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Abstract. New classes of explicit matchings for the bipartite graph a(k) consisting of the middle 
two levels of the Boolean lattice on 2k+ 1 elements are constructed and counted. This research 
is part of an ongoing effort to show that g(k) is Hamiltonian. 
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0. Introduction 

Let g(k) denote the subset of the Boolean lattice 212“+il consisting of all ele- 
ments in levels k and k + 1, considered as a bipartite graph. In this article we 
give explicit constructions for a large number of matchings in a(k). While we 
believe our results to be interesting for their own sake, we were motivated by the 
following well known problem: Is &i’(k) Hamiltonian for all k 2 I? The origins 
of this problem are unclear; Erdos attributed it to Trotter, Trotter attributed it 
to Dejter, and Dejter attributed it to Erdos. Dejter now believes the conjecture 
was first stated in Have1 [6]. Dejter and his students [ 1,2] have shown this to 
be the case for k < 9. Any Hamiltonian cycle in a graph of even order is the 
union of two matchings. One approach to finding a Hamiltonian cycle current- 
ly under consideration by Duffus and others [3,4] is to search for a pair of 
matchings whose union is a Hamiltonian cycle. In order for this approach to 
have a reasonable chance of success, it is useful to have a large collection of 
explicitly described matchings with which to work. One nice set of matchings 
consists of the lexicographical matchings, which are studied extensively by 
Duffus and his co-authors in [3] and [4]. Unfortunately, this set is not large 
enough. It is shown in [4] that two lexicographical matchings never form a 
Hamiltonian cycle when k > 1. 
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In this paper, we generalize one explicit construction of lexicographical 
matchings to produce new matchings, which we will call lexical matchings or, 
more specifically, i-lexical matchings. The O-lexical matchings are just the 
lexicographical matchings. Like lexicographical matchings, lexical matchings 
are defined with respect to a fixed ordering of the base set. In Section 1 we 
define the i-lexical matchings with respect to a fixed ordering and show that 
we do indeed get matchings. In Section 3 we consider the effect of changing the 
underlying ordering of the base set. We will show that for 0 < i <j < k/2 there 
are exactly (2k)! i-lexical matchings and no i-lexical matching is a j-lexical 
matching. If k > 2 is even, then there are (2k)!/2 k/2-lexical matchings. Also, 
every t-lexical matching is a (k - t)-lexical matching. 

The odd graph a(k) is the graph whose vertices are the kth level of 212k+‘l 
and whose edges are pairs of disjoint subsets. It is observed in [3] that any 
matching in B(k) can be lifted to a matching in g(k) and the new matching 
is not lexicographical. The authors conjecture that for all k, if B(k) has a 
matching, then a Hamiltonian cycle in 9(k) can be formed by mating a lexico- 
graphical matching with a matching lifted from a(k). While it was known that 
a(k) has matchings whenever 1 a(k)1 is even [7], explicit matchings apparently 
were not known. In Section 2 we show that when k > 0 is even, any k124exical 
matching can be lowered to a matching in a(k). 

The remainder of this section is devoted to notation and definitions. We 
assume that n and k are fixed with it = 2k + 1. Thus, we will usually write 
@forb(k)an forg(k). Let [n] denote the set {1,2,...,n). IfSc[n], thenSC 
denotes [n] - S. The set of k-element subsets of a set S are denoted by (i). When 
applied to elements of [n], addition and subtraction are modulo n. The set 
{x-k, x-k+l,x-k+2 ,..., x- 1) may be denoted in any of the following 
ways: [x-k, x), [x-k, x- 11, (x-k- 1, x), or (x-k- 1, x- 11. Note that 
(x, x)= [n] - {x}. It is convenient to consider a perfect matching of a 
graph g to be a function m on the vertices of .Y such that x is adjacent to 
m(x) and (m 0 m)(x) = x. If Z? is bipartite, we make a further simplification by 
considering a matching to be a bijection from one part to the other. 

1. Lexical Matchings 

In this section we define the i-lexical matchings with respect to the standard 
ordering of [n]. We begin by introducing some more notation and proving a 
lemma on which these definitions are based. This lemma seems to be implicit 
in the work of Feller [5] and Narayana [8]. For subsets R and S of [n], define the 
S-split of R denoted by R/S, to be R/S = 1 R n SI - I R n SC1 . For each x E SC 
let Ds(x) denote {YE SC - 1x1: [y, x)/S< 0) and d,(x) denote IDS(X Recall 
that n=2k+ 1. 
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LEMMA 1. Let SE ($I). Zf x and w are distinct elements of SC then Ds(w) s 
D&d or Pd.4 $i &+9. 

Proof Since 

[w, x)/S+ [x, w)/S= [n]lS=-1, 

exactly one of [w, x)/S and [x, w)lS is negative. Suppose [w, x)/S is negative. We 
will show that Ds(w) $ Ds(x). First note that w E Ds(x), but w, x +Z Ds(w). Now 
suppose y E Ds( w). If y cz (x, w) then 

[ y, x)/S = [ y, w)lS + [w, x)/S < 0 

and so y E Ds(x). Otherwise, y E (w, x) and 

[y, x)/S= [y, w)/S- [x, w)/S< 0 

and y E Ds(x). q 

COROLLARY 2. For each SE ($I), ds is a well de,fined bijection from SC to 
(0, 1, . . . . k). 

Proof By definition ds is bounded between 0 and k, and by the lemma the 
values are distinct. 0 

For each SE ([:I), let es be the inverse of ds. The i-lexical matching, Mj, 
with respect to the standard order on [n], is defined on (1:‘) by Mi(S) = Su 
{es(i)>. 
THEOREM 4. For i = 0, 1, . . . , k, Mi is a matching in 9. 

Proof: Clearly SC Mi(S). Thus it suffices to show that Mi is one-to-one. This 
follows immediately from the next lemma. 0 

LEMMA 4. ZfS and T are distinct elements of ([;I) such that Sv {x} = T v {y> 
for some x, Y E [nl, then D&J s WY) or b-(y) 2 D&4. 

Proof Note that x E T - S, y E S - T, and R/S = R/T if x, y E RC. Thus 

(x, yYT+(y, x)/S=-I 
and so exactly one of (x, y)lT and ( y, x)/S is negative. Say ( y, x)/S is negative. 
We show that DT( y) 2 Ds(x). First choose z E ( y, x) n SC such that [z, x)/S = -1. 
Since x E T - S, we have 

[z, y)/T= [z, x)/S+ 1 +(x, y)IT>O 

and ZE Ds(x) - DT(Y). Now suppose that WE DT(y). Then w fx and wz y. 
If w E (x, y) then 

[w, x)/S= [w, y)/T+ 1 + (y, x)/S< 0 

and so w E Ds(x). Otherwise w E (y, x) and 

[w, x)/S= [w, y)lT- 1 -(x, y)/T< 0 
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and again w E Ds(x). 0 

Notice that the matchings A&, M1 , . . . , Mk form a 1 -factorization of s(k). 

2. Odd Graph Matchings 

Let m be a matching in b. In [3] it is observed that m can be lifted to a match- 
ing M in 9 by setting M(S) = [n] - m(S), for each SE (‘:I). In this section we 
go the other direction; we show that when k is even, say k = 2i, Mi can be 
lowered to a matching, m,, 
(9 

in B by setting mi(S) = [n] - Mi(S), for each SE 
k * 

First we introduce some new notation and prove two lemmas, the first of 
which will be used again in the next section. For each XE SC, let D:(x) denote 
{y E S’ - ix> : (x, y]lS < 0) and d:(x) denote ID&)]. 

LEMMA 5. For all SE ([El) and all x E SC, ds(x) + d;(x) = k. 
ProoJ It suffices to show that ye Ds(x) if and only if y $ D;(x), for all 

yESC-{x}.ForanyyESCwehave 

[ y, x)/S + (x, y]lS = (x, x)/S - 1 = -1. 

Thus, exactly one of [ y, x)/S and (x, y]lS is negative. The result follows. q 

For x E SC, let D:(x) denote {ye S: [y, x)/S> O> and dgx) denote ]Dgx)] . 
Note that D;(x) = Dr(x), where T = [n] - (Su {xl). 

LEMMA 6. For all SE ([El) and x E SC, d;(x) = d3x). 
ProoJ We argue by induction on the complexity of S, where complexity is 

defined as follows. Suppose S and R are k-sets of [n] - Ix). We say that S 
is obtained from R by a y-switch if S= R u {y) - {y + l}. Let Z= [x- k, x). 
Every k-subset S of [n] - ix> can be obtained from Z by a series of switches. 
The complexity, C(S), of S is the least number of switches needed to obtain S 
from I. 

For the base step of the induction we note that D?(x) = (x, x - k) and 
DE(x) = Z and so d?(x) = d;(x) = k. Now for the inductive step, let S be 
obtained from R by a y-switch, where C(R) < C(S). It is easily checked that 

G(x) f d;(x) 3 D;(x) = D;(X) - {y} 
and 

d’j.(x) # dj$x) 3 03,) = Dgx) - { y + 1). 

Thus, by the induction hypothesis that d;(x) = d;;(x), it suffices to show 
that y E D;(x) ej y + 1 E Dgx). This follows immediately from the observation 
that 

(x, y]lR + [ y + 1, x)/R = (x, x)/R = 0. q 
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THEOREM 7. Zf k = 2i then m, is a matching in the odd graph a(k). 
Proof. Clearly mj(S)n S= 0. We must show that (m, 0 m,)(Si) = S, for all 

SE (1:‘). This amounts to showing that d,(x) = dr(x), where es(i) =x and T= 
[n] - (S u {x}).~By Lemmas 5 and 6 we have 

ds(x) = i = k - i = d:(x) = d:(x) = dT(x). q 

3. Orbits of Lexical Matchings 

In Section 1, we defined i-lexical matchings with respect to the standard order 
on [n]. We now consider a natural extension of those definitions from two points 
of view. First, let A be the group of automorphisms of 9 that map k-sets tb 
k-sets. Viewing a matching M as a set of edges, define A4 to be i-lexical iff 
there exists an automorphism a E A such that for every edge ST E 9, STE A4 iff 
a(S)a( T) E Mi. If M is viewed as a function from k-sets to k + 1 -sets, then M is 
i-lexical iff M= a. M. a-‘. It is shown in [3] that the symmetric group on 
[n], S,,, is isomorphic to A by a map that sends 0 to a,, where a,(S) = {a(s) : 
s E S}, for any subset S of [n]. Thus, the following is an alternative description 
of the i-lexical matchings. 

For any cry S,, , let L, be the circular ordering a( 1) co a(2) ccr ... <g a(n) ccr 
~(1). For any SE ([El), XE SC, and i= 0, 1, . . . . k, we make the following defini- 
tions: [y, x)“= {z:y6, z<, x}, D:(x)= {YE SC: [y, x)“/S<O}; dg(x)=IDz(x)l; 
ei = (d,“)-‘; and M,“(S) = Su {e;(i)}. We call M,” the i-lexical matching with 
respect L,. Notice that a,.M,(S~ - M,“. a,(S). Thus a matching M in 9 is 
i-lexical iff M = M,” for some 0 E S, . 

Let .,& be the set of i-lexical matchings. In this section we determine the 
size of the various Ji and the nature of their intersections. First we make some 
easy observations. Since ]$I= n!, ]J%~] < n!. For rr, r E S,,, we call D a shift 
of r if for some t, a(s) = r(s + t) for all s E [n]. If 0 is a shift of 7 then i# = J4:. 
Thus ].Xi ] < (2k)!. For o, 7 E S,, we call 0 the reversal of z if a(s) = 7(n + 1 - s). 
Note that if cr(s) = z(t - s), for some fixed t, then 0 is a shift of the reversal oft. 
Then using Lemma 5 and the above fact about shifts, a<: = A4;- t, if Q is a shift 
of the reversal of 7. Thus .& = Ak-I and if i = k/2, then I.& I< (2k)!/2. We 
shall show that these are the only equalities among lexical matchings when 
k>2. 

The notion of an x-filter is central to our arguments. Let M be a matching in 
9’. The set SE (1:‘) is an x-vertex of M if M(S) - S= 1x1. A subset F of [n] is 
an x-jilter of h4 if F intersects every x-vertex of M. We will prove that .& and 
A, are disjoint, for i <j d k/2, by showing the size of x-filters in i-lexical match- 
ings depends on i. The next lemma will be used several times to construct a 
subset SE (1:‘) such that d,(x) = i and S misses a given set F. 
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LEMMA 8. Let P c [n] - {x} and w E [n]. 
(a) If (w, x)/P 3 2, then there exists y E P n (w, x) such that Q = P - { y} satis- 

fies 

DQ(x) n tw? x) = DP(x) n (w, xl- 

(b) Zf (w, x)/P >, 1, then there exists z E P n (w, x) and u E (w, x) such that 
R = P - (z> satisfies 

DR(X) n (w x) = @P(x) f-7 (w, x)) u b>. 

ProoJ: (a) Choose YE Pn(w, x) to minimize ](w, y)]. For ue(w, x), note 
that [u, x)/Q = [u, x)/P, if u E (y, x), and [u, x)/Q = [u, x)/P - 2 if u E (w, y]. In 
the latter case, because (w, y) c (w, x) - P and (w, x)/P > 2, we have [u, x)/P > 2 
for all u E (w, y]. Hence [u, x)/Q k 0 for all u E (w, y). 

(b) Choose u E (w, x) with [u, x)/P = 1 so as to minimize 1 (w, u]) 1. To see 
that such an integer exists note that (i) (w, x)/P 3 1, (ii) ( [o, x)/P - [o + 1, x)/PI = 
1, for all o E (w, x), and (iii) [x - 1, x)/P 6 1. Choose z E Pn [u, x) to minimize 
l[u,z]l. ThenforoE(w,x),[u,x)/Ris[u,x)/P-2ifzE[u,x)and[u,x)/Pother- 
wise. It follows from the choice of u and z that (b) holds, 0 

When w has been specified and P satisfies the appropriate hypothesis of 
Lemma 8, let q(P) denote Q and r(P) denote R. We are now prepared to prove 
the main results of this section. 

LEMMA 9. If A4 is i-lexical, where k > 0 and i < k/2, then for every x E [n] the 
size of the smallest x-jilter of M is i + 1. 

Proof Without loss of generality, assume h4= h4,. First note that the set 
I = [x - (i + l), x) is an x-filter of M, since In S = 0 implies I c Ds(x) and thus 
ds(x) > i. 

Next, suppose F is a subset of [n] - {x} of size i. We show that F is not an 
x-filter of M by constructing an x-vertex of M, which misses F. Let P = FC - {x}. 
Note that 0 6 dp(x) 6 i 6 k - i. We use Lemma 8, with w = x, to construct a 
descending sequence of sets Pa, P,, . . . . Pk-,, such that PO = P, <+ I = r(P,), 
for j< i- dp(x), and P,+ r = q(P,), for j3 i- dp(x). Then dpLm,(x) = i and 
]Pk-I]=k,butFnPk-i=O,asdesired. q 

THEOREMlO. ZfO<i<jbk/2,thenA,n.&,=0. 
Proof: Suppose ME A,. Using Lemma 9, M has an x-filter of size j, and, 

therefore, is not in Jj. 0 

For i < k/2 and GE S,, , let q”(x) denote the set {F: F is a x-filter of M,” of 
size i + 1). For each x E [n] we can recover q”(x) from Mp. We shall see that 
we can nearly recover Q from {(i, q’(x)) : x E [n]>. 

LEMMA 11. Suppose i < k/2 and 0 E S,. Then for every x E [n], nyU(x) = 
{a(s - l)}, where s = C?(X). 

ProoJ: Without loss of generality assume 0 is the identity and write K(X) 
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for y;“(x). For t=2,3 ,..., i + 2, let Fl = [x - (i + 2), x) - {x - t}. Since &f(x) > 
i, each Fl is an x-filter of Mi. Thus, n%(x) c {x - 11. Suppose F is an (i + l)- 
subset of [n] - {x}, such that x - 1 $ F. We must show that F is not an x-filter. 
To this end we construct an x-vertex of Mi which misses F. Let P = FC - ix>. 
Since x-l$F, and IF]=i+l, O<d,(x)<i<k-((i+l). We use Lemma 8, 
with x = x , to construct a descending sequence of sets PO, PI , . . . , Pk-tr+ 1) such 
that PO=8 P,,, = r(P,) if j< i - dp(x), and Pj+l = q(Pj) otherwise. Then 
d~~-(~+,)(x)= iand IPk-(i+l)I= k, but Fn PL(~+~) = 0, as desired. Cl 

THEOREM 12. Ifi < k/2 then I J I = (2k)!. 
ProuJ: Since T has exactly n shifts, it suffices to show that M,” = M: if and 

only if cr is a shift of r. By our previous comments, Mju = IV: if u is a shift of 
r. On the other hand suppose My = A4:. Choose t so that g(n) =z(t). Using 
Lemma 11 we have {a(-1)) = {z(t - I)}. Thus, ~(-1) = z(t - 1). Repeated use 
of Lemma 11 yields ~(-2) = z(t - 2), a(-3) = z(t - 3), . . . , a( 1) = r( 1 + t). Thus, 
g is a shift of r. 0 

LEMMA 13. Suppose i = k/2 and k > 2. Then for all a E S,, and every x E [n], 
{a(s - l), a(s + l)> is the unique pair that intersects everyJilter in y”(x), where 
s = u-l (x). 

Prooj Without loss of generality assume that IS is the identity. For t = 
2, 3,..., i+2, let 

Ft = [x - (i + 2), x) - {x - t> and F;^ = (x, x + (i + 2)] - {x + t>. 

Each Ft is in q(x), since dFf(x) > i. Each FT is in F(x), since d,&(x) > i and 
dpX(x) = dp(x) for any x-vertex P. Clearly n{F, : t = 2,3, . . . , i + 2) = {x - 1) 
and n{Fl*: t=2, 3, . . . . i+2)={x+l). Since k>2, we have i+2,<k, and 
thus Ft n F,*= 0 for all t and u. We have shown no pair other than {x - 1, 
x+ l> intersects all filters in K(x). To show this pair does intersect all filters 
in F(x), suppose that F is a (i + I)-subset of [n] - {x - I, x, x + 1 }. We must 
show that there exists an x-vertex of M, which misses F. Let P= FC - {x}. 
Note that 0 ,< d?(x) Q i, since x - 19 F and 1 FI = i + 1. We can use Lemma 8 
i - 1 times to obtain a set of size 2i = k. If dp(x) 2 1, proceed as in the proof 
of Lemma 11. Otherwise let t be the greatest integer less than n such that 
o = x - t is in F. Apply Lemma 8 with w = u to construct a descending sequence 
of sets PO, PI,..., P, as follows. Let PO = P. If (0, x)/P, > I, set 4, r = r(pj); 
otherwise set s = j and stop. Note that x - 1 = x + 2k is in P, and so ((0, x) n 
PI<(3i-2). Also I(o,x)n~I=i. Thus, (v,x)/P<2i-2. Since (o,x)/pi+r = 
(v, x)/q, we have s d i - 1. Note that o E DP,(x) and thus dpS(x) = s + 1. Thus, 
i - 1 - s more applications of Lemma 8 with w = x will provide us with the 
desired x-vertex. Cl 

THEOREM 14. Suppose i = k/2. Zf k = 2 then 1 nil= 6. If k > 2 then 1~~ I= 
(2 k)!/2. 
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Proof: The case k = 2 follows from inspection. In the case k > 2, it suffices 
to show that MP = M: if and only if r~ is a shift of r or a shift of the reversal 
of z, since there are exactly 2n such permutations. It follows from our earlier 
remarks that if 0 is a shift or a shift of the reversal of r, then Mp = A4:. Now 
suppose that M,” = MT. Then lly”(x) = n%‘(x), for all x. Suppose o(n) = r(t). 
Then {a(n- l),a(l)}={r(t- 11, r(t+ l)}, by Lemma 13. If a(l)=r(l +t), 
then again by Lemma 13, {a(n), a(2)) = {t(t), r(2 + t)]. So a(2) =2(2 + t)}. 
Continuing in this manner, we see that 0 is a shift of r. Otherwise a(1) = 
r(t- 1). Using Lemma 13 again, {cr(n), a(2)} = {r(t- 2),r(t)}. Thus, a(2) = 
z(t - 2). Continuing in this manner we see that LT is a shift of the reversal oft. 0 

4. Concluding Remarks and Problems 

We have considerably enlarged the catalogue of explicit matchings in .Y%‘. In this 
section we consider the usefulness of this catalogue with respect to producing 
Hamiltonian cycles in 9(k) for the first few values of k. In particular, we will 
see that it is not yet large enough to accomplish the goal for all k. If k = 1 or 
k = 2, then Me u Mr is a Hamiltonian cycle. If k = 3 then Mi u Mf is a Hamil- 
tonian cycle, where cr is the permutation (2, 4, 6, 1, 3, 5, 7). The case k = 4 is 
more complicated. A computer search shows that there is no pair of lexical 
matchings that mates to form a Hamiltonian cycle. However, a Hamiltonian 
cycle can be formed by mating the lexicographical matching MO with a match- 
ing M lifted from a matching m in b; the matching M is closely related to 
M,. Let f(S) = [n] - Mi (S). Notice that f(S) is adjacent to S in b. Taking all 
edges of the form {S, f(S)} partitions the vertices of B into five even cycles. 
Each of these even cycles gives rise to two matchings of its vertices. We can 
obtain 32 matchings of @ by combining one matching from each of the cycles. 
One of these matchings is m. By Lemmas 5 and 6, M, the lifting of m to 9”, has 
half of its edges in Mr and half of its edges in Ms. Using a different approach 
Duffus, Hanlon, and Roth [3] found the same cycle. 

While the results listed above are seductive, they are not entirely convincing. 
We have no general explanation for these phenomena. In the hope of clarifying 
the situation, we list two test problems. 

PROBLEM 1. It is known that if k # 2’ - 1, then 1 6’(k)I is even and B(k) has 
a matching. Find general classes of explicit matchings. cl 

PROBLEM 2. Show that for sufficiently large k, two matchings from Ai cannot 
be combined to form a Hamiltonian cycle. 0 
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