Order 2 (1985), 81-95. 0167-8094/85.15. 81
© 1985 by D. Reidel Publishing Company.

Tensorial Decomposition of Concept Lattices*

RUDOLF WILLE
Fachbereich Mathematik, Technische Hochschule Darmstadt,
Schlossgartenstr. 7, D-6100 Darmstadt, West Germany

Communicated by R. P. Dilworth
(Received: 1 June 1984; accepted: 17 December 1984)

Abstract. A tensor product for complete lattices is studied via concept lattices. A characterization as a
universal solution and an ideal representation of the tensor products are given. In a large class of con-
cept lattices which contains all finite ones, the subdirect decompositions of a tensor product can be
determined by the subdirect decompositions of its factors. As a consequence, one obtains that the
tensor product of completely subdirectly irreducible concept lattices of this class is again completely
subdirectly irreducible. Finally, applications to conceptual measurement are discussed.
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1. Introduction

The fundamental interpretation of lattices as hierarchies of concepts has been elaborated
in [14] based on the notion of the concept lattice (G, M, I) for a given context
(G, M, I). In [15], it is shown how subdirect decompositions of B(G, M, I) can be seen
within (G, M, I). This gives rise to a construction method for concept lattices via sub-
direct products. In this paper we analyse tensorial decompositions of concept lattices
which again provide us with construction methods. In a large class of concept lattices
which contains all finite ones, the subdirect decompositions of a tensor product can be
determined by the subdirect decompositions of its factors. In particular, it will be shown
that the tensor product of completely subdirectly irreducible concept lattices of this
class is again completely subdirectly irreducible.

2. A Tensor Product for Complete Lattices

A. G. Watermann [13], D. G. Mowat [7], and Z. Shmuely [11] have introduced a tensor
product for complete lattices where the complete lattices are considered as V-semilattices
with 0. Since it is the character of concept lattices to treat meets and joins equally, we
propose for the analysis of concept lattices a tensor product which respects both opera-
tions. For complete lattices L, and L, we define the tensor product by

* Dedicated to Ernst-August Behrens on the occasion of his seventieth birthday.
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L1®L2:=’B(L1XL2,LIXL2,V)
where

(x1. X))V (1, 72) 10X, Sy, or X3 <y,

for (x,, x3), (¥1, ¥2) €L, X L,. This construction was first considered by G. N. Raney
{10] to study completely distributive complete lattices. It was named ‘the topological
product’ by G. Kalmbach [6] and H.-J. Bandelt [2] because, if L, and L, are the lattices
of all closed (open) subsets of topological spaces, L; ® L, is isomorphic to the lattice of
all closed (open) subsets of their product space. This is an immediate consequence of
Theorem 1 and the fact that the lattice of all closed subsets of a topological space S is
isomorphic to B(S, W, &) for every base A of open sets. For the formulation of The-
orem 1, we define the direct product of contexts K, :=(G,, M,, I,) and K, :=(G,,
M,, I,) by

]l(] X H(2 :=(G1 X G2,M1 XM2, V)

where

(gl,gz)v(m1,m2)3°glllm1 or g,I,m,
for(g,,8,)E€ G, X G, and (my, my) EM; X M,.

THEOREM 1. B(K,) @B(K,) ~B(K, x K,)
Proof. To apply the basic theorem of concept lattices in [14; p. 449], we define
mappings v and u from V(K } x VK, ) into V(KK; x KK,) by

Y((Ay, By). (44, By)) := (A1 X Ay u Gy X My uM{ X G,, By X My u M, X Bz),(*)

H((C1, D1).(Cy, D)) :=(Cy X G, U Gy X Gy, Dy X D, u My X G5 0 Gy X My).
First we have to show that (4; X A, U Gy X My U M} X G,, By XMy u My X B,) is a
concept of IK, X IK,. (m,, my)EB; X M, u M, X B, means m; €B, or m, €B,. This
is equivalent to g,I;m, or g,I,m, for all (g,, g,) €A, XA, u Gy XMy u M} X G,
because m, € B, and m, € B, would imply g, I; m; and 71g, I, m, for some (g,, g;) €
Ay X A, . Hence,

Bl XM2UM1 XBZ =(A1 XA2UGl XM; UM{ XGz),.

Now, let (g, £8,) € A, X A, U Gy X M, U My X G,. Since G; X My u My X G, C X' for
every X C M, xM,, we may assume that (g,, &;) €A, X A,. This is equivalent to
811y m, for allm, € B, and g, I, m, for all m, € B, . Hence, (g,, g,) €E(B; X M, u M, X
By) . Let (hy, hy)E(By XMy u My X B,). If (hy, hy) € A, X A, thenw log. TNk, Iy m,
for some m, € B,. It follows that h,I,m, for all m, €M,, whence h, EM, and
(71, 1,) € Gy X M. We conclude

Al XA2UG1 XM; UM; XG2 =(Bl XM2UM1 sz)'A
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Therefore, we have that y (and dually u) is a mapping from B(IK,) x B(K,) into
’B(H{l X H<2 ) Since

{(81,8)Y ={&1Y xMyu M, x{g,} for(g,,8,)EG; xG,,

it follows that

Y(({g: Y (&) (1&g} (&)= ({(g1, 82)}" . {(&1. &2)Y).
Thus, the image of vy is supremum-dense in W(K, x KK,); dually, the image of u is
infimum-dense in W(IK; x IK,). Finally, ((4;, B,), (42, B,)) V((Cy, Dy), (Cy, Dy)) is
equivalent to 4, CC, or 4, € (C, and so, because of (*), equivalent to y((4,, B,),
(4,, B ) <u((C,, Dy), (Cy, Dy)). Now, the asserted isomorphism is a consequence of
the theorem cited above. O

Theorem 1 shows the independence of the tensor product (up to isomorphism) with
respect to underlying contexts. If we comprehend the supremum-dense subset given by
the objects and the infimum-dense subset given by the attributes as a ‘double base’ of
the concept lattice, we may understand the tensor product to be constructed by the
‘direct product of double bases’. This is the reason why we prefer the name ‘tensor
product’ for L, ® L,. It is natural to introduce two ‘tensorial operations’ between L
and L, (cf. (*)):

X B xy :=([0,x] X [0,x,]U Ly x {0} u {0} X Ly, [xy,1] XLy u Ly X [x5,1]),
X1 @x, :=([0,x,] X Lyu Ly X [0,x,], [xy,1) X {x5,1] ULy x {1} u {1} X Ly).

As direct consequence of these definitions we obtain the following identities:

X ®1vIB®x,=x,@x,;, x;Q0A00x, =x,Bx,,

/\xf®x2= reT ) < t) AL (tET ) tETxg),

teT teT
\V x, ®xi=x, 0 ) /\ x @x) =x, @
teT teT teT te T
t = ? t -
\/xl ®xz“(\/x1) ® x3, /\xl ©x,= /\ @x,,
teT ter ter teT

/\(xf®1v1®x§)=\/<(/\X§®1>A</\ mx;)),
teT SCET \\ses teT\S
\/ (! @0A0@x) /\((\/xmo)v(\/ 0®x2t)>.
teT SCT \\s€S teT\S
These identities form a basis for calculating in the tensor product L, ® L, . This follows

from Theorem 2 which we prefer to formulate with the complete embeddings e;: L; —~
Ly®L,ande,: L, > L, ® L, defined by

€(x)=x;®1=x, Q0 and €,(x;):=10x,=0@x,

(notice that x; B x, =€,;(x;) A e,(x;) and x; @ x, =€,(x;) V €,(x,)). €, and ¢, pre-
serve 0 and 1, which, in general, we assume for complete homomorphisms in this paper.
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THEOREM 2. Let &.:L,~L and é,: L, L be complete homomorphisms between
complete lattices satisfying the distributive laws

\V @ehaae= A\ (Vaehy V/ ae),
teT SCT\ses teT\S
A\ @DV aa= V(A aED A\ acd).
teT SCT\seS teT\s§
Then there exists a unique complete homomorphism a: Ly ® L, > L with €, = - €, and

é2 S0 €y,
Proof. First we show that the following is valid for all X € Ly X L,:

NV (@e)rea@)= I\ (GOo)vEG) (**)

(x,, X,)EX Y, ¥o)E

By assumption,

V' (&x) A é(xy)

(xl’xz)E
/\( \/ €(xy) Vv \/ éz(xz))
CX\(x,,x))E (x,, x,)EX\ J
/\(( \V xl)vé2< \ x,)).
[ ¢ (x,,x,)ES (x,, x)EX\S

For
SCXy$i= \/ x and y§ = NV x,
(x,, x,)ES (x,, x,)EX\S

we have (x, x,)V (5, »5) for all (x,, x,) EX and so (»§,y3)E X" If

(.ylry2)eX, and S:={(xlrx2)eX|xl <J)l},
then él(y‘f)v é2@§)< E,(¥)V é,(¥,). All together yield (**). Now we define a:
L ®L,—~Lby

a4, B = N (&) A&(x) = /\B(él(yl)Aézcyz)).

(xl!xz)EA J’p)’z

Using (**), we obtain

a(At’ Bt)
teT

=\ (Ex)Aé(xy)

teT (x,, x,)EA

/\ (611 vV é&(1,))=a \/ (A¢, By)

(yu Y)E(V4y)

and dually



TENSORIAL DECOMPOSITION OF CONCEPT LATTICES 85

/\ @(4s,B)=a /\ (45, By).
teT

teT

Thus a is a complete homomorphism. By definition,

a(ey(xy))
=a([0,x;] XLy u Ly X {0}, [x,, 1} XLy, u L, x{1})
=€1(x ) A E(1) = €1(xy);

hence é, =a-¢; and analogously €, =a ¢, . Since €;(L,) U ¢,(L,) is a generating subset
of the complete lattice L, ® L, , « is unique. O

We conclude this section by listing some laws for the tensor product which can be easily
deduced from Theorem 1; we use the notation 1 for a one-element lattice, 2 for a two-
element lattice, and L for the dual of the lattice L:

Li®L,~L,®Ly; Li®L,®L3)~(L1®L,)®L;,
1®L~1, 2®L~L,
Li®(LyxLy)~(Li ®L)X (L ®Ls), (L,®L)~LI®Ld.

3. An Ideal Representation of Tensor Products

Since Ly @ L, is supremum-dense in L, ® L, , we obtain a set representation of L, ® L,
by assigning to each of its elements w the subset

o(w) :={(xy, X, ) EL; XLy | x; Bx; <w}

of Ly X L,. To use this representation as a construction method for tensor products, we
have to characterize o(L; ® L,). For that purpose we introduce the following defini-
tions: If T is an order filter of the power set () of the set S, then ¥ is the order
filter {S\7|7C S and TE€X}. A subset J of L; X L, is called a G,-ideal (cf. [11])
where « is any cardinal number, if J satisfies the following conditions:

@@ (0,1HeJand (1,0)€J.
(i) (xy, x,) €J and (4, ¥,) <(x,, x,) always imply (v, y,) €J.
(iii) For each index set S with | S| <« and every order filter ¥ of P(S), (x1,x5)EJ
(s € §) implies

(/\ \ xt, /\ \/x;)e.l.

Tex teT Ter¥ieT

A complete lattice L has V-breadth k if k is the smallest cardinal number such that for
every family (x;);e7 of elements of L there exists a subset U of T with | U] <« and
Vierx: =Vueu xu.

THEOREM 3. ¢ is an isomorphism from L, ® L, onto the lattice of all G,-ideals of
Ly X L, where k is the V-breadthof L, ® L, .
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Proof. Clearly, o(w) satisfies condition (i) and (ii). Let (x7, x3)€a(w) for all
s€ Sandlet bean order filter of (S). Then

VAQVASLIVAWRVA )

TER tET Tex¥ ST

=(/\ \/x:@o)A(/\ \/0®x2>

TEX IET rTex# teT

< A\ ((\/xmo)v( \V 0®x§)>

TCS teT sES\T

(S @0A0@x5)=\ x5 @xi<w

sE &S

Cd

hence

</\ xi, /\ \/x%)ea(w).

rer ter TexFtrer

This shows that o(w) is a Gy-ideal of L, x L, for each cardinal number X, in particular
for A =«. Conversely, let J be a G, -ideal of L, X L, and let

wi= \/ X, BDx,.

(x;, x,)ET

Then there exists a family of elements (x7,xj) (s€S) in J with |§|<« and w=
Vies X1 @ x5. Now, let (¥, ¥,) € a(w). It follows:

710y, <w= \/x1®x2—/\ <(\/xf®o)v(\/ 0®x§))

TCS \\teT sES\T

=T/g\s «tééx{)@ 1V1®<s¥wxi)>
= /\ (\/ xf)@(\/ x';).

TCS \t€T seS\T

Therefore, for TC S, [y1,1] X L, u Ly X [¥,, 1] contains [V,ep x], 1] X [Vsesvr %3,
1] and so

ylg\/x{ or ¥, < \/ X3.

teT SES\T

For the order filter T:={TC 1y, <Vieqp xi } of P(S), we obtain

(ylyJ’2)<(T/\ \/ x1, /\ \/xz)

et teT TGI teT

hence (¥4, ¥,) € J. This proves J = o0(w). Because

v= \/ x; O x,

&y, %)€0(0)
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for all v €L, ® L,, we conclude that ¢ is a bijection from L; ® L, onto the lattice of
all G,-idealsof L, X L,. As o and 0" are order-preserving, o is an isomorphism. a

To each G,-ideal J of L; X L, we may assign a mapping 75: L, = L, defined by 7;x :=
V{y €L,1(x, y)EJ} (x €L,). Since J is already a G-ideal of L, X L, in the sense of
Z.Shmuely [11], i.e., J satisfies, besides (i) and (ii), the following condition:

(iv) (x$,x3)€J (s €S)implies
<\/xf,/\x§> &7 and </\xi,\/x§)€J
sES sES sES ses

(choose ® or TF equal to {S}), we obtain (x, 77x) € J. From this, it easily follows that
T Vier X =Neer 17X (cf. [11, Lemma 3.3]). Fora €L, ,let :={XC L, la<VX}.
Then % ={L\X|a <VX}. Asa=Axecq VX, we have (s, Ay ez #V,cy 1yp)EJ
and so

Tra = /\ #y\é/Y Ty = /\ \/ TyY 2754

Ye xPaydx

hence 752 = /\x#a v, £x T7y.Nowletr: L, - L, be a map satisfying

1\/ X, = /\ TX; and 7g= /\ \/ TY
teT teT xpPaydx
for all x, €L, (+ €T) and a € L, ; such mappings are called tight Galois maps. We define
Jr:={(x, yY)EL,; x L, |y <7x}.Clearly, (1,0) €J, and, because of T0=7V P=A7rp=
AQ=1, also (0, 1)E J,, ie., J, satisfies (i). If (x, y)€J, and (u, v)<(x, »), then
v<y<tx<tu and so (4, v) €J,; hence J, satisfies (ii). Let (x;, ¥5) €J, (s €S) and
let T be an order filter on P(S); we seta :=Apcq Vier xr. Forx 2ain Ly, it follows
that S, := {s ES|x, <x} & Tand so S\ S, € T¥#. Therefore,

\/y,</\ \g/ TZ =14,
xpazgx

rex#eer
This yields
(/\ \/ Xty /\ # \/ yt)
Ter teT Te¥ ter

i.e., J, satisfies (iii). Thus, J, is a G,-ideal. Obviously, 7 = T and J=J furthermore,
71 €7, for tight Galois maps is equivalent to Jr, © Jr, . In this way we obtain from
Theorem 3 the following theorem of G. N. Raney [10].

THEOREM 4. The mapping w* 7y Is an isomorphism from L, ® L, onto the lattice
of all tight Galois maps from Ly into L, .

In [11], Z. Shmuely has shown that the lattice of all G-ideals of L, X L, is isomorphic
to the lattice of all Galois connections between L; and L, . This lattice can be considered
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as the tensor product of L, and L, in the category of complete lattices and complete
join morphisms (cf. [1, 7, 8]). We like to denote this tensor product by L; ® L,. In
connection with Theorem 4, Raney deduced the following corollary in {10].

COROLLARY 5. If L, or L, is completely distributive then L., ® L, ~L, ® L,.

This corollary is an immediate consequence of Theorem 3 and the fact that every G-ideal
J of Ly X L, is already a G,-ideal if L, is completely distributive. To show this fact, let
(x$, x5)EJ (s€S) and let Tbe an order filter of P(S). Then (Ape g x3T,Vrea x3Tye
J for each element § of the direct product Il ¥ and so

( A 2T /N \/x§T>EJ.
€Y TET S§ENT T
As{8T|TET} € T# it follows

(e /4 D N )2 (4 Yo

# Xa)
X teT TEeX™ teT

€Ny TE2 5N TEY
hence
t t
/\ X1, /\ X, |EJ.
(Te‘.t teT rex# t\e/T 2)

Thus, J is a G-ideal of L, X L, . For applying Corollary 5, the following characterization
of completely distributive concept lattices might be helpful (cf. [10], Theorem 5).

PROPOSITION 6. The concept lattice B(G, M, I) is completely distributive if and only
if for g € G and m €M with (g, m) &I there exist h € G and n € M such that (g, n) €1,
(h, m)&Land h €k} foral kEG\{n}.

Proof. In each concept lattice we have

ANNACYAES \/ /\ (As1- Bs7)-

TEY teT

Suppose that the two sides are not equal. Then there exist gENraqy (Nte1 By) and
m€ENsenz (Nrex Ast) with (g, m)€ 1. Let us assume the existence of 1 € G and
n € M such that (g, n) €1, (h, m)&1, and h € {k}"' for all k€ G\{n}'. Then (g, n) &1
implies n € N, By for all TEX and so n & Bsp (TET) for some § € IT; hence
h € Agy for all TEZ. This together with m € (Nrcqg Asr) contradicts (h, m)€ L
Thus, the ‘if’-part of the assertion is proved. Now, let us assume that £ (G, M, I) is com-
pletely distributive. We choose g € G and m € M with (g, m) € I. By distributivity,

ey igr)= V. /N (K {kY)
(g n&El (kn)y&El
whence there is an n € M with (g, n) €1 and m & (N (x nye 1 (k}"')’; furthermore, there
is an h €N pmye s {k}" with (h, m)&[. This shows the ‘only if"-part of the asser-
tion. O
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Now, let L, and L, be completely distributive and let (x,, x,), (¥,, ¥,) €L, X L, such
that (x;, x,)V(¥;, »,) is not valid which is equivalent to x; € ¥, and x, £ y,. By
Proposition 6, there are u;, v; € L; with x; X v;, ¥; 2u;, and L; = [0,v;] U [, 1] (i =
1,2). It follows that (x, x,) V (vy, v5) and (uy, u,) V (¥, ¥,) are not valid; further-
more, L, ® L, = [0, v, @ v,} U [u; ®u,, 1]. Therefore, by Proposition 6, L, ® L, is
completely distributive too. This together with Theorem 2 yields the following charac-
terization of tensor products of completely distributive lattices (cf. [3, 12]).

THEOREM 7. For completely distributive complete lattices L, and L,, the tensor
product Ly ® L, isa free product of Ly and L, in the category of completely distributive
complete lattices with complete homomorphisms preserving 0 and 1.

4. Subdirect Decompositions of Tensor Products

In this section we restrict our considerations to doubly founded complete lattices. We call
a complete lattice L doubly founded if, for every pairof elements x <y in L, (L\[0,x]) n
[0, ¥] contains a minimal element and (L\[y, 1])n [x, 1] contains a maximal element.
Such minimal and maximal elements are just the V-irreducible and A-irreducible elements
of L, respectively, and every element of L is the supremum of V-irreducible elements and
the infimum of A-irreducible elements in L. If J(L) denotes the set of all V-irreducible
elements of L and M(L) the set of all A-irreducible elements of L, then L ~B(J(L),
M(L), <) by the basic theorem of concept lattices in [14], p. 449.

Let us recall that a context (G, M, I) is reduced if yg := ({g}", {g}’) (g € G) defines
a bijection v: G > J(B(G, M, I)and if um := ({m}, {m}") (m € M) defines a bijection
p: M->MOB(G, M, I)). We call a context (G, M, I') doubly founded if, for each (g, m) €
G x M\, there exists an & € G such that vk is minimal in {vk | k € {g}"" and (k, m) €I}
(notation: m \ k) and there exists an n €M such that un is maximal in {up |p € {m}"
and (g, p) €I} (notation: g 7 n). Clearly, B(G, M, I) is doubly founded if (G, M, I) is
doubly founded and, for each doubly founded complete lattice L, the context (J(L),
M(L), <) is reduced and doubly founded. For this section we make the general assump-
tion that all contexts (G, M, I) are reduced and doubly founded.

In [15], it is shown how to study the complete congruence relations of the concept
lattice W(G, M, I) within the digraph of weak perspectivities (G 0 M, 7 U \). A subset C
of GU M is said to be closed if g€ C and g7 m imply me€Cand if mE€Cand m\ g
imply g € C. Obviously, the closed subsets of the digraph (G v M, # & \) form a complete
sublattice of the complete lattice of all subsets of G U M. To each complete congruence
relation 8 of (G, M, I') we assign a subset G(8) U M(#) of G U M defined by

G(0) :={g € G| vg is the smallest element of a §-class},
M(8) :={m € M|um is the greatest element of a f-class }.

A slight generalization of Theorem 6 in [15] (proved by the same arguments) is the
following theorem.
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THEOREM 8. 8+ G(8) U M(9) describes an antiisomorphism from the lattice of all
complete congruence relations of W(G, M, I) onto the lartice of all closed subsets of
(GUM 720N

COROLLARY 9. For a doubly founded complete lattice L the lattice ®(L) of all
complete congruence relations of L is completely distributive.

Under the antiisomorphism of Theorem 8, the A-irreducible elements of (W(G, M, 1))
correspond to the U-irreducible closed subsets of (G U M, # U \) which are exactly the
smallest closed subsets {g) containing a given object g. This yields, as in [15], the follow-
ing subdirect product representation of (G, M, I). )

THEOREM 10. (4. B)» (A n{g), B {gl)gec describes an isomorphism from
WV(G, M, I) onto a subdirect product of the completely subdirectly irreducible concept
latticesB(g) n G, (g)n M, I n (g)?) (gEG).

Now, we prepare to analyse such subdirect product representations for tensor products
of doubly founded complete lattices. Let us assume that K, := (G, M{, ;) and K, :=
(G,, My, I,) are doubly founded reduced contexts; furthermore, let L, :=(IK,) and
L, :=B(K,).

LEMMA 11. J(L, ® L,)=XL,) ®I(L,)and M(L, ® L,) =M(L,) @ M(L,).
Proof x; ®x,=Vicr ¥yl ®yk isequivalent to

(1, XLy v Ly X [x,,1] =tQT([yf,1] XLy ULy X [y3,1])

which is equivalent to x, =V, ¥% and x, =V,cr ¥E. Since L; ® L, is supremum-
dense in Ly ® L,, the first assertion immediately follows (and dually the second asser-
tion). ]

LEMMA 12. Forg,€G,,8,€G,, m{ EM,, and my, € M,, the following holds:
(81, 82)7 (my, my)® g 7my and g,7 m,,
(my, my) N (81, 8)9miNg and my\g,.

Proof. The assertions are direct consequences of the fact that (gy, g,) V (inq, m,)
is not valid in IK, x IK, if and only if (g,, m,) €I, and (g,, m,) €1, . a

LEMMA 13. K, x KK, is reduced and doubly founded.
Proof. Because of
{(81,82)Y ={&1} XM, u M, x {g,} and {(my, my)} =
={m} XxG,u Gy x{m,},

Lemma 11 yields that IK, x KK, is reduced. From Lemma 12 we obtain that K, x IK,
is doubly founded. d
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LEMMA 14,

(81,8200 Gy X G, =({g) n Gy X ({g2) n Gy)
and

(81, 82)) 0 My X My = ({810 0 My) X ({gy) 0 My)

forall (g,,8,)€G, XG,.

Proof. By Lemma 12, {(g;?x({g,) is closed in (Gy X G, u M; X M,, » U \); hence
(g1, &2 n Gy X G, S ({g,)n G,) x({g3) n G,). For the proof of the dual inclusion
we use the general fact that for each object g in a doubly founded reduced context there
is always an attribute m such that g # m and my g. Let g; €(g,> n G, and g4 € (g5 ) n
G, . furthermore, let my, €M, and m; € M, such that g, # m,, m,\Vg,, g7 ms, and
m3 \ g3. There exist paths

Si?mNh PN Ny 7 Ngy and g7 p Nk PPN L Nk 2oy Ng,
and so, by Lemma 12, we have a path

(gl,gz)f(”bmz)\(hl,gz)f(”z,mz)\
N(By_1,8) 7 (ny,my) N (83, 82) 7 (M3, p1) N (83, k1) 7 (m3, py) \ ...
v (g3, ks_1)7 (m3, p) N (83, 84);

hence (g3, g4) €<(g1, £2)) n G| x G,. This proves the first equality. The second equal-
ity dually follows using ((g, £,)) = {(m,, m,)) for some (m,, m,) EM; X M, . ]

COROLLARY 15. L, ® L, is completely subdirectly irreducible if and only if L, and
L, are completely subdirectly irveducible.

As KK, X KK, is again reduced and doubly founded by Lemma 13, B(K, x K,) is a
subdirect product of the completely subdirectly irreducible concept lattices B({(g;,
&) N Gy XG,y, (g1, 8200 My XM, Vol(g, £.))) (&1, 8)EG, XG,) by
Theorem 10. This subdirect product representation can be determined by the analogous
subdirect product representations of W(IK, ) and W(IK,) using the following theorem
which is an immediate consequence of Lemma 14 and Theorem 1.

THEOREM 16.

BV({g1,8)n Gy XG,, (g1,82)) " M, XMz,V N ((g1,82)>2)
~B((g1)n Gy, (g "My, I n (g ®@B((g2) 1 Gy, (g2) n My, I 0 (g,)?)

forall(g,, 2,)EG, X G,.

COROLLARY 17. The completely subdirectly irreducible factors of L, ® L, are up
to isomorphism the tensor products S; ® S, where S, and S, are the completely sub-
directly irreducible factors of L and L, , respectively.
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For the study of arbitrary subdirect product representations of L, ® L, , we clarify how
the lattice @ (L ® L,)of all complete congruence relations of L; @ L, can be determined

by @(L,) and €(L,) (cf. [5]).

THEOREM 18. €(L, ® L,)~C(L,) ®G(L,)

Proof. By Theorem 10 and Lemma 14, the ordered set M(@(L, ® L,)) is isomorphic
to M(@(L;)) x M(@(L,)) which is isomorphic to M(@(L,) ® €(L,)). Now, we use
that (L, ® L,) and G(L,) ® G(L,) are completely distributive by Lemma 13, Corol-
lary 9, and Theorem 7, and that every element of these lattices is the meet of A-irreducible
elements. Then we obtain the asserted isomorphism from the proof of Theorem 2 in [9].

5. Measurement and Tensor Products

In [14], a conceptual approach to the area of measurement is introduced by defining a
scale to be a context $ := (Gg, Mg, Ig) which can be said to be well known. An $-meas-
ure of a context (G, M, I) is a mapping o from G into Gg such that 014 is an extent of
(G, M, I) for every extent A of §; o is called full if 67! induces an isomorphism from
BV(0G, Mg, Ig n G x My) onto W(G, M, I). Full $-measures may be analysed lattice-
theoretically which is the substance of the following proposition [14], p. 461.

PROPOSITION 19. Let 8 :=(Gg, Mg, Ig) be a context such that {g}' ={h}' implies
g=h for dl g hEGg. For a full 8measure ¢ of a context (G, M, I}, let 5(4, B) :=
((c4)", (6A)") for all (A, BYEWB(G, M, I). Then o+ G describes a bijection from the set
of all full $-measures of (G, M, I) onto the set of all embeddings  of BW(G, M, I) into
8(S) with the property that for each g € G there is an h € Gg with ({g}’, {g}) =
({hY", {h}) (10 # 0 is allowed).

It seems natural to call the smallest number n such that there exists a full $”-measure
from (G, M, I) into the nth power $ x $ X --- X $, the $-dimension of (G, M, I). In this
paper we only discuss the $-dimension for the case that $ is a Guttman scale, i.e.,B(8)
is a chain (cf. [4], chap. 5). Let us define the Guttman dimension of a context to be its
smallest $-dimension where $ is a Guttman scale. An essential difference from order
measurement as it is discussed in [14], lies in the fact that the existence of a full §"-
measure may have important consequences for the measured context.

THEOREM 20. Let 8 :=(C, C, <) for a finite chain C and let ¢ be a full $"-measure
of the context (G, M, I). Then (G, M, I) is isomorphic to (P, P, &) for some finite
ordered set P and B(G, M, I) is isomorphic to the finite distributive lattice 2% of all
order-preserving maps from P into 2.

Proof. B (8") is a finite distributive lattice by Theorem 7 and J(B(S")=COCB -
® C (n times) by Lemma 11. If 6g=(cy,...,¢,) then o({g", {g})=¢, ® - B¢, €
J(B(8™)). By Proposition 19, it follows that W (G, M, I) is a finite distributive lattice. If
we define P := J(B(G, M, I))°, we obtain the assertions from well known results about
finite distributive lattices. As J(B($")) =~ C", we have the following corollary. O
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COROLLARY 21. For a finite-ordered set P, the Guttman dimension of (P, P, &)
equals the order dimension of P.

For the general study of full $”.measures, lattice-theoretical characterizations of the
tensor products B($) @ --- @ W(8) have to be worked out. Here we only show what the
Hasse diagram looks like for the concept lattice of the square of the nominal scale with
three values.

a bc
Q| X
b X
C X

The nominal scale IN, with 3 values

B(IN;)

aa ab ac |ba bb bc|ca ¢b cc
aa[x x x|x X
abfx x x X X
ac[x x x X X
ba | x X X X|x
bb X X X x
bc x |x X X
co | x X X X X
cb X
cC X X X

IN, x IN,
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