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Abstract. A general myocybernetic control model of 
skeletal muscle is presented which constitutes an exten- 
sion, to general control modes, of a previously pub- 
lished control model. The restriction, in the previous 
model, to a constant number of stimulated motor units 
has been removed and the new model allows for both a 
varying number of stimulated motor units and a 
varying average stimulation rate. The general model is 
tested by comparing its predictions with experimental 
records of the force output of the quadriceps femoris 
muscle. It is found that the model correctly predicts the 
initial excitation-contraction delay, the dips in the force 
record, and several other contraction phenomena. 

Introduction 

In (Hatze, 1977a) a detailed representation was given of 
a myocybernetic model of skeletal muscle, i.e. of a 
mathematical muscle model which contains the phy- 
siological controls stimulation rate and motor unit 
recruitment as explicit parameters. It was shown that 
this model is capable of predicting a wide variety of 
experimentally established phenomena of muscular 
contraction. Moreover, a simplified version was suc- 
cessfully used in the optimization of a human motion. 

It is interesting to note that increasingly more 
experimental evidence is accumulating in support of 
previously unconfirmed predictions or assumptions of 
the model: Edman et al. (1976) have recently demon- 
strated that the force-velocity relation o f single fibres as 
well as bundles of fibres of the frog cannot be fitted 
satisfactorily by Hill's equation, a fact predicted by the 
present model. On the other hand, the force-velocity 
function as obtained by these workers can be approxi- 
mated very closely by the corresponding function of the 
present model. In another recent report, Briggs et al. 

(1977) have concluded on the grounds of experimental 
evidence that the ratio o f the rates of uptake of C~ § by 
the sarcoplasmic reticulum for fast and slow mam- 
malian (rat, cat) muscles is about five. The present 
model [upper part of Figure 3 of Hatze (1977a)J 
predicts, on purely theoretical grounds, a correspond- 
ing value of about four for human muscle. 

Reassuring as these experimental confirmations of 
the model structure may be, there remains a disturbing 
fact about the model: although it is completely general 
in its contraction dynamics, one of its control parame- 
ters (the relative number u of active fibres) is restricted 
to constant values. This is an obvious consequence of 
the constancy constraint imposed by Equation (42) of 
Hatze (1977a) on the number Q of stimulated muscle 
fibres. [Note that the simplified version of the model 
[Equation (53) of Hatze (1977a)] requires the control 
u(t) to be only piecewise constant for arbitrarily small 
time intervals A t, since in this version ~(t) is no longer 
required to remain constant throughout the whole 
simulation interval.] 

Although the restricted model has its merits, for 
example in the prediction of energy-optimal controls 
and the relative contribution o f motor unit recruitment 
and rate coding in static isometric contractions (Hatze 
and Buys, 1977; Hatze, 1977b), it is nevertheless 
inappropriate for simulating contractive modes where 
both controls, the stimulation rates of the activated 
motor units and the number of stimulated units, vary as 
functions of time. But this is exactly the mode most 
frequently occurring in the living biosystem and it is, 
therefore, of paramount importance. 

This paper will be devoted to the development of a 
general myocybernetic model which accounts for all 
control modes normally occurring in living muscle, and 
which will be seen to provide good approximations to 
the responses of the distributed system, consisting of 
individual motor units, for the most extreme test 
control modes. 
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Derivation of  the General Model  

Most o f the more intricate mathematical treatment will 
be transferred to the Appendix in order not to distract 
the reader from the main development. 

We shall set out from the differential system which 
described the previous model (for details see Hatze, 
1977a), i. e. 

constants. For penniform muscles the expression 

r sin0-E{a - 1)+rA2- cos O} 211'2 
must be substituted for Z(1-  ~) in (5), where g is the 
angle of inclination of the fibre to the perpendicular to 
the muscle's long axis when l=~, and [I is the fibre 
length when l= 1. 

9 = m ( c v -  7), 

= m # ( c v -  ~), 

it = m(cv - 7)01(4) [~ 1(4) {u(l - -  qo) + q0 - ~} - 202#1, 

4 = ( - 2 ~  

v ( o ) = o ,  

e(O)= qo, 

~ ( o ) = o ,  

~(o) = 4 0 ,  

(1) 

where the first three equations define the excitation 
dynamics and the last equation defines the contraction 
dynamics of the model. The symbols have the following 
meaning: 7 denotes the free ionic Ca-concentration in 
the sarcoplasma o f an "average" fibre, e is the excitation 
variable, # is an auxiliary variable, 4 is the relative 
length of the contractile element of the muscle, and u 
(the relative number of active fibres) and v (the relative 
average stimulation rate) are the two control parame- 
ters of the muscle and subject to the constraints 

O<=u,v<l . (2) 

Furthermore, the symbols m, c, qo, 4o, ~2, az, a2, %, 
bl, b2, 2, F (maximum'force produced by contractile 
element), and 20 denote muscle-specific constants (ex- 
acfl}/.defined in Hatze, 1977a), while k(4) is the length- 
tension relation, and the function 01(~) is given by 
(Hatze, 1977a) 

QI(O =~[1  - (~/Oq 1/2/[1 - ~sy/2 ,  

=< ~ ~ 1.8,  (3) 

F, ~, and s being constants. The function sin0(0 
appearing in (1) is defined by s in0 (O-  = 1 for fusiform 
muscles (fibres arranged in longitudinal direction), and 

by sin0(4)= {1-  ( ; c o s O  t2] 1/2 \~.(~_~-~-[f] ] for penniform mus- 

cles [oblique fibre arrangement; Hatze (1976)1, where 
l" I and 0 denote constants defined below. The force 
across the series elastic element of the muscle is given by 

FSE(1, 4) = P sin O[exp (a6) - 1]/[exp (a) - 13, (4) 

where for fusiform muscles O=-�89 and 

a = (l + 7~(1 - ~) - (1 - Ol) /~l ,  (5) 

with I denoting the muscle length (including the series 
elastic element), and o-, ~, l are again muscle-specific 

The differential equation defining the excitation 
variable e in (1) was derived from the definition 

A (1 i(4, vi~ t) + qoj 
k i = l  . j = 0 + l  

& u[q(4, v, t ) -  %] + qo,  (6) 

where u g (0/3), and the "average active state" q(4, v, t) 
was defined by a certain differential equation. The 
restricting assumption was that the number 0 of 
stimulated muscle fibres having an average active state 
q(.) remains constant; which, in turn, implies a con- 
stant value of the control u. Indeed, this constancy 
requirement makes it possible to eliminate the second 
and third equations from the differential system(l). By 
introducing the variable transformation 

co a 0 1 ( 4 ) >  0 1 ( ~ ) * 0 ,  (7) 

it is easily shown that the analytical solution of these 
two coupled equations is given by 

e(u, co) = u(1 - qo) [1 - (m 1 exp(m2co ) 

- m2 exp(mxco))/(ml - m2)] + qo , (8) 

where (see Hatze, 1977a) 

ml , z=-O2+_(Oz2-1)  1/2, 02=1.05 . 

Hence ~ as a state can be eliminated from (1) and 
now becomes the excitation function. Re-substituting 
from(7) and putting u -  1 in (8) we obtain the following 
expression for the active state q(~, 7) of a single fibre: 

q(~, 7) = 1 - (1 - qo) [ml exp(m201(07) 

- m z exp (m 101 (4)7)]/(ml - m2), (9) 

which is the relation needed for the further 
development. 



We shall now derive the general model from first 
principles. Because we are now dealing with a varying 
number of stimulated motor units (in contrast with a 
f ixed number of stimulated fibres in the previous 
model), the specific properties of the former must be 
taken into account. 

By now it has been fairly well documented (Desmedt 
and Godaux, 1977; Grimby and Hannerz, 1977; 
Henneman, 1968; Henneman et al., 1965; Milner- 
Brown et al., 1973 ; etc.) that motor units are recruited in 
a sequential order, according to their sizes, in all types 
of contractions (static isometric, isometric ramp, reflex, 
brisk ballistic) and that the cumulative relative cross- 
sectional area u occupied by the fibres of the recruited 
units increases according to (Hatze, 1977c; Hatze and 
Buys, 1977) 

U=uoexp(N~/N),  0 < U o < U < l  , (10) 

where the constant ~ has a value of about five for most 
muscles and is related to u o by ~= - l n u o ;  N denotes 
the number of stimulated motor units; and N is the 
total number of units present in a specific muscle. Note 
that u has here the same meaning as in (1). 

The infinitesimal increment A i u of the relative cross- 
sectional area u upon recruitment of the i-th unit 
follows from (10) as 

A i u = A exp (Fi/_N), (11) 

where the constant A is determined by the requirement 

Kr 

A~u=l, i.e. 
i = 1  

In (Hatze, 1977a) it has been shown that the force F cE 
produced by the contractile element of the total muscle 
comprising ~ fibres can be expressed as 

g 
FcE= f cE 

i = l  

= ~ fi[k(~)qi(~, v i, t)hi(4)- blikl(~)] , 
i = 1  

where ~ is the maximum tetanic force of the i-th fibre, 

h,(4) = [1 + tanh {all ( -  4)-~/20~- a2~)}]/b2i, 

k~(~) = exp [ -  a6(~ - 1)], 

and all other symbols have the meanings defined 
previously. In the present case we are dealing with a 
total of N motor units (instead of ~ fibres), N of which 
are stimulated, R unstimulated but still active (semi- 
active), and ( N - N - R )  inactive. Since f~=FAiu, the 

145 

expression for the force output then becomes 

_ [ ( N ( t )  

FcE= F Ik(~ ~)_1i~1A iuqi(~,7+)hi(4) 

N(t)  + R( t )  

+ 
j = N(t)  + 1 

+qo ~ AkUhk(4) Aiubli , (12) 
k = N(t)  + R( t )  "= 

where 7 + and 7- denote the Ca-concentrations of the 
stimulated and semi-active units respectively, and this 
expression indicates that the total force output of the 
muscle is composed of the individual forces contributed 
by each of the N motor units. Each of these units 
belongs to one of three types of dynamic unit popu- 
lations present in the muscle: the N-population of 
stimulated units, the R-population of units which were 
stimulated but had been switched off some time ago and 
are still active (so-called semi-active units), and the 
population of inactive (resting) units. 

The severe difficulties bedevilling the modelling of 
the present situation can be appreciated when the 
following general contractive mode is considered: N 
units, all of different size and with different contractive 
properties, were activated at different times t i by 
different stimulation rates vi. Hence the expressions 

A iuqi(~, 7 + (vi(t - ti)))hi(4) 

in (12) are all different, nonlinear functions of time, 
delayed in their onset by ( t -  ti). If now N(t) increases, 
the N-population absorbs part of the semi-active R- 
population, all units of which have different active 
states since they have been switched on and off at 
various previous times. 

The first step in simplifying this complex situation 
somewhat is to consider only parts of the muscle 
comprising motor units of (approximately) homo- 
geneous fibre type. Then the velocity-dependence func- 
tion h(4) and the constant b 1 are the same for all units 
and (12) becomes 

F cE = ffk(~) h(~)e(t) - Fb 1 k 1(~), 

where the excitation function e for the general model is 
now defined by 

N(t)  

g(t) ~ ~, Aiuqi(~ , 7+(vi(t - ti))) 
i = 1  

N(t)  + R( t )  

+ Z A uqj(4,7?(t)) 
j = N( t )  + 1 

+ ~, Akuqo. (13) 
k = N( t )  + R( t )  

Note that (13) is completely analogous to (6) which was 
derived under similar assumptions. 
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It is clear that we cannot hope to find a simple model 
which describes the behaviour of the system exactly 
(otherwise, nature would presumably not have devised 
such a complex system). However, we shall show that it 
is possible to derive a model which very closely 
approximates the real system for a wide variety of 
contractive modes. 

Definition (13) can be concisely written as 
~(t) = 8 + (t) + ~-(t) + a~ (14) 

where 
N(t) 

a+(t) & A ~ exp(-di/N)qi(~,y[(vi(t- tl))), (15) 
i = I  

N(t) + R(t) 

r ~ exp(-dj/~[)qj(~,y?(t)), (16) 
j = N(t) + 1 

~~ & qo [exp (~) - exp (~(N + R)/N)]/[exp(c-) - 1], (17) 

with 
/ 

A l/E__ exp( i/X). (18) 

We shall now show that it is possible to find functions 
("equivalent Ca-concentrations") ~p(-) and q)(. ) such 
that 

N(t) 

e+(t)~Aq(~, ~p(. )) ~ exp(~i/N) (19) 
i = 1  

and 
N(t) + R(t) 

e-( t )~  Aq({, (o( . )) ~ exp(aj//Y), (20) 
j = N ( t ) +  1 

where q(. ) is as given by (9). It will be seen that the 
differential equations defining the functions 9(" ) and 
~0(- ) contain the control v and a new control, z, which 
will be defined in due course. The previous control u 
will, however, no longer appear in the system. Note that 
the procedure indicated by (19) and (20) will enable us to 
derive a comparatively simple system of equations, the 
solutions of which will be seen to provide good 
approximations to the solutions of the exact system, 
defined by (15)-(17). 

The derivation of the differential system which 
describes the general model is somewhat involved and 
has therefore been transferred to the Appendix. In 
short, the fact that N is generally very large is used to 
approximate discrete functions by continuous and 
piecewise differentiable ones, and sums by integrals. 
The resultant integral equations are subsequently dif- 
ferentiated, totally with respect to t and partially with 
respect to other variables, which procedure finally leads 
to the state equations for the #eneral model: 

f i=nz ,  O--n-<l ,  

where the initial conditions refer to the resting state of 
the muscle. 

The various symbols (not previously defined) are 
defined as follows. The normalized number of stimulated 
motor units, n, is given by 

n a= N / N ,  0 -< n -  1, (22) 

while the normalized number of semi-active units, r, is 
defined by 

r~=R/N, 0 < r < l .  (23) 

The symbols n (the maximum rate of unit recruitment), 
3 (with a value of 10-s), and k 2 denote constants. Note 
that the small constant g has been added to the 
respective variables in order to obviate divisioti by zero. 
It can be shown that this procedure does not signi- 
ficantly influence the accuracy of the solution. The 
function ~Oo(~) is given by 

Qo(~) = 5.33 x 10411 - (~/~)~]~/2/[1 - ~s]l/2, 
~< ~ < 1.8, (24) 

and w + and w- are defined by the respective relations 

w + =w(1 + w)/2, 
w- = w(1 - w)/2, (25) 

where the switching function (the switch) w=w(z) is 
expressed by 

w ~ sgn(z), (26) 

i.e. 

w = l  for z > 0 ,  

=0  for z = 0 ,  

= - 1  for z < 0 .  

The second control (in addition to v) appearing in (21) is 
the normalized recruitment rate, z, which is subject to the 
constraints 

- ~_< z _< 1 ,  (27)  

being a positive constant. The excitation function 
which appears in the last of Equations (21) is given by 
(14) or, more explicitly, by 

e = [(exp(~n)- 1)q(~, ~p) 

+ (exp (gn + ~r) - exp (-dn))q(~, (p) 

+ (exp(g)- exp(fn + fr))qo]/[exp(g ) - 1] , (28) 

? = - nz(r-  w-  5)/(r + 3) - (1 + w-)mr/ln (1 + 10- 3m @ q)/k2C), 
= m(cv - ~p) + w + zgn[ 1 - exp {00(~) (9 - qo)}]/[00(~)(1 - exp ( -  ~ n -  3))] - (1 + w-)cpm, 

(0 = - cpm - w-  {m(cv/( F + 5 ) -  1)(p - z~n[1 - exp {00(~)(cp - F)}]/[00(~)(exp (~r + 5 ) -  1)]}, 

~=(-20/[)[a2+a~larctanh{[FSE(l '~) /Ps inO(~)+blexp(-a6(~- l ) )]b2-1}]  
~k(O 

n(O)=O, 

r(O) = O, 

9(0)=0, 
(21) 

~o(0)=0, 

~(o) = ~o,  



where q(.  ) is bas ical ly  the funct ion (9). However ,  (9) can 
be closely a p p r o x i m a t e d  by  the much  s impler  funct ion 

q(~,7)=[qo+(Q(~)Y)2]/[l+(Q(#)7)2], (29) 

with 

0(~) = 6.62 x 10411 -(~/~)~]  ~/z/[1 - ~ ]  1/2. 

F r o m  now on, the a p p r o x i m a t i o n  (29) will be used 
ins tead  of  (9). 

I f  we now compare  the systems (1) and  (21) we see 
tha t  they are comple te ly  analogous ,  and  tha t  the la t te r  
system reflects the changes in t roduced  by  the inclusion 
o f  the recru i tment  dynamics  : the exci ta t ion  funct ion e 
[recall  tha t  e as a s tate had  been removed  from (1)] 
given by  (8) has its coun te rpa r t  in (28), while the average 
free Ca-concen t ra t ion  7 is rep laced  by  the "pseudo"  or  
"equivalent"  Ca-concen t ra t ions  ~p for the s t imula ted  
units, and  (p for the semi-act ive units respectively.  The 
recru i tmen t  d y n a m i c s  in the general  mode l  is represent-  
ed by  the first two different ia l  equa t ions  in (21) which 
define the states n and  r. The con t ro l  u has been replaced 
by  the state n, and  the new con t ro l  z is now a rate  (the 
normal i zed  r ec ru i tmen t  rate)  like the con t ro l  v (the 
normal i zed  f i r i n g  rate), 

Thus,  the first four  of  Equa t ions  (21) represent  the 
exc i t a t i on  d y n a m i c s  of  the general  mode l  while the 
con t rac t ion  dynamics ,  descr ibed by  the last  o f  Equa t ions  
(21), is the same as in the mode l  (1). 

The general  mode l  has  several  advan tages  over  the 
previous  one. These will be discussed after  the mode l  
has been va l ida ted  by s imula t ion  and  then verified by  
compar i son  with exper imenta l  results. 

Validation of the General Model 

The mos t  logical  th ing to do  is obv ious ly  to compa re  the 
responses  o f  the a p p r o x i m a t i n g  system (21) with the 
responses  o f  the exact  system, made  up o f  the sum of  the 
ind iv idua l  responses  o f  m a n y  separa te  m o t o r  units, jus t  
as occurs  in the living muscle. The test should  be carr ied 
out  for the mos t  ext reme cont ro l  modes  possible.  This is 
precisely the type o f  s imula t ion  we shall  now perform.  
Since the con t rac t ion  dynamics  is the same for all m o t o r  
units, p rov ided  they are all o f  the same type (fast, 
in termedia te ,  slow), we have only to compare  the 
exci ta t ion funct ions e o f  the a p p r o x i m a t i n g  and  o f  the 
exact  system. 

The function e for the exact system is simply [see (14) (18)] 

e = A ~ exp(6i/N)qi(~, 71), (30) 
i - 1  

where qi(') is given by (29) with ~,~ defined by the differential system 
(for details see Hatze, 1977a): 

~ + c ~ + c ~ = c 6 V N ~ ( t ) ,  /~(o)=/~(o)=o, 
(31) 

~'i + c,~, + c j ,  = c~ v~.3, , ~,~(o) = ~,~(o) = o ,  
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where 

ai(t)=sinlOOOn(t-ti) for tj <=t<tj+O.O01, 

=0 otherwise, j =  1, 2,.... 

In Figure 7 of Hatze (1977a) it has been shown that the train el(t) of 
nerve impulses produces a train qi(s 7~(t)) of active state twitches and 
corresponding force twitches which are precisely (time course, 
magnitude of peak tension, half-relaxation time, etc.) those obtained 
in many experiments on living muscle. Hence the output qi(~, t) of the 
system (29) plus (31) can be regarded as truly representative of the 
active state of the i-th motor unit, which also means that e, as given by 
(30), is representative of the excitation of the real muscle. 

The function e for the approximating system is given by (28) with 
the various variables defined by (21), and with the normalized 
"average" firing rate v given by 

v= vlexp(~i exp(N , (32) 
i = 1  J / L I = I  J 

where v i = 1 / • ' c  i is the normalized firing rate of the i-th motor unit, 9 
denoting the maximum firing rate. 

It was decided to perform the simulation for fast motor units 
because their fast responses permit the simulation of more effects in a 
given time interval. We shall use the same constants for fast muscle as 
those described in Hatze (1977a, Table l), except for the constants c~, 
c, and g which were adjusted to account for more accurate results 
(Briggs et al., 1977; Ebashi and Endo, 1968) on the magnitude of the 
free Ca ion concentration ~ in the sarcoplasm during stimulation [our 
previous values had been taken from Julian (1971)]. Note that this 
change in the values of the constants involves only a scaling 
transformation (~/max has now a value ofc = 1.373 x 10-4 mole instead 
of 1.373 x 10- 6 previously) but does not affect the qualitative nature 
of any of the functions in the previous, or the present model. 

The values of the constants used in the simulation are: 
e 1=2.24x104 , c 2=2.50x105 , c 3=8.6x101~ c 4=1.84xl04 , 
c5=7.36 x 106 , %=10.333, VN = 0.09 , VT = 0.05, ~=5, 
C=1.373X10 -4, %=0.0122, S=I, ')=100 (max. firing rate), 
m = 11.25, n = 10, k 2 = 10 - 4, ~-= 10 - s. The value of ~ was set equal to 
unity and N was changed for different runs. 

The equations were coded in ACSL (Advanced Continuous 
Simulation Language) and integrated on a CDC Cyber 174 digital 
computer, using a fourth-order Runge-Kutta integration routine. 

F igure  1 shows the e-responses o f  the exact  and  the 
a pp rox ima t ing  system, for three different  values o f  
(5, 10, 20), as well as the funct ions ~p(t) and  (p(t), for the 
con t ro l  mode  descr ibed in the legend of  F igure  1. No te  
tha t  the indiv idual  m o t o r  units o f  the exact  system are 
recrui ted sequential ly,  i. e. for N = 20 the first (smallest) 
unit  comes in at  t = 0, the second at  t = 0.005 s, the th i rd  
at  t = 0 . 0 1 s  etc., unti l  the last  one is recrui ted at  
t=0 .095s .  Hence at  t = 0 . 1  (ar row 1) all m o t o r  units 
have been recruited.  

I t  is clearly seen f rom Figure  1 tha t  the a p p r o x i m a -  
t ion improves  rap id ly  with increasing N. This is not  
surpr is ing since the a pp rox ima t ing  mode l  was der ived 
under  the a s sumpt ion  o f  large values N. Hence  for a 
muscle  having a to ta l  o f  10 m o t o r  units the a pp rox ima-  
t ion is good,  while for a muscle compr i s ing  20 or  more  
units the a p p r o x i m a t i o n  is a lmos t  perfect.  No te  the 
interest ing fact tha t  e(t = 0.1) has a value o f  only abou t  
0.26 when all the m o t o r  units have been recrui ted 
(ar row 1 in Fig. 1). This is comple te ly  in accordance  with 
the recent  exper imenta l  findings of  Desmed t  and  
G o d a u x  (1977) that  in ball is t ic  con t rac t ions  o f  the 
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Fig. 1. Equivalent Ca-concentrat ions ~(t) and q~(t) (in moles), and e-responses for the exact and approximat ing system for R = 5 (right upper  
graph), ~r = 10 (left lower graph), and .~ = 20 (right lower graph), for the following control mode:  z = 1 for 0 < t <0.1, z = 0 for 0.1 < t < 0.5, 
z = - 1 for 0.5 < t < 0.6, z = 0 for t > 0.6; v = 0.5 for all t ; time in seconds (note scaling factor of 10- 2, i.e. the max imu m value is 1 s). The arrows in 
the lower r ight-hand graph indicate the switching times of the control z 

human tibialis anterior muscle, ~tll the motor units in 
the muscle have already been recruited at a stage when 
the force output is still comparatively small. 

Figure 2 displays a contractive situation with a 
completely general control mode described by the 
control functions z(t) and v(t) shown in the upper part of  
the figure. In fact, in this simulation the first 14 motor 
units were controlled by firing rates defined by 

vl_14(z,n)= 83Hz for z > 0  and n > 0 . 6 ,  

= 42Hz for z_-__0 and n > 0 . 6 ,  

= 28Hz for z < 0  and n_<_0.6, 

while the last 6 units had rates of 
} 

vls_2o(z ,n)=ll lHz for z > 0  

= 56Hz for z < 0  

= 37Hz for z < 0  

and n > 0 . 6 ,  

and n > 0 . 6 ,  

and n__<0.6. 

The normalized average rate v(t) was computed from 
(32), using these frequencies. 

It would appear from the left-hand graph of the 
lower part of Figure 2 that the approximation for this 
control mode is not good. However, the picture is 
misleading for the simple reason that the approximat- 
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Fig. 2a--e .  a, b: Control functions z(t) and v(t). c---e: e-responses c, 
equivalent Ca-concentrations d, and number of stimulated motor 
units e; ~7= 20. For detailed explanations see the text 

ing system [Eq. (21)] responds immediately to changes 
in the firing rate, via v(t), while the exact system exhibits 
a delayed response owing to the fact that a change of the 
interspike interval [see (31)] manifests itself only at the 
time of onset of the next stimulating pulse. This 
situation should worsen with increasing interspike 
interval, i.e. with decreasing firing frequency and 
should improve with increasing frequency. That this is 
indeed the case can be seen by comparing the middle 
parts of the functions v(t) and e(t). Thus, accounting for 
this phenomenon, we are led to conclude that the 
approximation is reasonable, for this general control 
mode also. 
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Figures 2d and 2e display the corresponding func- 
tions ~v(t) and (p(t), and the motor unit recruitment 
patterns of the individual units [step function N(t)] 
and the approximating function [smooth curve n(t)], 
respectively. 

Finally, Figure 3c depicts the z-responses to a 
typical bang-bang control mode. It is apparent that 
even under these extreme conditions the approximating 
model provides a good fit to the exact system. 

Although it is obviously impossible to test the 
model for all conceivable control modes, it is apparent 
that the model provides good approximations to the 
responses of the real system under quite general and 
extreme control conditions. On these grounds, we are 
justified in having some confidence in the model. 
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Fig. 3a---c. ~-responses c to bang-bang type control functions z(t) 
and v(t) as depicted in a and b respectively; N = 2 0  

However, the final test for a model is always the 
verification of its predictions. For this reason we shall 
now Use the model for predicting the force output of the 
human quadriceps muscle group, subject to certain 
neural control inputs, and compare the predicted force 
output with the one actually observed on the living 
system. 

Experimental Verification of the Model 

An exact description of the experimental methods used will ap- 
pear elsewhere. Briefly, a male subject (26 years old, 76,4kg mass, 
active sprinter and long-jumper) was seated on a special chair with his 
pelvis belted to the back support. A special force transducer (MFTA- 
OU-200 load cell), with negligible compliance, was rigidly mounted 
onto the chair in such a way as to permit the measurement  of  the 
isometric force produced by the extensor muscles of the subject's right 
lower leg. The measurement  took place at a distance of 0.36 m below 
the estimated centre of  the knee joint. The knee angle was fixed at 
- 62 ~ with respect to the long axis of  the thigh, while the hip was 
flexed at 61 ~ with respect to the same axis. Surface electromyograms 
(EMGs) were recorded from m. vastus lateralis, m. rectus femoris, and 
the hamstr ing group. The raw EMGs as well as their rectified and 
smoothed signals (lower cutt-off frequency 6Hz) were displayed 
together with the output  and the electronically differentiated output  
of  the force transducer on the chart paper o f an  eight-channel Gould- 
Brush 481 recorder. 

The subject was instructed to produce a certain, near maximal, 
isometric force in the shortest possible time. It was unimportant  
whether this target force would be overshot or not, as long as the 
initial effort was maximal. This mode of contraction was chosen 
because the neural controls operating under these conditions are 
fairly well known. In particular, the recent reports of  Desmedt and 
Godaux (1977), and Grimby and Hannerz (1977) have clearly shown 
that  in rapid contractions performed with max imum effort, all 
stimulated motor  units initially fire at their max imum rates (120 Hz 
and more for fast units) and that these rates quickly decrease to 30 
50% of the maximum, presumably when recruitment of  all units is 
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Table 1. Parameter values used in the simulation model (all units in the m-kg-s system, forces in Newtons) 

Muscle Fi Oi ~i Ii 71 Xi -{zl all ioi qol 9i nl ml c, 

Slow part of 1376.4 60 ~ 0.085 0.335 0.34 0.034 0.14 3.90 - 1.60 0.00082 40 21.10 4.48 3.39 
the vasti group 
(i = 1) 

Fast part of 5505.7 60 ~ 0.085 0.335 0.34 0.034 0.14 2.55 -3 .40  0.0122 120 44.41 13.44 1.61 
the vasti group \ 
(i=2) 

M. rectus 1439.7 70 ~ 0.100 0.536 0.55 0.07 0.07 2.55 -3 .84  0.0122 120 14.3 13.44 5 
femoris 
(i=3) 

Parameter values which are the same for all three muscles are ~=0.30, or= 1.531, s =  1, a2=0  , a6=2.6, and c=  1.373 x 10 .4  

complete. In addition, Desmedt and Godaux (1977) have provided 
evidence (although, in our opinion, not quite conclusive) that the 
sequential order of recruitment o f the motor units, according to their 
size, is also preserved in these so-called ballistic contractions. Finally, 
Person and Kudina (1972), and others have shown that motor units 
are deactivated in reverse order of recruitment. 

Hence, accounting for these facts and estimating the firing rates 
for post-initial contraction phases from the experimental EMG- 
records, one can hope to obtain a reasonable estimate of  the control 
functions vi(t), zi(t), t~EO, tf], i=1,2,3,  which control the force 
outputs of the slow part of  the vasti muscle group (i = 1), the fast part 
of this group (i = 2), and of the rectus femoris muscle (a predominantly 
fast muscle, i = 3) respectively. The biomechanical properties of these 
muscles (ratios of their maximum tetanic forces, length-tension 
relations, etc.) are also well known from previous exhaustive studies 
of these muscles by the author (Hatze, 1976). These studies provide 
estimates for the various parameter values needed in the state and 
output equations of  the model. Table 1 gives a collection of  these 
values as used in the simulation. 

Table 1 requires some comments. From the experimental force 
records and with a moment arm of  about 0.04m for the force of the 
extensor muscles at the patellar ligament (Smit, 1973 ; Hatze, 1976) we 
calculate a maximum tetanic output of  7313 N, 18.5 % of  which can be 
attributed to m. rectur femoris and the rest to the vasti group for the 
particular values of knee and hip angles of  the present experiment. 
The hamstrings were inactive, as is apparent from the EMG records in 
Figure 4 below. Thorstensson et al. (1976) have taken biopsy 
specimens from m. vastus lateralis and found that the content of fast 
fibres in this muscle varies between 39 and 80% of  the total fibre 
content. Considering these proportions to be representative of the 
whole vasti group, and taking into account that the present subject is 
a sprinter and long-jumper, we are justified in assuming 20% of  the 
vasti group to consist o f slow fibres and 80 % of  (predominantly) fast 
fibres. With these data the values of ff~ in Table 1 can be computed. 
The values for m i are found from the relation (Hatze, 1977a) 

mi=0.1129 i , (33) 

~i being the maximum firing rate of the i-th muscle, while the values 
for Fi, i = 1, 2, 3 are determined by ~1 = F + I n u l, F2 = - In u l, Ea = ~ = 5, 
where u1=0.2 is the proportion of  slow muscle fibres in the vasti 
group; Finally, the r~ i are computed from n 1 ~ / ~ 1 ,  n1=~/~z,  
h3 = fi= 14.3. Note that cl + c2 =F3 and 1/fi I + 1/r~ 2 = l/h3, i.e. the 
slow and fast parts of  the vasti group are taken together as one muscle 
which obeys the same recruitment dynamics as m. rectus femoris. 

The constants bx~ and b2i , i = 1, 2, 3 can be computed from a~ and 
az~ (Hatze, 1977a) while the initial conditions ~o~ are determined by 
4(0) =0  in the last of  (21). The length-tension relations ki(~i), i = 1, 2, 3, 
for the three muscles are as given in Hatze (1976). 

The total force output of  m. quadriceps femoris is obviously 
given by the sum of  the forces contributed by the individual muscles, 
i.e. 

F(t) = FS~(t) + FSE(t) + FSaE(t), t e [0, t s ] ,  (34) 

where FSE(t), i=1 ,2 ,3 ,  is given by (4) with the expressions for 
penniform muscles substituted into it. Forces due to passive struc- 
tures spanning the hip and knee joint are negligible for the specific hip 
and knee angles chosen (Hatze, 1976). The functions ~i(t), i=  l, 2, 3, 
which appear in (4) are determined by the contraction and excitation 
dynamics of system (21). The simulation was performed on a CDC 
Cyber 174 digital computer using the simulation language ACSL. 

A typical contraction record and its simulation are 
shown in the left and right-hand graphs of Figure 4 
respectively. 

For  an explanation of the various displays see the 
legend of Figure 4. The control inputs vi(t) and zi(t), 
i=  1, 2, 3, to the simulation model were estimated from 
the respective raw-EMG records, as outlined above. The 
functions vi(t) are as illustrated in Figure 4 [note that 
the EMG record for the vasti group corresponds 
approximately to the composite ofvl( t  ) and v2(t)] while 
the controls zi(t ) are given by 

zl(t )= 1 for 0< t<0 .0474  

= 0 for 0.0474=<t<0.5525 

= - 1  for 0.5525_<_t<0.6000 

= 0 for t>0 .6000 ,  

z2(t)= 0 for 0 < t<0 .0 4 7 4  

= 1 for 0.0474__<t<0.070 

= 0 for 0.070 =<_t<0.530 

= - 1  for 0.530 __<t<0.5525 

= 0 for 0.5525__<t, 

and 

z3(t)-- 1 for 0 < t < 0 . 0 7 0  

= 0 for 0.070 < t<0 .530  

= - 1  for 0.530 __<t<0.6000 

= 0 for 0.6000_-<t. 
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Fig. 4. Left-hand part. From top : raw EMG and 
rectified and smoothed EMG from m. rectus 
femoris respectively, same two signals from 
m. vastus lateralis (below rectus femoris), and 
hamstring group (below vastus lateralis). The last 
two records display the differentiated force 
output and the isometric force output (lowest 
record) respectively. Force scale : 1125 N/large 
division. Right-hand part. From top : control 
functions v~(t), i = 1, 2, 3, and model force output 
F(t) (continuous line) respectively. For  
comparison, the experimental results (FMU) of 
the muscle's force output, as shown in the lowest 
record on the left-hand side of the figure, are 
depicted as the symbols. Note that the control 
functions v~(r) are not directly related to the 
EMG records opposite them on the left (for 
details see the text/ 
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Note that recruitment in this maximum-effort con- 
traction is complete in 70 ms in both muscles and that 
deactivation of motor units, in reverse order of recruit- 
ment, begins at t=0.53 s. 

The lower right-hand part of Figure 4 depicts the 
predicted force output F(t) of the model (continuous 
line) and is compared with the actual force output F M U  
(symbols) of the m. quadriceps femoris of the subject as 
given by the force record in the lower left-hand part of 
the figure. On the whole, the agreement between model 
prediction and experimental result is quite good except 
for discrepancies in the early part of the force rise and 
the declining phase of the force record. The nature of 
these discrepancies suggests that the estimated value 
ul =0.2 for the proportion of slow motor units in the m. 
vastus of this specific subject is too high. Simulation 
runs with smaller values of u~ were then performed 
which confirmed this conjecture. Indeed, with a value of 
u~ = 0.07 or less the model response coincides almost 
perfectly with the experimental record. However, since 
no muscle biopsies were taken from the subject, the 
exact value of u~ remains uncertain and it was, there- 
fore, decided not to depart from the original estimate of 
u=0.2. After all, it is not the purpose of this in- 
vestigation to produce "nice-looking" curves but to 
critically scrutinize the properties of the model. 

Some of the model predictions are indeed remark- 
able. The well-known delay of about 50 ms which exists 
between the onset of the excitation and that of con- 
traction is correctly predicted by the model (Fig. 4). The 
significance of this feature is that by analyzing the 
model structure we are able to give an explanation of 
this phenomenon. However, such an analysis is beyond 
the scope of this paper and will, therefore, appear 
elsewhere. Another interesting feature of the model is 
the prediction of the "dips" occurring in the force 
records. These dips are due to the firing in "bursts" and 
the synchronization of motor units. Note that the 
synchronization frequency is about 8 Hz for the fast 
units of m. vastus lateralis, and about 10Hz for m. 
rectus femoris. Again, a detailed account of these 
phenomena will be given elsewhere. 

The predictions of the present model as well as our 
experimental results and those of many other in- 
vestigators in this field are contradicted by the pre- 
dictions of a muscle model recently proposed by 
FitzHugh (1977). We shall comment on this discrep- 
ancy in the next section. 

The main purpose of this section was to verify the 
present model by demonstrating that it is indeed 
capable of correctly predicting the various experimen- 
tally observed phenomena of muscular contraction 
mentioned above. 

A discussion of the special features of this general 
model follows in the next section. 

Discussion of the Model 

The general myocybernetic model as developed and 
tested in this report is distinctly superior to the previous 
model in a number of respects. 

First and most important, the restriction to con- 
stant values of the number of stimulated motor units 
has been removed and the new model permits the full 
range of possible control modes. Indeed (as was to be 
expected) the previous model emerges as a special case 
of the present general model. To show this, assume that 
the muscle was in its resting state when it had been 
excited by some controls z(t)> O, v(t)> O, t > O. At some 
time t 1 >0  we put z(O=-O for all t>t l ,  i.e. we terminate 
recruitment and hence keep n = n 1 constant. By (22) and 
(10) this implies a constant value of u = u 1. Consider the 
state of the system (21) at a time t '>  tl, i.e. the steady 
state with respect to the dynamics induced by the 
control z alone. Then it follows from (21) that n(f)= nl, 
r(t') ~ O, ~ = m(cv-  ~p), cp(t') ~ 0 ; the last of (21) remains 
unchanged. By substituting 7 for ~ it is seen that (21) 
reduces to the excitation and contraction dynamics of 
the previous model (1) with e eliminated as a state. 

We ;till have to show that for the above steady-state 
condition the excitation function ~, as given by (28), 
degenerates to the function e, expressed by (6), of the 
previous steady-state model. Now, since r=0 ,  n = n~, 

=7, and cp =0  in (28), and by virtue of (10) and the 
relation ~ = - I n  u0, it is readily shown that (28)becomes 

/~ = {H 1 l - q ( ~ ,  ~(/) ,  t ) )  - -  %] 

+ qo - uoq(~, ,/(v, t))}/[1 - u 0 ] ,  (35) 

which is seen to be identical with (6) if we put u 0 =0. 
While in the previous model a value of Uo=0 was 
permissible, this is no longer the case for the general 
model, as is obvious from (10). The reason is that u o 
represents the relative size of the smallest motor  unit in 
the general model, which clearly implies Uo>0. 
However, the value ofu  o is about 0.007 so that (35) is in 
any case approximately equal to (6). This proves that 
the previous model emerges as a special case of the new 
general model. 

A second characteristic in favour of the new model 
is that no more stiffness problems are experienced, a 
fact which greatly facilitates the numerical integration 
of the state equations. The same remark applies to the 
previous model (1) when ~ is eliminated as a state [see 
(7)-(9)]. 

There is, however, one restriction on the way in 
which the control z in the general model may vary. For 
reasons given in the Appendix, the control z(t) may not 
alternate in sign too rapidly. For some control modes 
this restriction may become important. 

One point regarding the active state function q(~, ~), 
as given by (9), must be strongly emphasized since it has 



154 

given rise to unfortunate misunderstandings. Calvert 
and Chapman (1977) have commented on the model of 
Hatze (1977a) stating that we have "chosen to identify 
active state with intracellular calcium concentration". 
This unfortunate misinterpretation entirely misses the 
point, since we have quite clearly postulated that "we 
define the active state q to be the relative amount of Ca 
bound to troponin" (Hatze, 1977a, p. 106). Now, the 
intracellular calcium concentration to which Calvert 
and Chapman refer is given by the function 7(t), as 
defined by (1). The important point to realize is that V(t) 
is, in fact, an input to the active state function q(~, ~,) and 
by no means the active state itself. Indeed, the highly 
nonlinear relationship existing between the Ca con- 
centration 7 and the active state q constitutes one of the 
most remarkable biochemical properties of the myo- 
structures. As clearly demonstrated in Figure 4 of Hatze 
(1977a), the active state function q(~,V) exhibits a 
saturating behaviour for large values of 7. This property 
enables the active state to rise much faster upon 
stimulation than would be possible if q were a linear 
function of 7(0. Expressed differently: even a compara- 
tively low Ca concentration 7 is sufficient to expose a 
large number of potential interactive sites on the 
troponin-tropomyosin complexes attached to the actin 
filaments. The actomyosin cross-links, which then form 
at these desinhibited locations, are responsible for the  
production of contractive force [for a detailed dis- 
cussion and references see Hatze (1977a)]. 

As is apparent from the first of Equations (1) the 
rate of rise of the Ca concentration 7(0 itself is 
controlled by the relative stimulation rate v and by the 
value of the constant m. Hence large values of m (fast 
muscles) and v imply fast rises of 7(t). It has been 
suggested (Kernell, 1965) that the initial steep portion 
of the active state curve corresponds to the primary 
range of firing frequencies of the motorneurons inn- 
ervating the muscle, while the portion of saturation 
corresponds to the secondary firing range. This would 
explain the sudden change in the slope of the 
"frequency-current" curves of the motorneurons 
(Kernell, 1965). 

These remarks should clarify the connection be- 
tween the Ca concentration ~ and the active state q(r 7). 

Finally, we must explain the serious discrepancies 
between the predictions of the present control model 
and that of FitzHugh (1977). Since our excitation 
function e(t) [see (28)] has its exact counterpart in the 
control function U(t) of FitzHugh's model (both func- 
tions multiply the output o f the contractile element ) the 
patterns o f the two functions for various control modes 
can be compared. For a bang-bang control input, v(t), 
our excitation function ~(t) exhibits the behaviour 
shown in Figure 3 while for this case FitzHugh's control 
U(t) (which is some undefined function of the stimu- 

lation rates) is identical with our bang-bang control v(t). 
As can be seen, the patterns of these two functions are 
fundamentally different. In fact, since our excitation 
function e and FitzHugh's control U are equivalent to 
the active state (in A.V. Hill's sense) of the contractile 
element, FitzHugh's model implies that the active state 
can change in a bang-bang form. This is clearly 
demonstrated by his predictions of "optimal" active 
state functions which exhibit discontinuous switchings 
for various nonisometric contractions [lowest curves in 
Figure 2 of FitzHugh (1977)]. It is obvious that such a 
model contradicts the well-known phenomena of the 
excitation dynamics of skeletal muscle. In particular, 
the model violates all experimentally established facts 
about the time course of the active state (Bahler et al., 
1967; Ebashi and Endo, 1968 ; Jewell and Wilkie, 1960; 
etc.), the dynamics of the sarcoplasmic calcium release 
upon stimulation (JiSbsis and O'Connor, 1966), the 
highly nonlinear dependence of the active state on the 
intracellular Ca concentration (Ebashi and Endo, 1968 ; 
Julian, 1971), etc. Indeed, a scrutiny of FitzHugh's 
model reveals that as far as the inclusion of the control 
parameter U is concerned, the model is an exact copy of 
Stark's (1968) muscle model, with U replacing Stark's 
control e, while FitzHugh's optimal control treatment 
of his muscle model is in most respects a mere 
restatement of the methods suggested by Chow and 
Jacobson (1971), and Hatze (1976). Also, FitzHugh's 
assumptions regarding the linear dependence of the 
heat rates on the control U directly contradict the 
experimental findings of Gibbs and Gibson (1972), 
Julian (1971), Wendt and Gibbs (1973), and others. 

These deficiencies in the structure of FitzHugh's 
model explain the discrepancies existing between the 
predictions of the model and the experimentally estab- 
lished facts of muscular contraction. 

Although attempts to develop adequate control 
models of skeletal muscle can only be commended, it is 
nevertheless also true that oversimplified models can do 
more harm than good. There are indications that 
physiologists and experimental biologists are also be- 
ginning to recognize myocybernetics, the discipline 
concerned with the discovery and cybernetical de- 
scription of optimality principles operating in the 
neuromuscular control system; however, predictions of 
optimal neuromuscular behaviour, based on models 
which grossly contradict physiological reality, can only 
serve to undermine the credibility of this youthful 
discipline. 

Appendix 

Derivation of the State Equations for the General Model 

Let the time interval between the recruitment, at times t N and tN§ 1, 
say, of the N-th and the (N+l ) - s t  motor units respectively, be 



A t(t) & tu .  ~ - ts. Since the total number N of motor units present in a 
muscle is usually large (htmdreds to thousands) we are justified in 
approximating the step function N(t)/N, 0 < t < T, by the absolutely 
continuous and piecewise differentiable function n(t), defined by 

n(t) ~= nz(t) z~ [N(t + A t(t)) - N(t)]/NA t(t) = 1/Nd t(t) , 
(A~) 

n(O)=O, O~n__<l, 

where z(t), -~<__z(t)< 1, and hence n(t), t~ [0, T], are piecewise 
constant functions of t. For the definition of all the symbols see the 
main text. 

From (A1) it follows that 

At(t) = 1/[Nnz(t)] , (A2) 

where z(t)+O is constant for t~<t<=tN+At:(t), N = l , 2 , . . . ,  and n 
denotes a constant. 

Assume that at the time t~ of stimulation there is a rest Ca- 
concentration ~p(t) in the i-th motor unit and that the control vi(t ) of 
this unit is constant for te [tl, t i -k dlt ). Then y/'(vi(t-ti)) appearing in 
(15) can be found by integrating the first of  Equations (1): 

7? (v i ( t -  tl)) = cv~[1 - exp { - mi( t -  ( i -  1)d t(t))}] + ~o(t), (A3) 

with A t(t) given by (A2), and m i indicating that m may be different for 
each unit. 

Dealing with e+(t) first, our objective is to find a function ~p(. ) 
such that (19) is a sufficiently accurate approximation to (15). Since 
is large, we may use an integral approximation to the sums, so that we 
require 

N(t) 

q(~, ~p(v, t)) ~ exp(cx/N)dx 
1 

N(t) 

= ~ exp(~x/N)q(~,?,+(t,x))dx, 
1 

or, by putting a x / N = z  [so that, by (A2), xAt(t)=z/JNz(t)] ,  and 
integrating the left-hand side, 

[exp (dn(t)) - exp (g/b~)] q(~, ~p(v, t)) 

= ~ exp(z)q(~,? +(t, z))dz. (A4) 

It can be shown that the function q(~,?) given by (9) can be 
approximated reasonably accurately by the function 

~(~, ?) = 1 - (1 - qo) e x p ( -  0o(~)7), (A5) 

where ~0(~) is given by (24). This approximation will enable us to 
derive a differential equation for ~p. By using this approximation in 
(A4), assuming N sufficiently large for the terms containing the factor 
1/_N to be negligible, and comparing left and right-hand sides of  the 
resulting equation, we find that ~p(v, t) must satisfy 

[exp (an(t))- 1] exp { - O0(~)(tp(v, t) - q~(t))} 

= ~ exp{z-Oo(~)cv(t)  
0 

�9 (1 - exp [ -  m(z) ( t -  ~/~ nz(t))])}dz, (A6) 

where (A3) has been substituted into (A4), and use has been made of  
(A2) and the transformation -dx/N=z. The quantity ~ (here a 
parameter) is also assumed to be piecewise constant on the same 
interval as z, and v(t) constitutes an "average" stimulation rate 
(averaged over N) as defined in model (1). 

Generally, there is no hope of  obtaining a non-differential 
analytical expression for ~p(. ) from (A6) which does not contain the 
integral, not even for constant v and z. However, it is possible to derive 
a differential equation for ~p which no longer contains the integral. 
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To this end, let it be assumed that v(t) is piecewise constant on the 
same interval as z(t) (it will be seen below that this assumption is not as 
restrictive as might appear). Let, therefore, v and z have the constant 
values v 1 and zl on the interval [0, t 0. Owing to the stipulation of 
piecewise constancy for ~ we can write 0o for Qo(~)on [0, h). From the 
structure of (A6) we can infer that ~o(vl, t) will be of the form 

V(vl, t) = cv 1(1 - 9(0), (AV) 

which, when substituted into (A6), yields 

[-exp(an(t))- 1] exp {• + ~o(t))} 

= S exp{z+Qoevl e x p [ - m ( z ) ( t - r / a n z O ] } d z ,  (A8) 
o 

after cancellation of the term exp(-Qoev 0. 
Differentiating (A8) with respect to t, and noting that dn/dt = [~z~, 

we have 

anz 1 exp {~n + ~o (c v 19 + ~o)} + Oo(cvlg + (o)I 

= i ~ z  1 exp('dn+~oCV 0 
Fn 

- QoCV 1 ~ re(z) exp { - re(z)(t - z/~ nz 1) 
0 

+ z + Ooevl exp[ - m(z)(t - v/a~z 1)]} dz ,  (A9) 

where I is the integral (AS). A second differentiation of (A8) with 
respect to vz yields 

?n 

19= ~ exp{-m(z ) ( t - z /~nz l )  
o 

+ r + Ooevl exp [ - re(z) ( t -  z/anzl)  ] } d~. 

By putting an = z on the left (in the expression for I) and right-hand 
sides of  this relation, and changing the dummy variable to y, the 
above expression can be written as 

I(z)g=J(z)  , (AIO) 

where J(z) represents the integral on the right-hand side. 
An integration by parts of  the integral K appearing on the right- 

hand side of (A9) yields 

K = [m(z)J(z)]~"- ~ S(z)dm(z) 
0 

= g lm(dn) exp(an) - m(O) - i exp('c)dm('O) .exp [oo(CV l g + ~o)] , 

where (A 10) and (A8) have been used�9 This expression for the integral 
K may now be substituted into (A9); and by virtue of the relations 
t r iO= -~p, and cv~g=cv~ - t p  [see (AV)], we find, by putting 

rn(n) A= m(gn)exp(-dn)-m(O)- ~ exp(z)dm(z) [ exp(~n) - l ]  , (Al l )  
L 0 J t  

that 

(~ = m(n) (cv~ - ~ )  

+anz~[ t - exp{Qo(~p-cp)} ] /Qo[ I -exp( -~n)]+(o  , (A12) 

where q~(t) is an, as yet unspecified, absolutely continuous and 
piecewise differentiable function. If m(n)=m is a constant, then 
dm(v)=-O and (Al l )  reduces to m. Although we have succeeded in 
finding an equation for ~b which includes the effect of  a varying motor 
unit parameter m this is, unfortunately, not of much use since (13) was 
derived under the assumption of  constant motor unit parameters 
which relate to the contraction dynamics. Without this assumption, 
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the treatment becomes too complicated and no useful results can be 
derived. Thus we shall, from now on, restrict ourselves to the case 
where m is a constant. 

Equation (A 12) is the required differential equation for ~p, subject 
to constant controls v~, z~, and with a constant value Qo on the interval 
[0, tl). It can easily be shown that the solutions ~p(t) and ~o(t), t~ [0, oe), 
of  (A12) and (A16) below are bounded such that 

O<~p(t),~o(t)<=c, te[0,  oo). (A13) 

This implies that no finite escape times exist for these solutions, which 
permits us to define the values of~(t) and ~0(t), at the switching time t~, 
as the continuation of the solutions for t < t  1 (Coddington and 
Levinson, 1955). Thus if at time t 1 the controls v and (or) z switch 
discontinuously to new constant values v 2 and z2, Equations (A12) 
and (A16) below can be integrated over [t~, t2) using the new initial 
conditions ~0(t0, ~0(t0, even though the right-hand sides of the 
respective differential equations do not exist at t = t 1. By continuing in 
this fashion the global solutions p(t) and q~(t) are obtained. For 
obvious reasons the index 1 on z~ and v~ may now be dropped and 
Equation (A 12) will be stated in its final form once an expression for 
qb(t) has been derived. 

Equation (A12) holds true strictly only for z > 0  because it 
contains the specific recruitment history as specified by (A3). It can, 
however, be shown that this influence of control history on present 
values of the state variables quickly fades out so that the model (A12) 
remains valid also for z < 0, with z equated to zero in (A 12), provided 
z(t) does not alternate in sign too rapidly. This theoretical result is also 
borne out by the simulation responses (Figs. 1-3). It should, however, 
be kept in mind that the system is, basically, a hereditary one but that a 
proper consideration of  this fact would lead to almost unmanageable 
complexity. 

We turn now to e-(t), i.e. to the derivation o f the equation for q)(t). 
We seek a function q~(. ) such that (20) is a sufficiently accurate 
approximation to (16). In analogy to (A3) we have 

"~j (t) =/p(t) exp [ - m(t - (j - 1)A t(t))] 

and by following the same procedure which led to (A6) we obtain 

[1 - exp ( -  gr(t))] exp { - qo(~)cp(t)} 
~(t) 

= ~ exp { -- ~ -- ~o(~)~p(t) exp [ - -  re(t--  z/-d n(--  z ) ) ] }dz ,  (A 14) 
0 

where t is counted from the time when z became negative (switching 
off of motor units), and r(t) is obviously given by 

~=-n=-,~(t) ,  r(0)=0, 0_<_r=<l. (A15) 

Equation (A14) arises from the fact when a motor unit is switched off 
it is transferred from the N-population of  stimulated units to the 
R-population of semi-active units and its initial concentration tp(t) 
begins to decline exponentially according to ~ exp(-mr) .  The same 
process applies to the next unit but with a time delay of At. Carrying 
on in this way and summing the corresponding active states, we 
obtain the integral expression (A14). 

Equation (A 14) is first differentiated with respect to t (again 
holding ~ constant) and then with respect to ~Oo(~). Proceeding in the 
same way as with (A9) we find 

= - ~0m + ~ o / ~  

- gnz [1 - exp {Qo(~) (~p - ~P)}]/~0(~) [exp (~'r) - 1], (A 16) 

where ( p = m ( c v - t p )  [from (A12)] for z<0.  
When z >0, no units are transferred from the N-population to the 

R-population and hence ~b = -(pro, i.e. ~o declines exponentially. 
From the preceding discussion on the domains of validity of the 

Equations (A 12) and (A 16) it is clear that we need a switchin O funct ion  
w(z) which switches parts of the equations on or off, depending on the 

value and sign of the control z. Let w(z) be defined by (26), and w + and 
w- by (25). Then it follows that (A12) can [by virtue of (A13) and its 
implications] be written as 

= m(ev - ~p) + w + z~ nil  - exp {Qo(~) (~P - q~ 

. ( 1 - e x p ( - ~ n - 6 ) ) - ( l + w - ) q ~ m ,  ~p(0) = 0 ,  (a17) 

and (A16) as 

(o = - q~m - w -  {m(cv/(p + 6) - 1)tO 

- z~ ni l  - exp {Qo(()(q) - tP)}]/Q0(~)(exp (gr + 5) - 1)} , 

~0(0)=0, (A18) 

since ~bq~/~ = m ( c v -  ~p)cp/~ for z < 0. It is seen that (A 17) and (A 18) are 
identical with the third and fourth of (21). Note that the small 
constant 3 (value about 10 -s)  has been added to the respective 
variables in order to obviate division by zero when n =0, r =0, ~ = 0. It 
can be shown that this procedure does not significantly influence the 
accuracy of the solution, provided 6 is chosen sufficiently small. 
Computational difficulties, which are due to the fact that ~p >0  but 
(p = 0 in the last term o f (A 18) when w- becomes - 1 for the first time, 
can be obviated by simply setting (p(ts)= ~p(ts) at the switching time t s 
and then integrating in the normal way. After all, the difficulties arise 
only because 9(ts) should attain the value ~p(t~) in an infinitely short 
period of time. 

Finally, we have to derive the differential equation defining r(t). 
Basically, this differential equation is given by (A15), but con- 
tradictions arise when during a contractive situation q~ > 0, r > 0, but z 
becomes zero and remains zero for a longer period of time. Then q~(t) 
declines exponentially [by (A18)] but r(t) remains constant [by 
(A 15)J although, after some time, c# will be practically zero and hence 
r (the normalized population of semi-active motor units) should also 
be zero. This problem can be overcome by definin9 a unit to be 
inactive if~0 becomes smaller than a certain threshold value k2c, i.e. we 
require that 

k2C = ~0 exp(-- mt) , (A 19) 

where f is related to the "cut-off value" ~ by 

{ ~= R A t  = ?/n( - z ) .  (A20) 

For z >0  we want ~(t) to decline exponentially,just as q)(t) does. Hence 
we augment (A15) by the term (1 + w  )re'r, i.e. (A15) becomes 

? = - nz - (1 + w -  )m'r , (A21) 

where the last term is nonzero only for z>0,  and m' is to be 
determined. Now, if r=P  then we must have ~=0, i.e. 

m ' =  - nz/? = l / t =  m/ln(A + q~/k2c) , (A22) 

where (A19)-(A21) have been used and a suitably small constant A 
has been added to provide for the case when q~ = 0. It is not difficult to 
show that A = 1 + 10 -3 m, and k 2 = 10-* constitute appropriate 
choices for the respective constants. In fact, with the above value for 
k2, we have k 2 c =  1.373 x 10 - s  mole which is just the resting Ca- 
concentration in the muscle (Ebashi and Endo, 1968), i.e. a motor unit 
is declared inactive when its Ca-concentration has reached the actual 
physiological resting value. 

A final point must be clarified. It is seen that upon integrating 
(A 15) from t = 0 (where z > 0) to some t, the constraint on r is violated, 
since r will become negative. This can be prevented, without 
significantly affecting the accuracy of the solution, by simply 
multiplying z(t) by ( r - w - g ) ) / ( r + 6 ) ,  3=10  - s  (say). This procedure 
also removes the constraints on r. 

With (A22) substituted into (A21) the final differential equation 
for r thus becomes 

i" = - n z ( r -  w -  ~)/(r + 6) - (1 + w-)mr/ln (1 + 10- 3m + qo/k2e), 

r (0)=0,  (A23) 
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which, together with (A1), constitutes the recruitment dynamics [the 
first two of Equations (21)]. Note also that the augmented Equation 
(A23) does not contradict (A15),which was used in the derivation of 
(A16) for z<0,  since for this case (A23) reduces to (A15). 

This completes the derivation of the model equations. 
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