed subsets of (G 0 M, 7’ ti 4) which are exactly the 
smallest closed subsets (g ) containing a given object g. This yields, as in [ 151, the follow- 
ing subdirect product representation of’@(G, M, I). * 

THEOREM 10. (A. B)++ (A n (g>, B n (g&c describes an isomorphism from 
$B(G, M, I) onto a subdirect product of the completely subdirectly irreducible concept 
bzttices+a((g) n G, (g) n M, In (gj2) (gE G). 

Now, we prepare to analyse such subdirect product representations for tensor products 
of doubly founded complete lattices. Let us assume that IKr : = (G,, M,, Zr) and IK, : = 
(G,, M2, I,) are doubly founded reduced contexts; furthermore, let L1 : =‘B(IK,) and 
Lz :=‘z3(lK,). 

LEMMA 11. J(Lr @L2)=J(L1)@J(L2)andM(L1 @L2)=M(LI)@M(L2). 
Proof x1 ax, = VtE T r: 6I9 ri is equivalent to 

b,, 11 x ~~ u ~~ x b,, ii = n ([Y:, ii x ~~ u h x [y:, 11) 
tET 

which is equivalent to x1 = V,, T y: and x2 = VtET y:. Since L1 @L, is supremum- 
dense in L, 8 L2, the first assertion immediately follows (and dually the second asser- 
tion). cl 

LEMMA 12. For g, E G, , g, E G,, m 1 EM, , and m, EM, , the following holds : 

(gl,g2)~(ml,m2)*g,~ml and g2pm2, 

(ml,m2)L (gl,g2)*m14gl and m24g2. 

Proof: The assertions are direct consequences of the fact that (gr, g2) V (ml, m2) 
is not valid in IK, x IK, if and only if (g,, ml) 66 Zr and (ga, mz) 6? I, _ q 

LEMMA 13. JK, x IK, is reduced and doubly founded. 
Proof. Because of 

{(gl,g2)~‘=Igl~‘xM2 u MI x k21 and {(ml, m2)l’= 
={ml)‘x G2 u G, x {m2}‘, 

Lemma 11 yields that JKr x JKa is reduced. From Lemma 12 we obtain that JR1 x lK2 
is doubly founded. q 
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LEMMA 14. 

91 

and 

ford(gl,g2)EGl x G,. 
ProoJ: By Lemma 12, (gr ) x (g2 ) is closed in (G, x G, u MI x Mz, 7 lj 4); hence 

((g,, g2)) n G, x G, C ((gr ) n G, ) x ((g, ) n G,). For the proof of the dual inclusion 
we use the general fact that for each object g in a doubly founded reduced context there 
is always an attribute m such that g ? m and m L g. Let g, E (gr > n G, and g, E (gz ) r7 
G, ; furthermore, let m, EM2 and m3 EM, such that g, ? m2, m, Ig,, g, ? m3, and 
m3 4 g3. There exist paths 

g,~nl~h,~n2~...4h,_1~n,4gj and g2~pl~k,~p2L...Lk,_l~p,4g4 

and so, by Lemma 12, we have a path 

(gl, g2) p (no, m2> b (hl,g2) r CR, m2) L . . . 

4(h,-1,g2)r(nr,m2)L(g,,g2)r(m3,pl)L(g3,kl)r(m3,p2)5( . . . 

L(g,,k,-l)r(m3,p,)L(g,,g4); 

hence (gs, g4) E ((gr, g2)> n Gr x Gz. This proves the first equality, The second equal- 
ity dually follows using ((gr, g2)) = ((m,, m2)) for some (mr, m2) EM, x M,. 0 

COROLLARY 15. L, 0 L2 is completely subdirectly irreducible if and only if L1 and 
L2 are completely subdirectly irreducible. 

As IKr x IK, is again reduced and doubly founded by Lemma 13, d(IKr x IK, ) is a 
subdirect product of the completely subdirectly irreducible concept lattices ‘@(((g, , 
g,))nGxGz, ((gl, g2)) n MI xM2, V n ((a, g2))2) ((gt, g2)EG xG2) by 

Theorem 10. This subdirect product representation can be determined by the analogous 
subdirect product representations of +a( TKr ) and b( IK2 ) using the following theorem 
which is an immediate consequence of Lemma 14 and Theorem 1. 

THEOREM 16. 

forall(gl,g2)EGl xG,. 

COROLLARY 17. 7he completely subdirectly irreducible factors of L1 0 L2 are up 
to isomorphism the tensor products S1 0 S, where S1 and S2 are the completely sub- 
directZy irreducible factors of L 1 and L2, respectively. 
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For the study of arbitrary subdirect product representations of Lr 0 La, we clarify how 
the lattice g(L r 0 Lz ) of all complete congruence relations of L r 0 La can be determined 
byC!Ul)and@(L~)(cf. [W. 
THEOREM 18. &(L, 0L,)-@(L,)Qa(L,) 

Proof: By Theorem 10 and Lemma 14, the ordered set M(g(L1 0 La)) is isomorphic 
to M(@(L,)) x M(($(L,)) which is isomorphic to M(($(L,) S($(L,)). Now, we use 
that @XL1 0 L,) and @Li) 0 @(La) are completely distributive by Lemma 13, Corol- 
lary 9, and Theorem 7, and that every element of these lattices is the meet of A-irreducible 
elements. Then we obtain the asserted isomorphism from the proof of Theorem 2 in [9]. 

5. Measurement and Tensor Products 

In [ 141, a conceptual approach to the area of measurement is introduced by defining a 
scale to be a context % : = (G,, Mg, IS) which can be said to be well known. An %-meas- 
ure of a context (G, M, 1) is a mapping u from G into Gg such that o-‘A is an extent of 
(G, M, I) for every extent A of 8; o is called full if u-i induces an isomorphism from 
d(aG, MS, IS, n UG x M$) onto d(G, M, 1). Full S-measures may be analysed lattice- 
theoretically which is the substance of the following proposition [14], p. 461. 

PROPOSITION 19. Let % := (G,, Mg, 1~) be a context such that {g}’ = {h}’ implies 
g = h for ali g, h E Gs. For a full %-measure u of a context (G, M, I), iet F(A, B) : = 
((uA)“, (uA)‘) for all (A, B) E@(G, M, Z). Then UH adescribes a bqection from the set 
of all full %-measures of (G, M, I) onto the set of all embeddings 1 of d(G, M, I) into 
@(%) with the property that for each g E G there is an h E G$ with L({g}“, {g}‘) = 
({h}“,{h}‘)(rO#OisalZowed). 

It seems natural to call the smallest number n such that there exists a full S”-measure 
from (G, M, I) into the n th power S x S x .a. x 3, the $-dimension of (G, M, I). In this 
paper we only discuss the $-dimension for the case that % is a Guttman scale, i.e.,%!@) 
is a chain (cf. [4], chap. 5). Let us define the Guttman dimension of a context to be its 
smallest %-dimension where % is a Guttman scale, An essential difference from order 
measurement as it is discussed in [14], lies in the fact that the existence of a full S”- 
measure may have important consequences for the measured context. 

THEOREM 20. Let S : = (C, C, <) for a finite chain C and let u be a full %“-measure 
of the context (G, M, I). Zhen (G, M, I) is isomorphic to (P, P, $) for some finite 
ordered set P and d(G, M, I) is isomorphic to the finite distributive lattice 2’ of all 
order-preserving maps from P in to 2, 

Proof: 8 ($“) is a finite distributive lattice by Theorem 7 and J(qS”)) = C 0 C 0 ..a 
Q9C (n times) by Lemma 11. If ug=(cr, . . . . c,) then c((g”, {g}‘) = cr 0 ... 0 c, E 
J(wS”)). By Proposition 19, it follows thatm(G, M, I) is a finite distributive lattice. If 
we define P : = J(s(G, M, I))d, we obtain the assertions from well known results about 
finite distributive lattices. As J(e(S”)) N C”, we have the following corollary. Cl 
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COROLLARY 21. For a finite-ordered set P, the Guttman dimension of (P, P, Q) 
equals the order dimension of P. 
For the general study of full S”-measures, lattice-theoretical characterizations of the 
tensor products B(S) 8 .-. S(1J(%) have to be worked out. Here we only show what the 
Hasse diagram looks like for the concept lattice of the square of the nominal scale with 
three values. 

a bc 

a x 
b x 
C X 

The nominal scale IN, with 3 values 

a C 

1 laaab ac hxxbt j bctcacbcc 
cm x x x x X 

ab x x x X X 

ac x x x X X 

ba x x x x x 
bb x x x x X 

bc x x x x X 
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