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Abstract. Previously, the authors proposed a model of 
neural network extracting binocular parallax (Hirai 
and Fukushima, 1975). It is a multilayered network 
whose final layers consist of neural elements corre- 
sponding to "binocular depth neurons" found in 
monkey's visual cortex. The binocular depth neuron is 
selectively sensitive to a binocular stimulus with a 
specific amount of binocular parallax and does not 
respond to a monocular one. As described in the last 
chapter of the previous article (Hirai and Fukushima, 
1975), when a binocular pair of input patterns consist 
of, for example, many vertical bars placed very closely 
to each other, the binocular depth neurons might 
respond not only to correct binocular pairs, but also to 
incorrect ones. Our present study is concentrated upon 
how the visual system finds correct binocular pairs or 
binocular correspondence. It is assumed that some 
neural network is cascaded after the binocular depth 
neurons and finds out correct binocular correspon- 
dence by eliminating the incorrect binocular pairs. In 
this article a model of such neural network is pro- 
posed. The performance of the model has been simu- 
lated on a digital computer. The results of the  com- 
puter simulation show that this model finds binocular 
correspondence satisfactorily. It has been demonstrat- 
ed by the computer simulation that this model also 
explains the mechanism of the hysteresis in the bino- 
cular depth perception reported by Fender and Julesz 
(1967). 

1. Introduction 

Hubel and Wiesel (1970) found '"binocular depth neu- 
rons" in monkey's visual cortex. A binocular depth 
neuron is selectively sensitive to a particular orien- 

* This work has been done in the NHK Broadcasting Science 
Research Laboratories 

tation and position of line stimulus. It is also selectively 
sensitive to a specific amount of binocular parallax 
caused by a pair of lines with similar orientation and 
does not respond to a monocular stimulus. When the 
orientation of the line projected on the left retina 
deviates from that on the right retina, they cease to 
respond. These data suggest that, in order to yield 
depth perception, a binocular pair of input patterns 
should have almost the same orientation. 

In a recent article, the authors proposed a model of 
neural network extracting binocular parallax (Hirai 
and Fukushima, 1975). It is a multilayered network 
whose final layers consist of neural elements corre- 
sponding to "binocuIar depth neurons". 

When we watch a binocular pair of stimuli, each of 
which consists of, say, N vertical bars arranged closely 
to each other and is projected at the corresponding 
positions on both retinas, there would be N x N  
possible binocular pairs of vertical bars. Even in such a 
case, we perceive only N correct binocular pairs and all 
the other pairs are suppressed. So, in the brain there 
must be a neural network finding correct binocular 
pairs or "binocular correspondence". 

Here we propose a model of neural network finding 
binocular correspondence on the assumption that 
some neural network is cascaded after the binocular 
depth neurons and determines binocular correspon- 
dence 1. Since we have no physiological data on this 
point, the structure of the model is inferred from 
somewhat psychological and engineering points of 
view. To simplify the analysis, the effect of the eye 
movement, by which the images on both retinas are 
brought into fusional area, is not incorporated in this 
model. 

The performance of the model has been simulated 
on a digital computer. In computer simulation, the left 

1 Preliminary report of this model was presented in Japanese 
(Hirai and Fukushima, 1976) 
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Fig. 1. A schematic diagram showing how the neural elements in the 
binocular field respond to a binocular input 

and the right retina are assumed to be one dimen- 
sional. The results of the computer simulation show 
that this model can find binocular correspondence 
satisfactorily. It has been demonstrated by the com- 
puter simulation that this model also explains the 
mechanism of the hysteresis in the binocular depth 
perception reported by Fender and Julesz (1967). 

Similar models have been proposed by Marr and 
Poggio (1976) and Marr et al. (1978). The differences 
between their models and our model are discussed in 
the conclusion. 

2. Problem of Binocular Correspondence 

Our previous model of neural network extracting 
binocular parallax (Hirai and Fukushima, 1975) has 
multilayered structure. Two input layers, correspond- 
ing to the left and the right retina, are composed of 
photoreceptors arranged in two-dimensional arrays. 

All other layers are composed of analog threshold 
elements also arranged in two-dimensional arrays. The 
neural elements of the final layers correspond to the 
binocular depth neurons. 

Figure 1 schematically shows how the neural ele- 
ments of the final layers of the previous model respond 
to the objects in the visual space. To simplify the 
illustration, only the left and the right photoreceptor 
layers and the final layers are illustrated. The figure 
shows only a group of neural elements selectively 
sensitive to one particular orientation of line stimulus 
(say, vertical bar). The neural elements of the final 
layers are arranged in a three-dimensional space 
(x, y, z). In the figure, however, to simplify the following 
explanations, a cross section perpendicular to y-axis, 
that is, (x ,z)  plane is presented. A neural element 
situated at (x, z) responds only when a binocular pair 
of inputs are projected at x L = x - z / 2  on the left retina 
and at x R = x + z/2 on the right retina simultaneously. 
That is, x indicates a direction to which the binocular 
stimulus is seen, and z indicates binocular parallax 
between the left and the right retinal images. It is 
assumed that there is no binocular depth neuron 
outside a limitted range of z, that is, [zl > Zma x. The belt- 
zone in the (x ,z)  plane where the binocular depth 
neurons are situated is named "binocular field". 

Figure 1 shows how the binocular depth neurons 
respond when a pattern composed of four vertical bars 
of small intervals is presented to both the left and the 
right retina. The binocular depth neurons which re- 
spond to this stimulus are situated at the intersections 
of the two sets of parallel lines drawn from the 
positions of the bars on the left and the right retina. As 
shown in the figure, when the intervals between the 
bars are narrow, every binocular pair of bars in the 
belt-shaped binocular field elicits a response. It is 
psychologically observed that when we, human being, 
are presented with such binocular pattern, we perceive 
only the binocular pairs b1,1, b2,z, b3,3, and b4, ~, and 
do not perceive any other pairs. There is little phy- 
siological data suggesting how the binocular depth 
neuron or other neurons in the visual cortex respond 
in such a situation. 

3. Basic Ideas of the Model 

The structure of the neural network finding binocular 
correspondence is inferred from somewhat psychologi- 
cal and engineering points of view, It is assumed that a 
neural network is cascaded after the binocular depth 
neurons and determines binocular correspondence. It 
is assumed that neural network should satisfy follow- 
ing two basic conditions. 



Condition 1. In case like Fig. 1, a stimulus 12, for 
example, has a possibility to have a binocular cor- 
respondence with one of r 1, r2, r3, and r 4. 

This condition comes from a psychological obser- 
vation : When we watch such a stereopattern as shown 
in Fig. 1, we can perceive only the binocular pairs 
[li, ri] and all other pairs are suppressed. It is postu- 
lated that this condition is implemented by a mutually. 
inhibitory neural network : Each neural element in the 
binocular field receives inhibitory inputs from neural 
elements whose responses are contradictory to its 
response. For example, as illustrated in Fig. 1, the 
response of the element b2, 2 is contradictory to those 
of the elements in the upper and lower triangular 
regions shown by the shading. Therefore, the element 
bz, 2 receives inhibitory inputs from the elements in 
those regions, and, at the same time, sends inhibitory 
signals to these elements. All neural elements in the 
binocular field are considered to have such mutually 
inhibitory connections. 

Prior to the explanation of the whole model, the 
function of this mutual inhibition is explained in a 
simplified model as illustrated in Fig. 2. This figure 
shows a case where vertical bars are so arranged that 
bar A and bar F stand side by side with a small 
distance. It is supposed that the eyes are fixated on bar 
F. The mutually inhibitory connections in question are 
illustrated in Fig. 3. It is assumed that each neural 
element is analog threshold element with time lag of 
first order as illustrated in Fig. 4. The symbol b~ 
denotes the i-th neural element or its internal potential, 
and E~ indicates an excitatory input to that element 
(i = 1, 2, 3, 4). The output of each element is represented 
by ~0(bi) where ~0() describes the nonlinear transfer 
characteristics of the analog threshold element, and is 
defined by 

{b0 if b > 0  
q0(b) -- if b < 0 .  (1) 

If all coefficients of the inhibitory connections are the 
same and equal to w, the behavior of each element is 
expressed by 

# d r -  dbl + bl = E1 - w[rP(b2) + q~(b3) + ~0(br , (2) 

db2 
# ~ { -  + b 2 = E 2 - w[~o(bl) + (p(b4)], (3) 

db3 
# ~ -  q- b 3 = E 3 - wE(p(bl) q- q)(b4)], (4) 

db4 b 
# d r -  + 4=E4-w[~~176 (5) 

where # is time constant of the neural elements. 
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Fig. 2. An example of relation between objects in the visual space 
and the response of binocular field 
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Fig. 3. Mutually inhibitory connections among neural elements in 
the binocular field 
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Fig. 4. A neuron model employed in the computer simulation: 
analog threshold element with time lag of first order 
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Fig. 5. Another example of the relation between objects in the visual 
space and the response of binocular field 

Let us consider the equilibrium state of these 
dbi 

equations. Making the derivatives ~ -  (i = 1, 2, 3, 4) in 

above equations equal to zero, we obtain: 

b 1 = E - w[~0(b2) + q0(b 3) + ~0(b4)], (6) 

b 2 = E - w[q0(bl) + q0(b4)], (7) 

b a = E -  w[q)(b 1) + ~~ (8) 

b, = E - wEq0(b 1) + ~0(b 2) + (P(b3)] �9 (9) 

In these equations, it is assumed that all the inputs Ei 
(i = 1, 2, 3, 4) are equal to E( > 0). 

When we see such vertical bars as illustrated in 
Fig. 2, we perceive binocular pairs b 2 and b 3, and do 
not perceive any other pairs, namely, b 1 and b 4. In 
order that the model shows the same response, the 
steady-state values of b 2 and b 3 are required to be 
positive, and those of b~ and b 4 are required to be 
negative or equal to zero. Then, we obtain the follow- 
ing inequalities from (6)-(9) 
b 1 = E(1 - 2w) < 0 ,  (10) 

b 2 = E > 0 ,  (11) 

b 3 = E > 0 ,  (12) 

b 4 ~-- E(1 - 2w) <0 .  (13) 

It is seen from these equations that the magnitude of w 
should be in the range of w > 1/2. 

Near this equilibrium state, the behavior of each 
neural element is described by the following differential 
equations. 

dbl 
# - ~  +b 1 = E - w ( b z  +b3) , (14) 

db 2 
 7i- +b2=e, (15) 

db 3 
# d t -  +ba = E ,  (16) 

db 4 
# - ~  +b4=E-w(ba  +b3). (17) 

The above equations can be rewritten with vector 
notations as follows 

db 
/x~t = E - A . b ,  (18) 

where 

A =  0 1 " 

w w 

(19) 

Since all the eigen values of (19) have positive real part, 
this equilibrium state is asymptotically stable. 

Another example of the response of the binocular 
field is illustrated in Fig. 5. This figure shows a case 
where vertical bars are so arranged that bar A is just 
behind bar F, and the eyes are fixated on bar F. Since 
the binocular parallax of the bar F is smaller than 
those of any other pairs, only the response of b 4 
(corresponds to bar F) yields depth sensation. The 
images on the retinas A L and A R are perceived mono- 
cularly. Therefore, in spite of the symmetrical structure 
of the mutually inhibitory neural network shown in 
Fig. 3, only the internal potential b 4 should be positive, 
and bl, b z, and b 3 should be negative or equal to zero 
in the steady state. A method which makes b 4 positive 
and makes b 1, b 2, and b 3 negative might be to modify 
the excitatory inputs in such a way that E 4 be larger 
than E 1, E 2, and E 3. In this model, however, we 
employed another method. It is assumed that in- 
hibitory inputs, namely, 11, I 2, 13, and 14 are applied 
externally to the elements bl, b2, b3, and b 4, re- 
spectively, and their magnitudes are so adjusted that 14 
becomes smaller than 11, 12, and I 3. Here we introduce 
following Condition 2 as a rule for that modification. 

Condition 2. A binocular pair whose parallax is smal- 
ler than those of the others is taken as a candidate for 
binocular correspondence. 



The Condition 2 would be reasonable, because it is 
psychologically observed that binocular depth per- 
ception becomes increasingly difficult with larger bino- 
cular parallax (Julesz, 1971; Sperling, 1970). 
Incidentally, in real life situation, we fixate an object 
and make its amount of binocular parallax as small as 
possible by the eye movement. The function of 
Condition 2 is implemented by modifying the inhi- 
bitory weighting coefficient to be proportional to the 
amount of binocular parallax. 

4. Outlines of  the Model 

In this chapter, before the detailed explanation, the 
outline of the model is given. The structure of the 
model, together with an example of the response, is 
shown in Fig. 6. The model consists of three layers in 
all. They are named from B to D. Since only the (x, z) 
plane of the binocular field is considered in this article, 
each layer is a two-dimensional array of neural ele- 
ments in the same way as the binocular field illustrated 
in Fig. 1. 

The layer A corresponds to the output layers of the 
previous model (Hirai and Fukushima, 1975), It con- 
sists of neural elements corresponding to the binocular 
depth neurons, and is the binocular field itself. Each 
element in the A-layer gives excitatory signal to its 
corresponding elements in B-, C-, and D-layers. The 
excitatory connections from layer A to each of these 
layers are one-to-one fasion. 

B-, C-, and D-layer are composed of analog thresh- 
old elements with time lag of first order. D-layer is the 
output layer of this model and transmit depth infor- 
mation to higher stages of the visual center. D-layer is 
composed of neural elements corresponding to exci- 
tatory neurolas, and B- and C-layer are composed of 
neural elements corresponding to inhibitory ones. 

The mutually inhibitory connections derived from 
Condition 1 are introduced among the neural elements 
of B-layer. The function suggested by the Condition 2 
is realized by the inhibitory connections between B- 
and C-layer. These inhibitory connections are nearly 
one-to-one fashion with a slightly spreading distri- 
bution. The connections from C- to B-layer are so 
designed that inhibition becomes increasingly large 
with larger binocular parallax. The connections from 
B- to C-layer are constant with respect to binocular 
parallax. 

5. Structure of the Model 

5.1. A-layer 

This layer corresponds to the binocular field illustrated 
in Fig. 1. We assume a Cartesian co-ordinate system 
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Fig. 6. Structure of the model 

(x,z) on A-layer, and use a notation, for example, 
A(x,  z) to indicate an neural element (or output of the 
element) situated at point (x, z). If light stimuli are 
simultaneously presented at x L on the left retina and at 
x e on the right retina, only the element situated at 
x = (x L + xR)/2 and z = x R - x L yields output. 

The response of neural element A(x,  z) at time t is 
represented by A(x,  z, t). Each element of A-layer is 
assumed to yield an output represented by the follow- 
ing equation. 

A(x,  z, t) = min [ I L(X-- Z/2, t), I R(X + Z/2, t)]. (20) 

IL(X, t) and IR(x, t) are inputs to the left and the right 
retina, respectively. The function m i n i ]  represents an 
operation which takes the smaller value of the two 
arguments. 

5.2. B-layer 

The response of B(x, z) at time t, namely, B(x, z, t), is 
expressed by 

B(x, z, t) = K'cp e -  ~/~. A(x,  z, t -  z) 

- y y  
S 

�9 B ( x + ~ , z + ~ ,  t - ~ ) d ~ . d ~  

- W , ( z ) .  f 
S' 

�9 C ( x + : , z + ~ , t - T ) d { . d ~ ] d z } ,  (21) 

where the symbol K represents a positive constant. S 
and S' represent the size of the regions of B- and 
C-layer from which each B-element receives inputs. 
The symbol # represents a time constant of the ele- 
ment. The first term of the right side of (21) represents 
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Fig. 7. A schematic diagram showing how the neural elements are 
arranged in a two-dimensional plane (x, z) 
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Fig. 9. Inhibitory weighting function W~(z) from C- to Bqayer 

an excitatory input from A-layer. The second term 
represents the mutually inhibitory connection within 
B-layer, The last term represents the inhibitory input 
from C-layer where WB(z ) represents the weighting 
function of inhibition which becomes increasingly 
large with larger amount of binocular parallax 
derived from Condition 2. 

5.3. C-layer 

Each element of C-layer receives excitatory input from 
A-layer in one-to-one fashion, and inhibitory inputs 
from B-layer through the coefficient WcB(~, O. The 
response of the element C(x,z) at time t, namely, 
C(x, z, t), is represented by 

C(x, z, t) = g.~o e-~/~. A(x, z, t - z) 

S 

�9 B ( x + : , z + ( , t - z ) d { . d ( ] d z } .  (22) 

5.4. D-layer 

This is the output layer of this model. Each element 
receives excitatory input from A-layer in one-to-one 
fashion, and inhibitory input from C-layer. The re- 
sponse of the element D(x, z) at time t, namely, D(x, z, t), 
is represented as follows 

D(x, z, t) = K.  ~o e-  ~/". A(x, z, t -  z) 

- f f wDc(r  
S 

6. Computer Simulation of the Model 

The performance of the model has been simulated on a 
digital computer (IBM 370/135 with 248 k-Byte core). 
Each retina is assumed to be one-dimensional array 
composed of 30 photoreceptors. Each of layers A, B, C, 
and D consists of 30 x 30 neural elements as illustrated 
in Fig. 7. It corresponds to the rhombic region en- 
closed by broken lines illustrated in Fig. 1. The time 
constant/~ employed here is 3 ms. 

6.1. Interconnecting Coefficients between Layers 

6.1.1. WBB(~, O. As illustrated in Fig. 8, the mutually 
inhibitory connection in B-layer, WBB(~, (), is so de- 
signed that a neural element situated at the center 
B(x,z) (indicated by | inhibits the neural elements 
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B(x + ~, z + () indicated by the filled circles. The value L 0' 
of WBB(~, () in the defined region is taken as WBB(~, () 
=2.0. 
6.1.2. WCB(~,( ) and Woc(~,(). Each interconnecting 
coefficient, say, WcB(~, 0 is so designed that a neural ~ 0.5 
element C(x, z) receives inhibitory signals from 3 x 3 
neural elements B(x + ~, z +  () of B-layer centered at 
B(x,z). The values are as follows: WcB(~,()= 1.01 and ol 
WDc(~, () = 2.0 in their defined 3 x 3 regions, cl 
6.1.3. WB(z) an d WRc(~, (). The inhibitory connections 
from C- to B-layer are so designed that a neural ~0; 
element B(x, z) receives inhibitory signals from 3 x 3 
neural elements C(x + ~, z + 0 centered at C(x, z) 
through the interconnecting coefficients represented by 
W~(z). WBc(~, (). The value of WBc(~, () is equal to 1.01 ~o.5 
in the defined 3 x 3 region. The weighting function 
WB(z ) is illustrated in Fig. 9. The values +_ z, shown in 
the figure represent the points of WB(z)--- 1.0 where the 
strength of inhibition from C- to B-layer becomes b 01 
equal to that from B- to C-layer. The value of z~ is 
selected to be 15 in the computer simulation. The unit 
of the binocular parallax is measured by the distance 
between centers of adjoining photoreceptors. The 
parallax is taken positive or negative depending on x R 
> x L or x R < x L, where x R and x L are the positions of 
the input patterns. The values ++_z,, represent the 
maximum and the minimum value of the binocular 
parallax to which this model is able to respond. The 
value of z m is selected to be 30 in the computer 
simulation. 

6.2. Response of  the Model  

The relation between the amount of binocular parallax 
and the response of the model is shown in Fig. 10. The 
results are obtained by the computer simulation. We 
use a notation Z to indicate a binocular parallax of the 
input stimulus and a notation z to indicate a position 
of neural element in each layer. Figure 10a shows the 
case where a binocular pair with Z =  13 is given, and 
the responses of neural elements B, C, and D situated 
at x =0  and z = 13 are plotted. Figure 10b and c show 
the cases with Z =  15 and Z =  17, respectively, and the 
responses of the neural elements at z = Z  are plotted. 
The ordinate represents the magnitude of the response. 
As is seen in Fig. 10a, when the amount of binocular 
parallax Z ( = 13) is smaller than z~ ( = 15), the D-layer- 
element situated at position of z=13 gives positive 
response. On the contrally, as illustrated in Fig. 10b 
and c, when the amount of binocular parallax is equal 
to or greater than %, no neural element of D-layer gives 
response in the steady state. 

Another example of the response obtained by the 
computer simulation is shown in Fig. 11. The magni- 
tude of the response of a neural element is indicated by 

z: W~( z )=0.B 

-'~D(x z) //-'D(x,z) 

""'~/2... C(x,~) 
J . .'-T-----.- . . . .  

50 ,o'o 
i(m see.) 

z :WB( z )=1.0 

B(x,z), C(x,~) 
f 

D(x,z) l(m see.) 

I z:WB(z)=I.2 
o ~ z = , 7 ,  ~ ,  . . . . . . . . .  -C-(2.;3 . . . . . . . . . . . . . . . . .  

o r162 =0.5~,  

t(m sec.) 
I 

ol s'o ~oo > 

C 

Fig. lOa-c. Responses of a neural element in each layer when a 
binocular input is given to the position [Z l<z  r a, ]Zl=z r b, and 
IZl>zre 

the whiteness in the photographs. The input pattern is 
derived from a lighting spots (or vertical bars) ar- 
ranged on the surface sinusoidally curved in the direc- 
tion of depth. The input stimuli are presented to the 4-, 
9-, 12-, 14-, 16-, 18-, 20-, 23-, and 26th element of the 
left retina and the 4-, 6-, 8-, 12-, 16-, 20-, 24-, 26-, and 
28th element of the right retina respectively. There are 
9 x 9 binocular pairs. As seen in the result, from 81 
possible pairs this model finds binocular correspon- 
dence successfully. 

These results show that this model finds binocular 
correspondence even in the case where the input 
patterns are made up by the repetition of identical 
pattern components, say, lighting spots with same size 
or vertical bars with same width and length. 

7. Hysteresis in the Depth Perception 

Fender and Julesz (1967) found the hysteresis pheno- 
menon in the binocular depth perception illustrated in 
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Fig. 11. An example of the response of the model 
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Fig. 12. Hysteresis in the binocular depth perception 

Fig. 12. In the figure z,, represents the amount of 
binocular parallax where the fusion breaks, and zr 
represents the binocular parallax where the refusion 
occurres. This means that a binocular pair of inputs 
whose parallax is smaller than z~ always fuse and yield 
depth sensation, but that in other case fusion and 

I Z =13  , - 

81,d 

~. 0,~ 

Z=19 

5'0 100 

i // 
150 200 

= 
250 t (m sec.) 
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5'o ~ "  

D 1 
1 .o  

L z-l? / Z=19 ' ,/ !/ 
|~ l 
~ " !=1 i 

t 

0 50 100 150 200 250 t (m see.) 

Fig. 13. An example of the response of the model showing hysteresis 
phenomenon 

depth sensation do not always occur. The comparison 
with the results of Fig. 10 shows that z~ and z m 
obtained psychologically correspond to those defined 
in this model. 

An example of the response of the model showing 
the hysteresis in the binocular depth perception is 
presented in Fig. 13. In the figure, the responses of four 
neural elements situated at the position z =  13, 15, 17, 
and 19, are shown. The amount of binocular parallax 
Z of the stimulus is increased from Z = 1 3  (<z,.) to 
Z = 19 (>  z~) with small steps. As shown in the figure, 
the response appears even in the case where Z =  15, 
Z = 17, and Z =  19, while the results in Fig. t0 show 
that the response does not appear in such cases. In 
other words, when the parallax is increased slowly 
from Z < z ~  to Z > z  r with small steps, the model 
continues to respond. When the input with a parallax 
Z > z~ is suddenly presented to the model, however, it 
does not respond to the stimulus. The results described 
above demonstrate that this model is able to explain 
the mechanism of hysteresis phenomenon in the bino- 
cular depth perception. 



217 

8. Conclusion 

A model of neural network finding binocular cor- 
respondence has been proposed. Since we have little 
physiological data on this point, the structure of the 
model is inferred from somewhat psychological and 
engineering points of view. In constructing the model, 
it is assumed that some neural network is cascaded 
after the binocular depth neurons and determines 
binocular correspondence. 

The results of the computer simulation show that 
this model is able to. find binocular correspondence 
satisfactorily even in the case where the binocular 
input patterns are made up with the reiteration of 
identical picture elements such as lighting spots with 
the same diameter or vertical bars with the same width 
and Iength arranged on the surface curved in depth. It  
is also demonstrated that this model is able to explane 
the mechanism of hysteresis phenomenon in the bino- 
cular depth perception. 

Recently, Marr  and Poggio (1976) and Marr  et al. 
(1978) proposed a cooperative stereo algorithm which 
satisfied the following two rules: uniqueness and con- 
tinuity. In our present model uniqueness is implement- 
ed in a different way by the mutually inhibitory 
connection WB,(~, 0 of B-layer. Continuity is also, but 
implicitly, incorporated by W,B(~, () in a sense that a 
given neural element does not inhibit the others whose 
responses are not inconsistent with that of the given 
one as described in the explanation of Condition 1. 
Here, the meaning of continuity or smoothness is 
extended to include not only the neural elements with 
equal binocular parallax, but also all of consistent 

neural elements. As described above, another reason- 
able rule, Condition 2, is incorporated into this model. 

Although only the experiments for one dimen- 
sional stereo patterns are shown in this article, this 
model can be extended to have a function tb handle 
two dimensional stereo patterns, such as random-dot  
stereogram. 
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