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Abstract. Quantitative expressions of long-term mem- 
ory storage capacities of complex neural network are 
derived. The networks are made of neurons connected 
by synapses of any order, of the axono-axonal type 
considered by Kandel et al. for example. The effect of 
link deletion possibly related to aging, is also consi- 
dered. The central result of this study is that, within the 
framework of Hebb's laws, the number of stored bits is 
proportional to the number of synapses. The propor- 
tionality factor however, decreases when the order of 
involved synaptic contact increases. This tends to favor 
neural architectures with low-order synaptic connect- 
ivities. It is finally shown that the memory storage 
capacities can be optimized by a partition of the 
network into neuron clusters with size comparable 
with that observed for cortical microcolumns. 

1 Introduction 

A number of authors have investigated the long-term 
memory storage capacity of neural networks. Whereas 
most derivations either appealed to qualitative con- 
siderations or have used computer simulations (cf. 
Kohonen 1978; Palm 1981), a simple analytical treat- 
ment of this problem has been proposed by Hopfield in 
1982. In this study, the networks he considers are fully 
connected sets of binary neurons i.e., neurons with 
only two internal states, firing or silent. Patterns are 
stored using the Hebbian rule (cf. Hebb 1949) and the 
states of neurons are determined by a majority mech- 
anism (see Sect. 2.1). Hopfield shows that the stored 
configurations are stable states as long as their number 
does not exceed a limit value M, the memory storage 
capacity, given by: 

M=N/K (1) 

where N is the number of neurons and K is a constant. 
K depends on the required degree of configuration 

stability. For example K ~- 20 if 99 % of patterns stored 
in a network comprising some tens of neurons, are to 
be stable. 

The derivation of (1) rises questions, some relating 
to the dynamics of the system and others to the 
topology of the network. For example two-state 
neurons and abrupt threshold rules appear as crude 
oversimplifications of the real dynamics. Hopfield 
(1982) shows, however, that his approach is robust with 
respect to the smoothening of the response step 
function in a sigmoid function. We have also proven 
(Peretto 1984) that the storage capacity is weakly noise 
dependent as long as the noise parameter is below a 
critical value. Noise also transforms an all-or-nothing 
function into a continuous one of probabilistic charac- 
ter. To conclude, improvements in the modeling of the 
dynamics will probably not modify the Hopfield's 
conclusions. 

Changing the structure of the networks certainly 
does. Electron micrographs reveal that the cortical 
neurons are packed in tightly intertwinned bundles of 
fibers (Roney et al. 1979; Shaw et al. 1982). The 
assumption that neurons are linked only by binary 
connections is too simple. Synapses can modify the 
membrane potentials of other synapses as well as those 
of dendrites. The role of axono-axonal processes has 
been emphasized by Kandel et al. (1965), Carew et al. 
(1971), Kandel (1976) in their studies of neural systems 
of invertebrates and it is likely that these junctions can 
also play a role in the functionning of central nervous 
systems of higher organisms. They have been shown to 
exist in the spinal chord of vertebrates in particular. 

In Sect. 2.2 it is shown how the rules of cooperative 
neural networks models, described in Sect. 2.1 have to 
be modified to account for the existence of higher order 
synaptic junctions. Traces of stored patterns which 
were imprinted in axono-dendritic junctions are now 
dispatched in synaptic contacts of any order so 
increasing the memory capacity for a given number N 
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of neurons in the network. The optimal learning rules 
for synapses of any type are derived in Sect. 2.3. 
Section 3 is devoted to the calculation of memory 
storage capacities of ideal multi-connected systems i.e., 
fully connected networks with optimal synaptic effi- 
cacies determined by noiseless learned configurations. 
The results depend on a coupling parameter V which 
settles the relative orders of magnitude between syn- 
apses of different complexities. The storage capacities 
are calculated in the low coupling and in the strong 
coupling limits in Sects. 3.2 and 3.3. Intermediate 
situations cannot treated exactly except for a mixture 
of axono-dendritic (binary) and axono-axono- 
dendritic (ternary) interactions (in Sect. 3.4). Some of 
the constraints are released in Sect. 4 which makes the 
model more realistic. In Sect. 4.1 the memory storage 
capacity of networks experiencing blurred configur- 
ations during the learning cession is derived. The effect 
of deleting links at random is studied in Sect. 4.2. This 
section ends with a discussion on the change induced 
by replacing the optimal efficacies by more genuine 
Hebbian expressions. Finally it is shown in Sect. 5 that 
a partition of the system strongly enhances its com- 
binatorial capacities. The calculation of the best par- 
tition leads to size of the parts which are comparable 
with the sizes of cortical microcolumns. 

2 A Description of Multiconnected Neural Networks 

2.1 Neuronal Activity 

The activity of a neural network manifests itself by the 
emission of standard signals, the action potentials. The 
state of a neuron i is set to Si = 1 if it is firing and S~ = 0 if 
it is silent. St is determined by the relative value of the 
membrane potential V~ of the hillock zone of neuron i 
with respect to its threshold value 0~: 

St = ~ (~ -  03. (2) 

:a is the Heavyside step function: ~ ( x > O ) = l ,  
1 ( x < 0 ) = 0 .  

The membrane potential V~ is a linear combination 
of the post-synaptic potentials triggered by the activ- 
ities impinging onto the neuron i: 

Vii = E CuSj" (3) 
J 

C o is the efficacy of a synapse (ij) linking the upstream 
neuron j to the downstream neuron i. 

Equations (2) and (3), which have been proposed by 
McCulloch and Pitts (1943), greatly simplify the 
reality: all the dynamic aspects have been eliminated, 
noise has not been introduced, even the linearity 
involved in (3) is questionable. However as far as the 
memory storage capacities are the only quantities of 
interest, these complications can be forgotten because 
they only depend ~on the steady properties of the 

system. For a more detailed discussion of the dynamics 
of noisy neural networks the reader is referred to 
Peretto and Niez (1986). A study of the dynamics of 
small stochastic systems can be found in Thomson and 
Gibson (1981). 

2.2 Multiconnected Networks 

Let us assume that a neuron k makes a contact through 
a synapse (ijk) with a binary synapse (ij) (see Fig. 1). 
The activity of k modifies the synaptic efficacy between 
the neuronsj and i. The efficacy of (ij) is C u when Sk = 0 
and Cu+Cij k when Sk = 1. The efficacy of (ij) is 
therefore given by 

C u + CukSk. 

Summing up over all axono-axonaljunctions k leads to 
a membrane potential V~ (3), given by: 

v,= 2(ctj+ 2 

= ~E CijSj + Z, CokS~Sk. 
j jk 

Fig. 1. a A schematic view of multi-synaptic contacts impinging 
on a dendrite as suggested by electron micrographs of central 
nervous tissues. Such an electron mirograph taken from a small 
region from the brain of  a rat  can be seen in B. Alberts et al. (1983), 
p. 1037 for example Fig. b. Labels of synaptic contacts: i, j and 
k are neuron labels. C u is an axono-dendritic synapse linking an 
axonal branch of neuron j to a dendrite of neuron i. C~jk is an 
axono-axono-dendritic synapse which enables the activity of 
neuron k to modify the efficacy of synapse (ij) 



The synapses (ijk) can in turn be modified by an other 
junction with a neuron l and so on. Finally 

v~ = E G~S~+ Z c~sss~ 
J 

+ Z c~s~i S~S~S~ +... (4) 
jk~ 

The memory storage capacities depend crucially on 
the relative magnitudes of junctions of different orders. 
As there is few quantitative results in this field, it will be 
assumed that the efficacies of p-ary synapses scale 
according to a parameter ?. For example 

only settles the overall strength of synapses of any 
order. The precise values of the synaptic efficacies c~j 
are given by optimal learning rules which are discussed 
in the next section. 

2.3 The  Learning  Rules  

Memory is the ability for a system to store a number of 
patterns ~ which are sets 

P={S~}; ~=1 .... , M .  

of N elementary states SI. A pattern P is efficiently 
stored if it is stable; that is, according to (2): 

Vii ~ > 0~; Vi such as S~= 1 

Vi~<Oi; Vi such as S~=0 (5) 

where (cf. (4)) 

Vii ~ = Y. C~jS~ + Z CijkS~S~, + . . .  (6) 
j jk 

The conditions (5) can be lumped into one formula by 
introducing the variable a ~ = 2 S ~ - 1 .  

The equations (5) become: 

E~= hlaI>0; Vi, 

with 

h ~ = Vii ~ - O i . 

The "field" hl is given by: 

h~[ = Si + E Sisa~ + ~., J i s k~  ~; 
j jr 

+ Z s~sYj~,,~; +... 
jkl 

where 

Cij Cijk 
4 

E cisk' 
+ Ski 8 + "'" 

(7) 
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Cij Cij k "JC Cik j 
JiJ= 2 -  + E k 4 

~- ~,, Cijkl ~- Cikjl ~- Cilkj ..4_ ... 
kZ 8 

Cijk Cijkl -~ Cijlk "~ Cilkj 
J~sk= 4- + ~ 8 +""  (8) 

J i j k l :  ~ -}- "" 

[for a general formula see (40)]. 
The best way of stabilizing U is achieved by 

aligning the local field h~ along the direction o-~. 

h~=Xal 

where 2 is some positive constant. From (7) and (8) one 
obtains: 

J 

at- Z Jijka~lY~(7~ -t- .... : 2 .  
jk 

Every term of this sum is maximum when the interac- 
tions J combine coherently with the patterns P. 

J,s = aI'~J 
Jisk = 7~176 �9 (9) 

It is often assumed (Little and Shaw 1978) that the 
neurons work close to their thresholds. In other words 
O~ adjust itself so as J~=O: a non-zero Ji, would be 
equivalent to a local polarizing field which, if strong 
enough, would wipe out all memory properties. In- 
deed, assuming large Ji's, there would be an unique 
steady state {o -~ with Jia ~ >0: the system would not 
be able to store more than one pattern. If the system 
experiences a dynamically noisy pattern P(t), the 
interactions J are replaced by time statistical averages: 

sis~ = ~,<~o-)~o-~>. (10) 

If the system experiences several patterns a natural, 
but not optimal, generalization of (10) is: 

M 

Jij = Z < ~ >  

M 

s~s~=~ Z <~rojG~> (11) 

M 
s~s...;=~ ;-~ E <Gro-]...G;>. 

The optimal general binary synaptic efficacies have 
been found by Kohonen (1978, 1984) for associative 
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filters and the idea has been applied by Personnaz et al. 
(1985) to fully connected networks. The set of binary 
interactions J = {J~j} can be written as a N x N matrix 
J, 
j = ~ .  ~r 

where ~ is a M x N matrix whose columns are the 
stored patterns. Kohonen has shown that the optimal 
matrix is J': 

J ' = ~ .  ~+ 

where { + is the pseudo-inverse of ~, rather than the 
matrix J. However the increase of memory capacity is 
not large (a factor of two or so) because the number of 
orthogonal patterns is limited to N (see Appendix A1). 
On the other hand the method is difficult to generalize 
to synaptic junctions of higher orders. Therefore the 
memory storage capacities of neural networks will be 
calculated using the simple expressions (11). These 
rules are reminiscent of the Hebbian rules although the 
later applies to real synaptic interactions c~j.., rather 
than to the optimal ones J~j... This point is discussed in 
Sect. 4.3. The occurence of Hebbian mechanism in real 
neural network has been discussed by a number of 
authors, Stent (1973), Woody (1982), Lynch et al. (1984) 
in particular. A thorough account of the experimental 
situation is given by Changeux (1986). Theoretical 
considerations can be found in Palm (1982). Hebb's 
rules are also invoked in the explanation of neuropsy- 
chological experiments (Delacour 1981). 

3 Memory Storage Capacities 
of FuRy Connected Networks 

3.1 General Derivation 

A stored pattern P is stable if E~ > 0 for all i's (cf. (7)). 
From (7), (8) and (11) ET reads: 

. . . .  + ~ 2 J  ~ ... E i -- ~_. J i ja i  ffj . ijkai ffjO" k -]- 
J jk 
M 

" ~ e Z o r ~ ; ~ o ] ~ +  . . . .  (12)  
= ~ (~j jk ) 

It is assumed that the input patterns are noiseless 
(aTa~) = ~@. The case of noisy inputs is treated in 
Sect. 4.1. Following the argument given by Hopfield 
(1982) the term fl=c~ is singled out. This allows the 
quantity E~ to be written as a sum of two terms 

C r  ~ g 
Ei -- vi "]-0i , (13) 

where vT is a coherent contribution and 0~ an incoher- 
ent contribution to E~. The coherent contribution is a 
positive number. The incoherent contribution is a 
stochastic variable with a zero mean value if the stored 
patterns are stochastically independent. The stability 

of an elementary state o-~ is limited by the fluctuations 
of the incoherent term. More precisely the probability 
Y for o-~ to be unstable is the probability that 

--Yi  , 

v~ is given by: 

v ~ = v - = ~ l + y Z l + . . . + Y  p - z  Z 1 
j jk j . . .p 

p- 2 1 - (yN) p- 1 
= N F ( y N )  r = N .  (14)  

r=o 1 - ? N  

The incoherent part is a sum of random variables 

e~ = Z z~P (15) 

with 

If M is large enough for the central limit theorem to be 
applicable, 0T is a Gaussian variable with a mean 
square deviation given by: 

((0~ 2) = (02) = (M - 1) ((Z~P) 2) 

= ( M -  1) ( Z 2 ) .  (16) 

All indexes have been skipped because all patterns and 
all sites play the same role. 

The probability distribution of 0 is P(0): 

1 0 2 
P(0)= 1 ~  �9 e x p -  2(02 ) (17) 

and 
- - Y  

Y = P ( o < - v ) =  S P(o)do 
- - o 0  

oo 

= f P(o)dQ = 1 - r  (18) 
V 

where r is defined by 

1 x t2 
r  -oo j" e x p -  ~ d t  

and 

V 
X -  ~ .  (19) 

Let P* be the probability that the whole pattern is 
stable 

P* = (1 -- y)N = r (20) 

The Eq. (20) is inverted leading to 

X = r  l (p ,  l/N). (21) 



Equations (16), (19) and (21) give the general expression 
of memory storage capacities. 

y2 
M = 1 + (22) 

( Z  2) �9 K(N, P*) 

with 

K(N,  P*) = (~b- l (p ,  lm))2. 

In the limit P* ~ 1 the asymptotic expansion of ~b(X) 

1 X z 
x-,oolim ~b(X)_~ 1 X 1 2 ~ e x p  2 

yields K as the solution of the implicit equation: 

~ K / 2  _ ] / / 2 n .  Ln  P * .  (23) exp 

V ~  N 

K(N, P*) is a very slowly varying function of N. For 
large N's it is nearly logarithmic. With P*=0.5,  
K=8.706 for N=400  and K=6.269 for N =  100 i.e., 
values close to the ones obtained using numerical 
simulations. 

The rest of the paper is mainly devoted to the 
calculation of the average v and to the calculation of 
the mean square deviation ( Z  2) to find out the 
memory storage capacities, in a number of specific 
situations. 

3.2 The Weak Coupling Limit 

According to (15) ZI p can be written as 

Z~ ~ = ~176 ( U~ + 7 (i~/~)2+ 72(1~P)3 +. . . )  (24) 

where 

P c -  " ~ = U .  I p --~_, (Tj(Tj 
J 

is the scalar product between the stored patterns P and 
I ~. In the weak coupling limit it is assumed that 

7~ 1/N 

(and afortiori 7 ~ l/l/N). 
Equation (24) becomes 

pc 
Z~ p ~- a~a~. 1 - 7P ~' (25) 

PP is a Gaussian variable with a mean square deviation 
of N 

P(U ~) = 1 ~ .  e x p -  (UP)~2 (26) 
21/%  2x 

This implies 

1 
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and 

Z~  _~ o-lo-/~pP. 

One deduces ( Z  2) -~ ((ia/~)2)= N. On the other hand 
v ~- N/(1 - 7N) in the weak coupling limit. The memory 
storage capacity is therefore given by: 

N 
M -  ~ 1 + (1 - T N )  2 �9 K(N,  P*)" (27) 

When the neurons interact through only binary syn- 
apses 7 = 0 and the memory capacity is: 

N 
M2 ~ K(N,  P*)" (28) 

A similar result with K(N,  P*) replaced by a 
logarithmic function on N has been derived by Weis- 
buch et al. (1985). 

3.3 The Strong Coupling Limit 

Here it is assumed that 7 V ~ >  1. To avoid a diver- 
gence of the series (15) the order of connection is 
limited to p. The behavior of the network is dominated 
by the last term of the series 

Zlp = o~G~Tp- 2(W F -  1 

Now, if two stochastic variables X and Z are related by 

Z = f ( X )  i.e. X = f -1  (Z) 

the probability distribution Q(Z) of Z is given by: 

d 
Q(Z) = P ( f  - ~ (z))  �9 ~ ( f  - l (z))  , 

where P(X)  is the probability distribution of X. 
Here Z = y P - 2 X  p-1. Dropping the o-~o-~ factor 

which is unessential in the calculation of (Z2),  one 
obtains: 

1 p--2 
Q ( Z ) =  p-2 �9 Z p-1 

2 

�9 e x p -  272(pp_~12) N "  

The mean square deviation of z 

< z 2 >  = 2  o~ z ~ Q(Z)dZ 
0 

is calculated using the transformation 
2 

Zp - 1 

z--  p-2 
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leading to: 

1 (Z2)= ~ 2P-lY2(p-2)F(p--1)NV-1 

where F is the gamma-function. Finally the memory 
storage capacity of a p-connected network is given by 

]/~N p-1 1 (29) 
Mp~l+ 2;_~r(p_�89 ) K(N, P*)" 

For binary network p=2,  the formula (28) is 
recovered. The memory storage capacity of ternary 
networks p =  3 reads, using F(5/2)= 31/~/4, 

N 2 
M a ~ l +  

3K (N, P*) 

and therefore M3/M 2 = N/3. The number of stored bits 
per neuron increases as p increases but the number of 
stored bits per synapse decreases. Indeed this number 
is 

MeN ]/~ (30) 
by= Nv ~- 2V_~F(p_�89 

in particular bs/b 2 = 1/3. 

3.4 Networks Connected Through Binary 
and Ternary Synapses 

The best synaptic organization is probably a mixture 
of synapses of low orders. It is therefore interesting to 
have an analytical expression for the memory storage 
capacities of neural networks involving only binary 
and ternary connections. The coherent part of such a 
network is given by: 

v = N + ? N  z . 

The mean square deviation of the stochastic variables 

Z~' = a~[a~(P ' + ? (UP) 2) 

is derived in Appendix A2 

( Z  2) = N(1 + 25/2~z- 1/2~N1/2 -~- 372N). (31) 

The memory storage capacity reads 

N(1 +TN) 2 
M,,- 1 + 1 + 25/2~Z- 1/27N1/2 -[- 372N 

1 
�9 K ( N ,  P*)" (32) 

It is worth-noting that this formula is valid in the whole 
range of values of 7. 

4 A More Detailed Analysis 
of Memory Storage Capacities of Neural Networks 

4.1 Noisy Input Pattern 

A number of assumptions have been made in the above 
derivation. They are more closely considered in the 
present section. 

One of the hypotheses was the absence of noise in 
stored patterns. Introduction of noise transforms the 
coherent term v into a stochastic variable�9 Let m be the 
probability that a bit is erroneous during the learning 
session. 

(ai) = ai(1 -- 2m) 

Consider the contribution, due to binary interactions, 
to the coherent term 

Z <o~> GT~ 
J 

=N((1 - m)2-  2m(1 - m ) + m E ) = N ( 1 - 2 m )  2 

where the various factors in the bracket relate to the 
probability for a~ and as to be both correct, for one of 
these to be uncorrect and for both to be uncorrect. 
More generally 

2 (a~149149149176 aTa~�9149149 =NV-t(1--2m) ". 
j...l 
The mean value of the coherent term is given by: 

P 
~= ~ 7 r - zNr - l (1 -2m)  r. (33) 

r=2  

Assuming that the generation of errors is a Pois- 
sonian process, the mean square deviation of v is 
approximately 

P (AvZ)=m ~ r ~ r - Z N  r - 1  . 
r = 2  

The probability Y is now given by an integral over a 
correlation of the Gaussian probability distributions 
of v and Q which is also a Gaussian distribution: 
therefore all results found in Sect. 3-1 hold with v 
replaced by ,7 and (~o 2) by (~2 ) .~_  (AYE). It appears 
that (Av z) can be neglected in any cases. In the weak 
coupling limit the series (33) is summed out and the 
memory storage capacity is: 

(1-2m)4N 1 (34) 
M-~ 1 + (1 - ? g ( 1 - 2 m ) )  2 " K(N,  P*) 

whereas in the limit of strong coupling 

7 2 1 / 2 ( 1  __  2m)2VN,- 1 1 (35) 
M~_I+ 2~_lr(p_�89 ) "K(N,P*)" 
These results show that the blurring of input patterns 
sensitively reduces the memory storage capacities of 
neural networks. 



4.2 Study of Randomly Connected Networks 

It has been assumed so far that the graphs of connec- 
tions are complete, at least up to order p. If the network 
is uncompletely connected the synaptic efficacies can 
be written as 

C i j . . . l  = U i j . . . l  �9 Jij...l (36) 

where Uu. ' .t = 1 if the whole chain of synapticjunctions 
from neuron 1 to neuron i is complete and Uu...z=0 
otherwise. The parameters Ju...z depend on learning as 
in (11). 

One first consider the binary connected networks. 
Th.e coherent part is given by: 

~7~ = Z. [Tu = N05 
J 

where the bar is an ensemble average over the realiza- 
tions of synaptic connections. (5 is the probability for a 
binary synapse to exist. The distribution of the in- 
coherent term 

~ _  ~ ~P 
Z i - -  a i f f  i ~ .  U i j a j f f  j (37) 

J 

is still Gaussian. Indeed Z~ a is a sum of independent 
variable vj 

= v j .  
J 

The probability distribution of vj is: 

a5 
e(@ = (1 2 6%- 1) + 5  (vj+ 1). 

Therefore 

and ( Z  2) =N05. 
The memory strage capacity of binary connected 

networks therefore depends linearly on the amount 
05N of existing binary synapses: 

05N (38) 
Ma~- K (N ,  P*) " 

In general networks the coherent term reads: 

~ = Y. Uu + 7 Z UUk + " .  
j jk 

The coefficients Uu. ..z factorize 

Uu...z=uz(ij) �9 u3(jk)...up(mI) 

the subscript refers to the order of the synapse in the 
chain. Assuming that the synapses are deleted at 
random one finds 

U i j . . . l  ~- I - I  05r " 
r 
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If, moreover, all the probabilities 05r are the same, 
(J~r ~ 0.~, 

P 
Z 7 ' - 2 ( 0 5 N )  r - 1  �9 

r = 2  

In binary connected network one observes that the 
probability distribution of 

Uii~ j ff j 
J 

once the various links realizations have been averaged 
out, is the same as that of 

z f =  '/2 2 = E 
d J 

In multiconnected networks 

, , , ,  ) Z ~  fl = ff~t~ fl UijtTj~ (Tj fl -[- 7 ~'jk Ui jk (T j (TJ  tTk(Tk "~-""  

it will be assumed that a corresponding decoupling can 
b e  carried out i,e., the mean square value of Z~ p is 
identical to that of 

Z ~ f l t = ( f ) l / 2  Z o~ I1 - a fl ~ fl ~ jCr j  "4- 70,) ~,, f f  j ( r j  Gk(7 k --}- . . . .  
j jk 

Then all the subsequent analysis simply amounts for 
replacing N by 05N (except in the LnN term) in all 
formulae. 

The same calculations can also be performed for a 
network characterized by a complete binary graph of 
connections and an uncomplete ternary graph of 
connections. These constraints intend to mimic the 
situation encountered in microcolumns in which, on 
the one hand, clusters of ternary synapses would be 
associated to every binary synapse and, on the other 
hand, the neurons are so tightly linked that the graph 
of binary interactions can be supposed to be complete. 
One finds 

(1 + 7a-)N) 2 N 1 
M _ ~ I +  

(1 + 25/2r~- 1/27(05N)1/2 + 3 7205N) " K(N,  P*) " 

If, moreover, one assumes that a fixed number z of 
ternary junctions is attached to every binary synapse, 
the formula becomes (05.= z/N): 

(1 + 7z) 2 1 
M ~  1 + 1 + 25/2~r-1/27zl/2 + 372z K(N ,  P*) " 

In the limit 7 >> 1/z 

zN 
M 3K(N, P*)" (39) 

4.3 Comment on the Hebbian Rules 

All calculations in the preceeding sections have as- 
sumed that the effective interactions Ju...l were given 
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the Hebbian form of (11). But the Hebbian rules 
actually determine the real connections cis...l rather 
than the effectives ones Jej...~. It is therefore more 
natural to set 

M 
C~...z = 7 q -  2 E ~Ta~.. .  ~ a=l 
for a q-ary synaptic chain. 

Then, according to (8), 
qrrtax ~ (~:  I) {q~ } 

J ~  = Y. Cij...z (40) 
pterms q =  P 

where {q} describes all sets of q sites. The study of 
memory caPacities using (40) is not easily tractable. It 
will be limited to networks with a maximum synaptic 
order qma~ = 3. 

The synaptic efficacies are given by 
1 

and 

Jijk = 4 ~ ai ajtTk" 

The coherent term is a stochastic variable with an 
average value 

and a mean square deviation 

7 2 N 3 (Av2)  = ~ �9 

The mean square deviation of the incoherent term Q~ 

1 
/ 

~= ~ ~ ~-~'%~'~P 

L, i u j  t, i u j  ~'k 
jk 

is 

(A02)= 7 N +  ~ 7 2 N  2 . 

The approximate memory storage capacity, given by 
the solution of 

~2 = (Av 2) + ( A s  

is 

M ~ N  
5 

1 +  ~72N 

For large 7's M,-~ N2/5 whereas the formula obtained 
with parameters C instead of J would have been 
M ~ N  2. 

The conclusion is that the use of Hebbian interac- 
tions instead of optimal interactions does not change 
the power laws of memory storage capacities but it 
reduces significantly the number of stored bits per 
synapse, the higher the maximal synaptic order the 
larger the reduction factor. 

5 Partitions of Neural Networks 

The memory storage capacity of neural networks can 
be considered as low. For example K(N~102, 
p = 0.99)= 20. But it can be improved by dividing the 
system into smaller subsets or moduli. Let k be the 
number of moduli. Each modulus comprises 

S = N / k  

neurons. A stored pattern is now an association of k 
memorized sub-patterns, one for each of the moduli. 
Let M* be the maximum number of these patterns. M* 
is given by: 

M* =(M(S))  k 

where M(S) is the memory storage capacity of a S 
neurons network. 

The optimal partition is given by 

dM* = 0 =  d(M(S))N/s 
dS dS 

N ( 1 
=M* ~- - ~ L n M +  M(S)J  

o r  

M (S) Ln M (S) = SM'(S).  (41) 

It is worth noting that the optimal size S ofmoduli does 
not depend on the size N of the network but only on the 
scaling law M (S) of the memory storage capacity. The 
capacities are approximately given by 

S p 1 
M (S) -~ - -  (42) 

Kp 

With (42) in (41) the moduli size is given by: 

S = eK~/p- ~ 

where e=2.718... 
For binary neurons S~-50 if the patterns have to 
retrieved with 1% errors at most. The moduli therefore 
comprise about 50 (pyramidal) neurons. The overall 
capacity of the network is 

M* = 2 uN 



61 

with 

p - 1  
#-- eKe~p-1 L~ 

In the above example # ~ 3 x 1 0  -z which is to be 
compared with # = 1 corresponding to the total num- 
ber of states (2N). 

This simple calculation however is not very satis- 
factory because it assumes that all combinations of 
memorized sub-patterns are allowed and are given a 
significance. This means, from the point of view of 
information theory, that every modulus is able to 
produce a maximum amount of informations of its 
own, independently on the environment. This is cer- 
tainly not so. The moduli are under the control of 
higher structures which restrict their combinatorial 
possibilities. Only those patterns which satisfy the 
constraints prescribed by the higher structures are 
given a meaning. This certainly lowers the storage 
capacity of the system but a compromise between the 
combinatorial possibilities and the constraints leaves 
room for an enormous memory capacity, much larger 
and versatile than that associated with a non- 
partitionned system. These qualitative considerations 
naturally lead to a hierarchical structure for neural 
networks. It is interesting to observe that the first three 
levels of organization seem indeed to exist in cortical 
structure. The lower level would be that of micro- 
columns in which about 50 to 100 neurons are packed 
(Hubel et al. 1978; Eccles 1981; Szentagothai 1975, 
1983). Bunches of about 50 to 100 microcolumns form 
columns and a column is linked to approximately 100, 
not necessarily close by, other columns. 

6 Discussion and Conclusions 

Two sorts of questions have been adressed in this 
article. The first deals with the calculation of memory 
storage capacities of well characterized networks i.e., 
networks with a given topology of connections, known 
synaptic efficacies and well defined dynamics. The 
other, which relies upon the answers to the former, is 
the determination of the best neuronal organization, 
i.e., organization which ensures a maximum memory 
storage capacity for a given set of biological 

constraints. 
The central result of the article is that the maximum 

number of stored bits is approximately proportionnal 
to the number of synapses whatever the topology of the 
network. In particular this conclusion holds for net- 
works comprising synapses of any order such as the 
axono-axonal contacts of the type studied by Kandel. 
Also a deletion of a percent of synapses reduces the 
capacity by the same amount. 

There are however important limitations: 
The proportionality between the number of stored 

bits and the overall number of synapses is valid only for 
large enough relative efficacy 7, a parameter which 
settles the magnitude ratios between synapses of 
different orders. 7 must satisfy 

7> 1/1/  
where N is the number of neurons. This condition is 
applicable to fully connected networks. It must be 

replaced by 7> 1/l/m ~ in non-fully connected sys- 
tems. 05 is the average probability for a synapse to 
exist. 

In the limit 7< 1 ,  resp. ~ -  the memory 

capacity is determined chiefly by the binary 
connections. 

Between these two limits no analytical results have 
been derived except for the interesting case where 
binary and ternary connections, and only these con- 
nections, coexist (see (32)). The found formula could 
account for the memory storage capacity of cortical 
microcolumns. 

It has been shown that the memory storage capac- 
ity is severely spoiled by the possible blurring of input 
patterns: In binary connected network the capacity 
varies as the fourth power of the probability for the 
input bits to be correct. 

It has also been found that the proportionality 
factor between the number of stored bits and the 
number of synapses is a decreasing function of the 
synaptic order. On the other .hand using genuine 
Hebbian rules, i.e. synaptic efficacies proportional to 
the correlated activities of system being trained in place 
of optimal efficacies (see Sect. 2.3), acts exactly in the 
same way. This rises questions related to the second 
topic, that of the best organization of neural networks. 
The answer is not easy because it relies upon the ill- 
defined notion of biological cost (or selective advan- 
tage). If the biological cost of a neuron is very high the 
system must strive to maximize the number of stored 
bits per neuron and therefore to develop connections 
of the highest possible orders. But if the cost of 
synapses is large this is the number of stored bit per 
synapse which must be as large as possible. As this 
number decreases for increasing synaptic orders the 
best neural network will be binary connected. The 
reality must lie somewhere inbetween these two ex- 
treme cases. A predominance of synapses of low orders 
means that the cost of synapses is relatively high as 
compared to the cest of neurons. 

A related question is that of topological organi- 
zation. It has been argued that the combinatorial 
possibilities of neural network are greatly enhanced 
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by dividing the system in smaller moduli. It has been 
shown that the optimal size ofmoduli does not depend 
on the overall size of the network. This size must 
therefore be a universal constant for all species. It 
depends only on the scaling behavior of the memory 
storage capacities. For binary networks and for a 
degree of confidence for stored patterns to be retrieved 
of 99%, it has been found that this size is close to 50 
neurons which can be compared with the size of 
microcolumns. 

Finally it has been stressed that the combinatorial 
possibilities explode exponentially with N, the size of 
the network. The set of these possibilities can be strictly 
adapted to the responses to environmental constraints 
in primitive organisms. But if, by chance, evolution 
induces a significant increase of the number N of 
neuron say in the neocortex, the number of possibilites 
becomes extremely large, much larger in particular 
than that would be strictly needed by survival 
conditions. 

Appendix A1 

Number of Orthogonal Binary Patterns 

According to (24) 

and therefore if P~= 0, Z~ p = 0. 
If all stored patterns are orthogonal I~P= 0; V~, fl 

and the incoherent term ~ is zero. The memory storage 
capacity in this case is only limited by the maximum 
number M,, of patterns of N bits which can be made 
orthogonal. This number is N. Proof: Let consider M 
patterns P i.e. 

P =  {a~}; o-i-_a- q_ 1 . 

The componants rrl of U can be considered as special 
values of componants of vectors U, taken in R, in a 
N-dimensional vector space V. One knows that the 
maximum number of orthogonal vectors one can build 
in V is N. Therefore 

M,,<=N . 

On the other hand it is possible to build N orthogonal 
sets of N binary states. As the construction eventually 
misses other possibilities one has 

M,~>=N 

and therefore M,~ = N. 
The construction is as follows: 
To one state + one associates two states + + and 

+ - of length 2. These two states are orthogonal. 

Each of the two states is considered as one new state + 
on which the same production rule is applied. For 
example 

and 

( - + - - + ) "  

The orthogonality holds for the state + as it holds for 
state + : the four states are orthogonal. The process 
can be pursued 

+ -. + +(=  _+)-* _+ + ( -  +) + ( -  

It generates after z steps 2 ~ orthogonal states of lengths 
N = U .  

One concludes that N orthogonal patterns are 
faithfully retrieved. One extra pattern cannot be made 
orthogonal to the N first. The best which can be 
achieved is to choose it such as I N+ 1. U ~ / ~ .  Then 
((Q//v+I)2)I/z-----N which is of the same order as the 
coherent part vf + 1 :N is a strict upper limit of memory 
storage capacities. 

Appendix A2 

Derivation of (31) 

The quantity to be calculated is 

co 

(Z  2) =2 S Z2Q(Z)dZ 
0 

given Z = X + 7X 2 
and 

1 X 2 
P(X)= ~ e x p -  

2N" 

The relation between Z and X is inverted 

- 1 + ]//1 + 47Z 
X 

27 

and the probability distribution Q(Z) is deduced along 
the lines given in Sect. 3.3 

1 1 ( -  1 + ] / ] ~  47Z) 2 
Q ( Z ) = ~  ~ Z  exp-- 872N 

A first change of variable 

u = ~ ] ~  47Z 
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leads to 

1 ( u -  1) 2 du 
( Z 2 ) - -  1 6 7 3 ~  ~1 (u2 - -1 )2exp- -  872N " 

A second one 

V=U-- I 

and a last one 

v 2 

872N 

to 

2N ~ tl/2(1 +21/2yNl/2t1/2)2 ( Z  2 ) = 
o 

D "  

�9 e x p -  tdt. (A2.1) 

The square of  the in tegrand of  (A2.1) is expanded. The 
resulting expression is a sum of Euler g a m m a  functions 

2 N  
( Z  2) = ~ -  (F(3/2) + 23/27N1/2F(2) + 2~2NF(5/2)). 

Using 

1/7. r(2)= 1; v(5/2)= 3l/7 r(3/2)= ~- ,  4 

the Eq. (31) recovered. 
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