ORIGINAL PAPER

Veronika Häring · Ralf Conrad

Demonstration of two different H₂-oxidizing activities in soil using an H₂ consumption and a tritium exchange assay

Received: 16 April 1993

Abstract H_2 -oxidizing activities were assayed in slurries of four soils by measuring the consumption of H_2 and the exchange of ${}^{3}H_{2}$ with H₂O at increasing mixing ratios of H_2 or ${}^{3}\text{H}_2$. Both H_2 consumption and ${}^{3}\text{H}_2$ exchange were abolished by autoclaving or the addition of formaldehyde. The rates of H₂ consumption and ${}^{3}H_{2}$ exchange were proportional to the quantity of soil used. Both activities increased with increasing concentrations of $H₂$ or ${}^{3}H_{2}$ and displayed biphasic kinetics, demonstrating the existence of two different H_2 -oxidizing activities, one with a relatively low $K_{\rm m}$ and $V_{\rm max}$, and a second with a relatively high K_m und V_{max} . The first type of activity was characteristic of abiontic soil hydrogenases, and the second of aerobic H_2 -oxidizing bacteria. In contrast to $H₂$ consumption, which required the presence of either O_2 or ferricyanide, 3H_2 exchange operated equally well without an external electron acceptor. The ${}^{3}H_{2}$ exchange assay may thus be particularly useful for enrichment of soil hydrogenases which have not yet been isolated and **for** which no natural electron acceptor is known.

Key words Soil hydrogenase · Knallgas bacteria · Tritium exchange \cdot Hydrogen consumption \cdot V_{max} \cdot K_m • Electron acceptor

Introduction

Molecular H_2 is an atmospheric trace gas which is produced by various biogenic and abiogenic processes (Seiler 1978; Conrad 1988). Due to anthropogenic emissions the abundance of H_2 seems to be increasing by about 0.6% per year, and may add more water vapour to the stratosphere and thus affect the ozone layer (Khalil and Rasmussen 1990). Atmospheric H_2 is almost exclusively decomposed in soil by oxidation processes which are not

well characterized (Conrad 1988). Indirect evidence suggests that atmospheric H_2 concentrations (0.55 ppmv) are oxidized by abiontic soil hydrogenases (Conrad and Seiler 1981; Conrad et al. 1983). However, these soil hydrogenases have not been isolated and characterized. Recent studies have shown that two different H_2 -oxidation activities can be distinguished in soil on the basis of their K_m values (Schuler and Conrad 1990). Activities with a low and a high K_m were attributed to soil hydrogenases (high-affinity activity) and to aerobic H_2 -oxidizing bacteria (low-affinity activity), respectively.

A problem in isolating soil hydrogenases is the lack of a convenient assay, since the natural electron acceptor of the enzyme is unknown but must be present for enzyme activity to take place. This problem may be overcome by using the tritium $({}^3H_2)$ exchange reaction as an assay for hydrogenases. This reaction is independent of external electron acceptors and allows measurement of the activity of hydrogenases (Schink et al. 1983).

Conversion of ${}^{3}H_{2}$ to ${}^{3}H_{2}O$ and ${}^{3}H_{1}O$ has been demonstrated in soils (McFarlane et al. 1978; Fallon 1982; Förstel 1986). The properties of this conversion reaction indicated that it was catalysed by soil hydrogenases. However, no direct comparison has been made between H_2 consumption and ${}^{3}H_{2}$ exchange. Therefore, we studied the kinetics of H_2 consumption and of 3H_2 exchange in different soil types.

Materials and methods

Samples were taken from the upper 10 cm of the soil profile after removal of litter. One soil was from the ground of a horse-riding hall. The other soils were taken from sites which have already been described, a cambisol from the Bavarian Forest (Saad and Conrad 1993), a calcic cambisol from a meadow, and a luvisol from a forest near Konstanz (Baumgärtner and Conrad 1992). The field-moist soil samples were passed through a screen (2 mm mesh) and were stored in polyethylene bottles at $1 \,^{\circ}$ C. Soil texture, organic C, and total N were analysed by a soil analytical laboratory (Standort, Stuttgart, Germany) using standard protocols (Schlichting und Blume 1966). The characteristics of the soils are given in Table 1.

V. Häring \cdot R. Conrad (\boxtimes) Max-Planck Institut fiir Terrestrische Mikrobiologie, Karl-von-Frisch-Str., D-35043 Marburg, Germany

Table 1 Characteristics of the soils. Origin of Soils: BF, Bavarian Forest; KBE, meadow near Konstanz; PBE, forest near Konstanz; RH, ground of a horse-riding hall. WHC, Water-holding capacity

The rates of H_2 consumption were measured by placing 40 mg fresh soil into serum bottles (120 ml) containing 10 ml sterile water. The bottles were flushed with H₂-free synthetic air (80% N_2 , 20%) $O₂$), closed with black rubber stoppers, and pressurized to 1.2 bar. The desired quantity of H_2 was injected and the bottles were incubated at 20° C on a shaker (150 rpm). The decrease in H₂ was followed over time by repeatedly taking gas samples (2 ml) with gastight syringes and analysing the H_2 mixing ratio by gas chromatography (Schuler and Conrad 1990). We ensured that the rate of H_2 consumption remained proportional to the mass of soil in order to exclude any limitation of H_2 consumption by the transfer of H_2 from the gas phase into the aqueous phase. Proportionality was present for up to 50 mg field-moist soil. H_2 consumption rates were measured at different initial H_2 mixing ratios and were expressed on a gram dry weight basis. The $H₂$ consumption rates were plotted as a function of the initial H_2 concentrations using the Michaelis-Menten equation in the form of the Eadie-Hofstee plot to determine V_{max} and K_{m} .

The rates of ${}^{3}H_{2}$ exchange were determined using a similar method as that used for measuring H_2 consumption with 3H_2 instead of H_2 injected into the bottles. Gaseous H_2 was prepared from ${}^{3}H_{2}O$ (8.9 Ci mol⁻¹; Amersham-Buchler, Braunschweig) by reaction with metallic lithium $(2 \text{ H}_2\text{O} + 2 \text{Li} = 2 \text{LiOH} + \text{H}_2;$ Hallahan et al. 1986). The time-course of the exchange reaction was

Fig. 1A, B Eadie-Hofstee plot describing the kinetics of H₂ oxidation in soil slurries: A kinetics of H_2 consumption in soil from a meadow near Konstanz; **B** kinetics of ${}^{3}H_{2}$ exchange in a Bavarian Forest soil. *dw,* Dry weight

followed by repeatedly taking liquid samples (0.6 ml) from the suspension with a syringe, separating the aqueous phase from the solid phase by centrifugation (1000 rpm), mixing 0.4 ml of the supernatant with 4 ml scintillation cocktail (Quicksafe A, Zinsser, Frankfurt), and measuring the radioactivity in a scintillation counter (Packard Tri-Carb 1990 A). Quenching effects were corrected by external standardization. Occasionally, quench correction was checked by internal standardization using ${}^{3}H_{2}O$. Again, we ensured that the rate of ${}^{3}H_{2}$ exchange, i.e. the incorporation of radioactivity into H₂O, was porportional to the mass of soil. When all of the ${}^{3}H_{2}$ was consumed, the total recovery of radioactivity in H_2O and soil was 70%. Inhibition of the ${}^{3}H_{2}$ exchange reaction was tested under a headspace of 100% CO, 100% acetylene, or after the addition of formaldehyde (3.4% final concentration).

In some experiments, soil was incubated under anoxic conditions, by suspending the soil in degassed sterile water and flushing the bottles with N_2 . The suspension was pre-incubated overnight (about 15 h) in presence of 10 ppmv H_2 and then evacuated and flushed with N₂. Ferricyanide ${K_3$ [Fe(CN)₆]] was added as an external electron acceptor to a final concentration of 5 mM.

Results

The determination of H_2 oxidation rates as a function of increasing concentrations of H_2 showed biphasic kinetics, both when assayed by H_2 consumption (Fig. 1A) and by ³H₂ exchange (Fig. 1B). The kinetics allowed a dis-

Soil	Assay	Activity	$\rm V_{max}$ (nmol min ⁻¹ g^{-1} dry weight)	\mathbf{K}_m	
				ppmy	nM
BF	H ₂	1	7.9	27.5	21.1
		2	134	1040	780
	3H_2	1	56.1	101	82.3
		2	333	1450	1080
KBE	Н,	$\overline{1}$	1.4	19.1	12.3
		\overline{c}	17.0	1430	1075
	$\mathrm{^{3}H_{2}}$	1	36.1	123	93.5
		$\overline{2}$	209	1240	910
PBE	H ₂	1	0.6	19.8	13.2
		\overline{c}	77.4	1520	1100
	$\mathrm{^{3}H_{2}}$	1	15.4	78.3	64.2
		2	83.5	1120	805
RH	Н,		9.9	91.4	73.2
		2	33.1	800	621
	3H_2	1	91.6	74.5	63.2
		2	727	1470	1080

Table 2 Kinetic parameters of H_2 consumption and 3H_2 exchange in different soils, determined from Eadie-Hofstee plots. For origin of soils, see Table 1

tinction between two different activities. The V_{max} and K_m which were determined for these two activities in four different soils are summarized in Table 2. In general, the first type of activity (high-affinity activity), which was mainly operating at low H_2 mixing ratios, showed K_m values < 100 nM H₂ and also showed relatively low V_{max} values. In contrast, the second activity (low-affinity activity), which was mainly operating at higher H_2 mixing ratios, showed K_m values of > 1000 nM H₂ and relatively high V_{max} values.

The V_{max} values determined by the ${}^{3}H_{2}$ exchange reaction were generally higher than those determined by the H_2 consumption assay. The K_m values of the high-affinity activity in three out of four soils were also higher when determined by 3H_2 exchange than by H_2 consumption. However, they were still much lower than those of the lowaffinity activity.

Consumption of H_2 by soil did not occur when the soil was incubated in the absence of O_2 . H₂ consumption did take place, however, when O_2 was replaced by ferricyanide as an alternative electron acceptor (Table 3). The ${}^{3}H_{2}$ exchange reaction, in contrast, was independent of

Table 3 Effect of ferricyanide as an exogenous electron acceptor on the activity of H_2 oxidation and 3H_2 exchange under anoxic conditions at a low (1 ppmv) H_2 mixing ratio. For origin of soils, see Table 1

Soil	Assay	Anoxic activity (% of oxic control)		
		No acceptor	K_3 [Fe(CN) ₆]	
BF	$\frac{\rm H_2}{^3\rm H_2}$		98	
		101	102	
KBE	H_2 ₃ H_2		97	
		99	102	

the presence of an external electron acceptor and took place equally well under oxic and anoxic conditions and in the presence or absence of ferricyanide (Table 3).

The activity of the ${}^{3}H_{2}$ exchange reaction was completely eliminated by autoclaving the soil or by treatment with formaldehyde. However, the ${}^{3}H_{2}$ exchange reaction was relatively insensitive to acetylene $(6-19\%$ reduction) or CO $(17-64\%$ reduction).

Discussion

Our results confirm and extend earlier observations concerning the existence of two different H_2 -oxidizing activities in soils (Schuler and Conrad 1990). The presence of these activities was shown by using various soils and two different assays. In contrast to the studies of Schuler and Conrad (1990), who tested the H_2 -oxidizing activities in soil samples at quasi-natural moisture contents, the present study applied the assays to soil suspensions, which are easier to handle. All the assays resulted in the detection of a low- and a high-affinity activity for H_2 oxidation.

One of the assays involved measurement of the net consumption of H_2 catalysed by H_2 -oxidizing activities in the soil. This assay required the presence of a suitable electron acceptor, i.e., either $O₂$ or ferricyanide. Ferricyanide and other electron acceptors with redox potentials > 80 mV can replace O_2 in anoxic assays (Conrad et al. 1983). The other assay used in the present study measured the exchange of ${}^{3}H_{2}$ with H₂O. This reaction is catalysed by the reaction center of the hydrogenase and thus does not require the presence of an external electron acceptor. Because of the irrelevance of the electron acceptor, the ${}^{3}H_{2}$ exchange reaction is a useful assay for attempting enrichment and isolation of the still uncharacterized soil hydrogenases which are presumably responsible for the high-affinity activity. Using this assay avoids the need to know the natural electron acceptor of this soil enzyme. The ${}^{3}H_{2}$ exchange reaction has also been used to measure hydrogenase activities in aquatic environments (Paerl 1983; Schink et al. 1983).

Both CO and acetylene are commonly used to inhibit hydrogenase activity, although not every hydrogenase is inhibited, (Adams et al. 1981; Oremland and Capone 1988). In the two soils investigated, the inhibitory effect of acetylene was small $(6-19\%)$, and CO also did not result in complete inhibition $(17-64\%)$, even though both inhibitors were applied at the maximum concentration (i.e., 100% gas phase). In general, the high-affinity activity seems to be relatively insensitive to inhibitors (Conrad and Seiler 1980). However, there is no doubt that the activity was biotic because it was completely destroyed by autoclaving or by treatment with formaldehyde. Furthermore, it exhibits a temperature optimum at about $35 - 40$ °C (Schuler and Conrad 1991). The high resistance of the high-affinity activity to inhibitors, desiccation, and antibiotics (Conrad and Seller 1981) is characteristic of an abiontic soil enzyme as defined by Skujins (1978). The importance of the activity in the global cycling of atmospheric $H₂$ (Conrad 1988) indicates the need to isolated and characterize soil hydrogenases.

Acknowledgments This work was financially supported by the Bundesministerium für Forschung and Technologie ($Z/A-78$) and the Fonds der Chemischen Industrie.

References

- Adams MWW, Mortenson LE, Chen JS (1981) Hydrogenase. Biochim Biophys Acta 594:105-176
- Baumgärtner M, Conrad R (1992) Effects of soil variables and season on the production and consumption of nitric oxide in oxic soils. Biol Fertil Soils 14:166-174
- Conrad R (1988) Biogeochemistry and ecophysiology of atmospheric CO and H₂. Adv Microb Ecol $10:231-384$
- Conrad R, Seiler W (1981) Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil Biol Biochem 13:43-49
- Conrad R, Weber M, Seiler W (1983) Kinetics and electron transport of soil hydrogenases catalyzing the oxidation of atmospheric hydrogen. Soil Biol Biochem $15:167-173$
- Fallon RD (1982) Molecular tritium uptake in Southeastern U.S. soils. Soil Biol Biochem 14:553-556
- Förstel H (1986) Uptake of elementary tritium by soil. Radiation Protection Dosimetry 16:75-81
- Hallahan DL, Fernandez VM, Hatchikian EC, Hall DO (1986) Dif-

ferential inhibition of catalytic sites in Desulfovibrio gigas hydrogenase. Biochemie 68:49-54

- Khalil MAK, Rasmussen RA (1990) Global increase of atmospheric molecular hydrogen. Nature (London) 347:743-745
- McFarlane JC, Rogers RD, Bradley Jr DV (1978) Environmental tritium oxidation in surface soil. Environ Sci Technol 12:590-593
- Oremland RS, Capone DG (1988) Use of "specific" inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285-383
- Paerl HW (1983) Environmental regulation of hydrogen utilization (tritiated-hydrogen exchange) among natural and laboratory populations of nitrogen and non-nitrogen fixing phytoplankton. Microb Ecol 9:79-97
- Saad OALO, Conrad R (1993) Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol Fertil Soils 15:21-27
- Schink B, Lupton FS, Zeikus JG (1983) Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogenconsuming bacteria living in extreme environments. Appl Environ Microbiol $45:1491 - 1500$
- Schlichting E, Blume HO (1966) Bodenkundliches Praktikum, Paul Parey, Hamburg
- Schuler S, Conrad R (1990) Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Ecol 73:77.-84
- Schuler S, Conrad R (1991) Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season. Biol Fertil Soils $12:127-130$
- Seiler W (1978) The influence of the biosphere on the atmospheric CO and H₂ cycles. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol 3, Ann Arbor Science Publ., Ann Arbor (MI), pp 773-810
- Skujins JJ (1978) History of abiontic soil enzyme research. In: Bruns RG (ed) Soil enzymes, Academic Press, London, pp 1-49