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Abstract. Population growth is modelled by means 
of diffusion processes originating from fluctuation 
equations of a new type. These equations are obtained 
in the customary way by inserting random fluctuations 
into first order non linear differential equations. 
However, differently from the cases so far considered in 
the literature, equations possessing two non trivial 
fixed points are taken into account. The underlying 
deterministic models depict the regulated growth of a 
population whose size cannot decrease below some 
preassigned lower threshold naturally acting as an 
absorbing boundary. A fairly comprehensive 
mathematical description of these models is provided. 

1 Introduction 

A variety of models of population growth in random 
environment have been proposed in the literature and 
diffusion models have been constructed by inserting 
"white noise"-like fluctuations in the growth 
equations. Thus doing, one of the parameters of the 
growth equations is viewed as a stochastic process 
more or less explicitly accounting for the effect of 
environmental variability (Capocelli and Ricciardi, 
1974a, b; Feldman and Roughgarden, 1975; May, 
1971, 1973; Montroll, 1972; Nobile and Ricciardi, 
1980, 1984; Ricciardi, 1977; Tuckwell, 1974). 

A feature shared by the totality of the resulting 
stochastic processes is their being defined over a finite 
or infinite interval an end point of which is always the 
origin (zero-size population). Arbitrarily small 
population sizes are thus to be expected for decreasing 
populations unless an artificial "lower threshold" is set 
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at some suitable point of the above mentioned interval 
to secure an automatic extinction whenever the 
population size attains such point. In mathematical 
terms one requires that the lower threshold act as an 
absorbin 9 boundary for the stochastic process 
modeling the population size. 

In order to overcome this not too natural 
procedure and to provide at the same time a detailed 
analysis of certain diffusion processes so far not 
discussed in the literature we shall propose growth 
equations characterized by three equilibrium points. 
The third equilibrium point identifies with the lower 
threshold mentioned in the foregoing while the other 
two equilibria depict the zero population size and the 
carrying capacity, respectively. By inserting random 
fluctuations in the growth equations we shall thus be 
lead to diffusion processes defined over intervals whose 
lower end points can still be taken as suitable to 
represent the size of a population. By analogy with the 
parallel analysis of logistic and logarithmic models 
(Nobile and Ricciardi, 1980; Nobile et al., 1982) in the 
sequel we shall also take into account growth 
equations containing non linearities of logarithmic 
type. 

2 A Deterministic Growth Model 

We shall request that the growth law is characterized 
by the following properties: i) There exists an open 
interval (/~, 7), with/~ and 7 positive real numbers, such 
that for each initial population size x0 - x(0) ~ (/~, 7) the 
number x(t) (t>O) of individuals is an S-shaped 
function having 7 as an horizontal asymptote; ii) x =/3 
and x = 7 are fixed (or equilibrium) points such that the 
former is unstable and the latter is asymptotically sta- 
ble; iii) x = 0 is an asymptotically stable point and iv) x(t) 
is decreasing in (0,/~) and in (y, oo) with lim x(t) = 0 for 

t ~ c O  

0 < x o </~ and lim x(t) = 7 for ~ < Xo < oo. We shall 
t-+oO 
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finally confine our attention to growth processes that 
can be described by first order differential equations in 
the absence of environmental fluctuations. 

The above assumptions are quite stringent 
constraints on the possible resulting growth models. 
Nevertheless, the class of such models is rather large. In 
the sequel, by analogy with the logistic case we shall 
concentrate on the study of a growth process whose 
intrinsic fertility is a convex n function. More 
precisely, we shall refer to the following growth law: 

d t = r x  1 -  - 1  (7>f i>0 ,  r>0) ,  
(2.1) 

x(0) =Xo. 

Subsequently, we shall also consider the case 

-- sx (1 - lb-~-x) (ln~x - l )  ( c > b > 0 ,  s>0) ,  

(2.2) 
x(0) = Xo 

whose relation to model (2.1) is reminiscent of that 
existing between Gompertz and logistic equations 
(Capocelli and Ricciardi, 1974b). 

It is convenient to re-write Eq. (2.1) and (2.2) in the 
forms: 

dx 
,t-7 = ~x( f l  - x )  (x  - ~) 

x(0)=Xo 

and 

(7>f i>0 ,  ~>0) ,  

(2.3) 

dx 
dt  = a x ( b - l n x ) ( l n x - c )  (a>O,c>b>O), 

(2.4) 
x(0)=Xo, 

r s 
where we have set e = ~ -  and a---~-. It is then /# bc 
immediately seen that the solution of (2.3) satisfies 
assumptions i)~iv). Such solution, x==-x(t), is 
implicitly defined by 

x ~ - e l x - ~ f  =Zlx- f l lVexp{-a f lT(7- f i ) t  } (2.5) 

with 

A =- x~~ elx~ - ~1~ (2.6) 
IXo-/~F 

Furthermore, it is straightforward to prove that x(t) is 
convex w in (0, xl)w(fi, xe)u(y, oo), where we have set: 

x~=~D+/~- (~2+/~2- /~r  ] (0<xl  </~), 
(2.7) 

X2 = 1 IV "~- fl -}- ())2 -}-/~2 --/~V) 1/21 ( /~<X2 < ~ )  �9 

Elsewhere x(t) is convex c~. Figure 1 shows the 
behavior of x(t) for various choices of x. 
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Fig. l .  The solution of Eq. (2.3) is plotted for c~ = 5 .10 -a ,  fl = 3, 
7=40 and for Xo=5, 7, 10, 16, 28, 50. Time scale is expressed in 
arbitrary units 

Note that in (0, 7) the growth rate has a minimum 
when the population size equals xl whereas it is 
maximum when the population size is equal to x2. The 
times tM and t,, necessary for the population to attain 
respectively the maximum and the minimum growth 
rate, when initially there exist Xo individuals, are given 
by 

f 

AIx2 
tu = [~,&/(y - f l ) ]  - ' I n  ~- 

( x ~ - ~ l x 2 - ~ l e  J ' 
(2.8) 

tm = [aflT(7_ fl)] - * ln ~_ A[x' - fll' ='~ 
(X~l-l:'[Xl - -  ~l/JJ 

with A, xl, and x2 defined by (2.6) and (2.7). 
It is finally straightforward to derive similar results 

for model (2.1). While postponing to Sect. 4 the study 
of model (2.4) we shall now insert "environmental 
fluctuations" into model (2.3) and provide a somewhat 
accurate description of the ensuing stochastic 
processes. 

3 Diffusion Models 

We shall assume that the intrinsic fertility ct in model 
(2.3) is a stationary normal process a+A(t)  with 

E[A(t)] ---0, 
(3.1) 

E[A(tO A(t2)] = 0 .26( t2-  t0 ,  tl < t2, 

where a 2 denotes the intensity of the white noise A(t). 
Such procedure, frequently used for other growth 
models (see, for instance, Ricciardi, 1977) makes us 
switch from the study of one population to that of an 
ensemble of macroscopically identical populations 
sharing the initial size but possessing distinct intrinsic 
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fertilities. Model (2.3) thus leads us to the Stratonovich 
stochastic differential equation (cf., for instance 
Stratonovich, 1968): 

dX  
d~- = e X ( X  - fi) (7 - X)  + X ( X  - fl) (7 - X)  A(t) 

(~,>fl>0, ~>0), (3.2) 

that must be solved under the initial condition 
P{X(O)=xo}  = 1. As is well known (cf. Stratonovich, 
loc. cit.), Eq. (3.2) with the assigned initial condition 
defines temporally homogeneous diffusion processes 
X(t )  having drift A~(x) and infinitesimal variance 
A2(x) given by: 

A ~ ( x )  = - x ( x  - 3 )  ( x  - ~) 

(7 2 

E3x 2 - 2x(/~ + 7) + ~TJ t 

(~>0, 7>/3>0),  (3.3) 
A 2(x ) = o_2xZ(x_fl)2 ( x -  7) 2 . 

Therefore, while disregarding all intervals lying in the 
negative half axis because of no interest within the 
present context, the diffusion intervals I~==-(O, fi), 
I2=--(fl, 7), and/3-(7,  co) must be separately taken into 
account. Concerning I~, one can show that its end 
points are natural boundaries (in the sense of Feller, 
1954). A similar conclusion holds also for the end 
points of 12. For I3, instead, while 7 is still a natural 
boundary one can prove that the point at infinity is a 
regular boundary. Hence, for I~ and I2 the initial 
condition alone uniquely specifies the diffusion 
process. As for 13, a suitable boundary condition has to 
be imposed. 

Instead of determining the transition probability 
density function (p. d. f.) of the process X(t)  as solution 
of a diffusion equation with appropriate boundary and 
initial conditions in each of the intervals I1, I2, and 13, 
we remark that the monotone transformation 

1 ln~ x-f i '  x '~ (3.4) 
y = h ( x ) -  fiT(7-fi--~ 1 .1~- I  I ~  ) 

[decreasing in (0, fl)u(7, oe) and increasing elsewhere] 
changes (3.2) into 

d Y  
=c~+A(t) (ct>O) (3.5) 

dt 

while the initial condition becomes P{Y(O)=yo}  = 1, 
with Y and Yo expressed in terms of X and Xo via 
transformation (3.4). On the other hand, the intervals 
I~, Iz, and I a are mapped into the intervals J1 ~d2 
_ = ( - ~ ,  00) and d3, respectively, for which the end 
points + oo are natural boundaries while the end point 
0 (corresponding to the right hand point of I3) is a 
regular boundary. One can thus easily obtain the 

transition p.d.f, of X(t )  in terms of the transition p.d.f. 
of a suitably defined Wiener process Y(t). To this 
purpose we remark that transformation (3.4) is defined 
for x + fl, x + 7, is strictly increasing in (fl, 7) and strictly 
decreasing elsewhere. Therefore, denoting by 

1 f (y-yo- t) 2 P(Y' trY~ ~r 2 ~  exp _ ~ j (3.6) 

the transition p.d.f, of Y(t) in the intervals J~ and J2 
and making use of (3.4) the transition p.d.f, of X(t) can 
be written as 

f ( x ,  t,Xo) = (P(~d~ y~ (3.7) 

d y y  y = h(x) 

for all pairs x and Xo both belonging to J1 or to J2- 
More explicitly, we have: 

1 
f ( x ,  t lxo)= [ x l ( x - f l ) ( x - 7 ) l ]  -1 

{ _ [h(x) - h(xo) - at] 2 
g exp j (3.s) 

with h(x) defined by (3.4). 
It should be remarked that if the interval I3 = (7, oe) 

is taken into account, the procedure used in the 
foregoing to embody the effects of environmental 
variability does not lead us to a unique diffusion 
process, the point at infinity of 13 being indeed a 
regular boundary. However, this should be of no 
surprise since the asymptotic behavior of the functions 
q)(x) = c~x( x - fl) (7 - x) and ~p(x) = c~- 1 q~(x) appearing 
on the r.h.s, of (3.2) do not meet the well known 
sufficient condition for the uniqueness of the solutions 
of (3.2) (cf. Jazwinski, 1970). Even though the 
opportunity of extending the validity of model (3.2) to 
interval 13 may be questioned, it appears reasonable 
to specify the ensuing diffusion process by imposing 
that the point at infinity is a reflecting boundary. This, 
indeed, insures that any population accidentally 
becoming infinitely large would not stay unchanged 
but is brought back to finite sizes due to the finiteness 
of the carrying capacity. Recalling that the transition 
p.d.f, oPt(Y, tlyo) for a Wiener process in the interval 
(0, ~ )  with a reflecting boundary at the origin is given 
by (Cox and Miller, 1970; note that some misprints 
therein present have been corrected) 

1 f %(y, t]yo)= o- 2 ~  exp , 2(72t J 

1 { 4eyot+(y+yo-o~t)2"(  
+ ~ e x p  - -  2o.2 t j 

~r2eXp[-~-j Ll--erf~ ( 7 ~ ) j ,  (3.9) 
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where 

eft(x)= ~ i dzexp(-z2) (3.10) 

is the error function, the transition p.d.f, fr(x, t[xo) of 
X(t) in I3 is finally obtained as: 

[X(X--fl) (X-- 7)] -1 
s tlXo)- a ~ t  

{exp E 
[ _ 4eth(xo) + (h(x) + h(xo)- et)2] + exp 
L 2a2t J 

a ,  ~/2~, ~2c&(x)~ 

k-U- ] 
.[l_erf(h(x)+h(xo)+C~t~][ 7 ~  )J J" (3.11) 

By means of expressions (3.8) and (3.11) of the 
transition p.d.f, a detailed description can be achieved 
for the growth process defined by the stochastic 
Eq. (3.2). In particular, it is not difficult to see that if the 
initial population size belongs to the interval (0, fl), 
then with probability one asymptotically the 
population goes extinct in the sense that the 
probability of having asymptotically a non-zero 
number of individuals is zero. This mathematically 
follows from the remark that 

lim f (x ,  tlXo) = 6(x), gXo ~ (0, fi). (3.12) 
t---~ oO 

Let us now assume that the initial population size 
belongs to the interval (fl, 7)- We then have: 

limf(x,t]Xo)=6(x-7), Vxo~(fl,7) (3.13) 
t - + o o  

implying that asymptotically the sample paths of the 
process tend to 7 with probability one. For Xo ~ (7, oe), 
finally, the process' sample paths asymptotically tend 
to 7 and no statistical equilibrium condition takes 
place: 

limf,(x,t[Xo)=~(x-7), Xo>7.  (3.14) 
t - -+  oo 

In conclusion, the points 0 and 7 (asymptotically 
stable within the deterministic model) act as attractive 
boundaries for the diffusion processes defined over the 
intervals I1, I2, and I a. Instead, the point fi act as a 
repulsive boundary, a reminiscence of its being an 
unstable equilibrium point within the deterministic 
model. However, it should be emphasized that these 
conclusions stem from the assumed positivity of the 
average intrinsic fertility e. Should this be negative, one 

would be  lead to a diffusion process for which, quite 
unrealistically, the deterministic carrying capacity 7 
and the origin would act as repulsive boundaries while 
the lower threshold fi would attract asymptotically all 
sample paths. Moreover, the process would reach a 
condition of statistical equilibrium in which for all 
initial population size xo larger than 7 with non zero 
(and time independent) probabilities the sample paths 
would sweep the entire interval (7, oe). Hence, with non 
zero probability any population size lying within the 
interval (7, oe) could be attained. From (3.11) in the 
limit as t goes to infinity the steady state distribution 
W(x) can be obtained: 

W(x) =- lira fr(x, t[ Xo) 
t--Coo 

x(x  - / 3 )  (x - 7) 

( 7 < x < o o ) .  (3.15) 

Hence it easily follows: 

P{X(oo) > t/} = lim P{X(t) > t/iX(0) = Xo} 
t - -+  O0 

for all t /> 7 and with h(x), given by (3.4), monotonically 
growing tO infinity as x approaches 7 and 
monotonically decreasing to zero as x approaches 
infinity. 

4 An Alternative Model 

In this section we shall briefly discuss the alternative 
model (2.2) involving a logarithmic non linearity and 
shall construct diffusion processes by allowing for 
random fluctuations of one of the parameters. We find 
it convenient to refer to the following problem: 

dx 
d~ = ax(b - lnx) ( l n x -  c) (a > 0, c > b > 0), 

x(0)  = Xo 
(4.1) 

S 
which follows from (2.2) by setting a = bc" Again three 

equilibrium points are present: x = 0 (asymptotically 
stable), e b (unstable), and e ~ (asymptotically stable). The 
solution x(t) of (4.1) is increasing in (eb, e ~) and 
decreasing elsewhere. Furthermore, setting 

y~ =exp {b + c - 2 - [ ( ~ - b ) 2  +4]ll2 }, 

 42, 
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Fig. 2. The  so lu t ion  o f  E q . ( 4 . 1 ) i s  s h o w n  for a = 5 . 1 0  -3, 
b = 1.099 (~ln3), C = 3.689 (~ln40) and for x o = 5, 7, 10, 16, 28, 
50. Time scale is expressed in arbitrary units 

(O<yl<eb<y2<e c) the solution of (4.1), x(t), is 
convex w in (O, yOu(eb, y2)w(e ~, oo) whereas it is 
convex c~ elsewhere. Explicitly, one has: 

fc(ln Xo- b) -  b(lnxo- c) exp [ -  at(c-  b)])  
x(t) = exp ~( l nxo_  b -  ln(x o - c) exp [-- at(c-  b)] J" ~ 

(4.3) 
Figure 2 shows x(t) for a variety of initial population 
sizes. 

We remark that within the interval (0, d) the 
growth rate has a minimum at Yl and a maximum at 
Y2- The times ~,, and ~'M necessary for the population to 
attain least and largest growth rate are easily obtained 
from (4.3). 

Let us now take into account the environmental 
variability via the parameterization 

a~a  + A(t), (4.4) 

where A(t) is the white noise specified by (3.1). 
Equation (4.1) then becomes the stochastic equation: 

dX 
dt = aX(b - lnX) (lnX - c) 

+ X(b - in X) (ln X - c) A(t), (4.5) 

PfX(0) = Xo} = 1. 

We remark that again the sufficient conditions for the 
uniqueness of the diffusion process X(t) are not 
satisfied and that drift A 1 (x) and infinitesimal variance 
A2(x) are given by ( 

Al(x ) = x ( l n x -  b) (lnx - c) ~[ln~ x - (b + c -  2) lnx 

} - -  ( b  + c -  b c ) ]  ~ -  - a , (4.6) 

As(x) = o-Zxg(ln x -  b) 2 ( l n x -  c) z , 

respectively. Hence, the diffusion intervals to be 
considered are (0, eb), (e b, eC), and (e c, oo) with e b and e c 
natural boundaries and 0 and c~ regular boundaries. 

Again the study of the resulting stochastic 
processes is greatly simplified by the remark that the 
transformation 

y = K ( x ) -  c _ ~ l n  l n x - b  (c > b > 0) (4.7) 

[which is monotonically increasing in (e b, e C) and 
decreasing elsewhere] changes Eq. (4.5) into that 
describing a Wiener process having drift a. The above 
specified intervals are transformed into ( -0%0),  
( - 0% ~),  and (0, oo), respectively, zero being a regular 
boundary. To specify the process within the first and 
the third of these intervals a condition at x = 0 must be 
imposed. Clearly such condition should express the 
absorption of the process at zero within ( -  c~, 0) and 
the reflection of the process at zero within the interval 
(0, o0). 

By making use of transformation (4.7) the 
transition p.d.f, f (x ,  t[xo) of X(t) in the interval (e b, e c) 
can be easily obtained: 

[x(ln x - b) (c - Inx)] - 1 
f (x,  tlXo)- a ~ t t  

f _ [K(x) - K(xo) - at] 2 
e x p  

3 
x, x o ~ (e b, e~). (4.8) 

Within the interval (e c, oo), instead, one has: 

[x(In x - b) (lnx - c)] - 1 
L(x, tlXo)= 

�9 { e x p [  -[K(x)-K(x~ J 

[ _  4atK(xo) + [K(x)+ K ( x o ) - a t ] 2  -] + exp 
L 2a2t J 

~ l /~ t  [2~K(x) 3 expL - j 

. [ l _ e r f [  K(x)+  K(xo)+at]]~ ; ~  [-[J (x'x~ 

(4.9) 

where use of (3.9) has been made. 
To determine the transition p.d.f, of X(t) in (0, e b) 

we make use of the transition p.d.f. ~%(y, t[yo) of the 
Wiener process in ( -0%0)  with an absorbing 
boundary set at the origin. By resorting to the well 
known method of images (cf. Cox and Miller, 1970) this 
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function can be proven to be: 

1 {exp I (Y-Y~ %(y, tlyo)= 
0. 2 2 ~  L 20.2t J 

[ a,o 
- exp 0.zt 2azt . (4.1 O) 

Making use of (3.9) we thus obtain: 
[x(b - lnx) (c - lnx)] - 1 

f~(x, tlXo)= 0. 2 ~  

"{expI-(K(x)-K(x~ ] 

[ aK(x~ [K(x)+K(xo)-at]21 ~ 
- e x p  aet 20_2 t j j  

(x, Xo< eC). (4.11) 
While skipping for brevity a detailed description of 

these random growth processes we limit ourselves to 
mention that the point e b (an unstable equilibrium 
point) acts as a repulsive boundary within the 
stochastic model, whereas the points 0 and e ~ (both 
asymptotically stable equilibrium points) act as 
attracting boundaries. Furthermore, in the interval 
(0, e b) the population is doomed to sure extinction. 
Indeed, the probability P(t[Xo) of surviving up to the 
epoque t is given by 

1 1 ffK(xo)+at] 
P(tlXo)= ~ - ~ e r I  L ~ - [ ~  -J 

l e x p l  2aK(x~ { l + e r f I K ? ~ 2 t a t l } ~  J (4.12) 

and this decreases to zero as t increases. Similarly to 
the case of the model of Sect. 3 within the intervals 
(e b, e0 and (e ~, + oe) no statistical equilibrium takes 
place since with probability one all sample paths tend 
to the value e ~. In the first of these two intervals (which 
is that of interest for the description of growth models) 
with equal probabilities at each instant t the sample 
paths lie above and below the point 

m(tlxo) 
[b(c - lnxo) + con Xo - b) exp [-(c- b) at] 

=exp~ 7 - ~ ( l n ~ o _ ~ c ~ b - ) ~ 7 ] - ;  
(4.13) 

which thus identifies with the median of the 
distribution. 

5 Another  Parameter i za t ion  o f  the Growth  Equat ion  

In this section we shall consider the model 

dXdt r x ( 1 - ; ) - t - b x 2 ( 1 - ~ ) ,  (r>fl6) 

x(0) = Xo (5.1) 
obtained from (2.1) by the substitution 2 ~r/6. Viewing 
r as the mean value of the random process r + A(t) 

[where A(t) is the white noise defined in Sect. 3] 
Eq.(5.1) changes into the following fluctuation 
equation: 

dX - r X ( 1 - % )  -I-5X2 ( 1 -  ; )  

P{X(O) = Xo} = 1. 
Hence, its solutions X(t) are diffusion processes whose 
infinitesimal moments are given by: 

X-- (r01 
(5.3) 

While the point fl is a natural boundary, the point at 
infinity is regular if 2f16 < 0 .2 and entrance otherwise. 
In the sequel we shall refer only to the diffusion 
interval I~-(fi, c~) which bears a particular interest 
within the context of population growth. 

Differently from the case of the models discussed in 
Sects. 3 and 4, X(t) now always admits of a steady state 
distribution W(x). This can be obtained as: 

c ( , , ~ ,  Bt(y) ) 
W(x)= B ~  exp l z  j a y ) 3 z ~ f ,  (5.4) 

where z E I is arbitrary and where the constant c is 
determined by requiring that the integral of W(x) over 
I is unity: 

o = d x E B 2 ( x ) ] - '  exp  [2id, l!Y!l  - '  . (5 .5)  
( I  L z II2I, Y) JJ 

Making use of (5.3), from (5.4) and (5.5) we obtain: 

r (2 r )  
2e-r t,0. U 

W(x)=/7 <'~ 
I ' (  2fl3 1~ F{ 2r 2fl6"~ 

t , 7  + )  t, 0. ~ 0.~ ) 
2r 2r 2B~$ 

- x ,2 (x - fl)"-~ - "~ - '  (r > f16), (5.6) 

after imposing that the boundary x = oe is reflecting if 
2fl6 < 0.2 (which implies zero flux on the boundary) 
and by requiring that the flux is vanishing at x = m if 
2fl(~ > 0-2 

Indeed, it is easily seen that 
f ~ ,  B,(y) ] 2 + 2r+1 

exp).z{aYB~7~; = K(z) ( x -  fi) ~ *x-;V , 
(5.7) 

where K(z) denotes a constant. Furthermore, one has: 

c 1_ ~e dxB2(x)exp 2 a Y B ~ j  

z~a F 2fl6 2 -] =K,(z)0.-@ ~2 BE1 + - - ' U  (r-/~a)j, 0.2 (5.8) 



where B(x, y) is the Euler beta-function defined as 
(Gradshteyn and Ryzhik, 1965, No. 8.380): 

1 
B(x,y)=25dtt 2"~ 1(1 - t2)Y- 1 ( R e x >  R e y > 0 )  

0 
(5.9) 

and where use has been made of the identity: 

r(x) r(y) B(x, y) - (5.10) 
r(x + y) 

The steady state distribution expressed by (5.6) can be 
used to calculate the asymptotic moments of the 
population. Skipping the straightforward, although 
rather cumbersome, calculations we limit ourselves to 
report the results. The mean (asymptotic) value turns 
out to be 

E(x) = 3 (5.11) 
thus coinciding with the deterministic carrying 
capacity. The second order moment is instead 

[fir 2r--.0- 2 |g 2~-a_~-~2, if 2fic~>0- 2 

E ( x  2) (5.12) 
- t [ oo, otherways. 

In general, we can prove that for all integer j if fi5 
0- 2 j - -  1 

> ~-  one has 

E( x j) = flJ \ 0-2 - J  + (5.13) 

F .  + 1 - j  + 1 

calculations one obtains: 

2/~a 

\ ~o- fl ) 

F [1 -  ~ ;  1-2afi~2a ; 2 ( 1 -  ~ ) ; - - -  

29l 

X 0 - -  fi' 

(5.14) 

if fl < e < Xo and 2fl5 < 0-2 whereas one has P(e[Xo) = 1 
when such inequalities are not satisfied. 

In (5.14) F is the hypergeometric function 

~ (~)~(fl)~ z ~ F(~; fl; ~; z)= l + k:* (7)k k!" (5.15) 

One can finally prove that P(t/Ixo) is unity for all 
t />x  o. 

From the foregoing considerations we conclude 
that X(t) always attains an equilibrium regime that is 
independent of the initial state. Furthermore, for each 
initial state Xo and for each state t/> Xo with certainty 
the process originating in the former will eventually 
reach the latter. 

For the process under consideration it is also 
possible to obtain an explicit expression for the mean 
time, h(t/]Xo), necessary to visit the state t/for the first 
time starting from the initial state x o. Making use of a 
formula due to Siegert (1951) we indeed have: 

~! 2 idyW(y)= 1 ~ln ~/-fl  - l n  ~ 
tl(~lXo)- dZB(z~V(z)~ r-fl~7 ( Xo-fl Xo 

2,5  I ~  xflT] (--2f16)k 1 [ ( ~ )  k ( ~ f 2 )  k] 
+ 2r + 0-2 _ 2fla + In + k=lk (2r + 0-2 _ 2fl6)~ k + 1 - 

(--2fia)k 1 
+ k~2 (2r + 0 -2 -- 2fla)~ k + 1 

. I ( ~-~- )k + l F (1; k + l ; k + 2 ; ~ - ~  ) - ( fi@9)k + :t F (1, k + l ; k + e ; f l @  ) , (5.16) 

whereas they are otherways infinite. Making use of 
(5.11) and (5.12) the variance of the asymptotic 
population size can be obtained. 

To further elucidate the features of the random 
process under consideration, let denote by e(fl < e < Xo) 
and by t/(Xo < 17 < 0o) arbitrary values and let P(elXo) 
and P(r/[Xo) denote the first passage time probability of 
X(t) through the states e and t/, respectively, under the 
condition that all its sample paths originate at Xo. 

Making then use of formulas (4.51) ~ (4.54) p. 111 of 
Ricciardi (1977), after a rather long sequence of 

where F is the hypergeometric function earlier defined. 
It is interesting to remark that for the case of the 

growth model (5.1) it is possible to construct and 
describe a second diffusion process X(t) by expressing 
the fluctuations of r in terms of a Brownian motion. 
Indeed, we can write: 

P{X(0) = xo} = 1, 
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where B(t) is a Brownian motion having zero mean 
and correlation function given by: 

E[B(t) B(t')] = o-2 min(t, t'). (5.18) 

By using Ito's calculus (cf. for instance, Jazwinski, 
1970) one can then prove that X(t) is a diffusion 
process having infinitesimal moments 

The point/7 is a natural boundary whereas the point 
at infinity is an entrance boundary. Differently from 
the previous case, now (cf. Appendix 1) the steady 
state distribution exists if and only if r-/76 > 0-2/2 and 
the asymptotic moment of order j (] = 1, 2, ...) exists 

Let us now provide a quick study of the process 
X(t) with reference to the diffusion interval I -  (e b, oo). 
The first important feature of X(t) is the existence of a 
steady state distribution W(x). Making use of(5.4) and 
(5.5) one can show (Appendix 2) that: 

W(x)= (2b f'~-(s-by) ( 2bzf'~ 
t, 0-2 ] exp\  o- 2 ] .  

- 1  

- (1 2bf]  2b 
�9 x +~-)(lnx-b) 7f{s-bs)-I 

(eb<x< oo,s>bf). (6.3) 

However, in contrast to the model of Sect. 5 none of the 
moments of the asymptotic population size exist 
always. Indeed one has: 

E(xJ)=lexpljb+ 

[oo, 

< 2/76 
finite if and only if j ~T- + 3 with the r.h.s, of this 

2r 
inequality being, in turn, less than ~ + 2 due to the 

assumption that the steady state distribution exists. 
Furthermore, the probability for the population to 
reach asymptotically the state/7 is zero if r-/76 > o-2/2. 
Finally, one has P(e[Xo)--1 for all states e<Xo and 
P(t/[Xo) unity, for all t/> Xo, only if r -  6/7 > o-2/2. 

6 A Model with a Logarithmic Singularity 

Similarly to what we did in Sect. 5, we now re-write 
Eq. (2.2) setting in it f = sic and then change s into the 
random process s+A(t). We are thus lead to the 
fluctuation equation 

dt - sX 1-  + f X lnX ( 1 -  l b  X -  ) 

-X(1-1-n~-)A(t) ,  (s>bf) (6.1) 

P{X(0) = Xo} = 1. 

By this procedure we model the growth of the 
population as a diffusion process characterized by the 
following drift and infinitesimal variance: 

B l ' ( x ) = x ( 1 - 1 ~ ) [ ( f  - ~ b ) l n x - s  

0-2 ( 1 -  ~ ) ]  
+ ~- , (6.2) 

B2(x)=o-2x2 ( l -- l~-) 2 . 

7~ (s 2b 0-2 , 
if j <  2bf 

0.2 

otherways. 

(6.4) 

Furthermore, X(t) is now always recurrent since 
(Appendix 2): 

P(elXo)=l,P(tl[Xo)=l, Vxo,~,tle(eb, oe). (6.5) 

For the model of this section the description can be 
extended in a way to obtain a closed form expression 
for the moments of the time necessary for the 
population to attain for the first time any preassigned 
size S for each fixed initial size. Indeed, the Laplace 
transform of the first passage time p.d.f, can be 
calculated so that the above moments at least in 
principle follow by differentiation of it. For brevity, we 
shall limit ourselves to determine the mean first 
passage time from the initial population size to any 
larger size while disregarding the specification of 
higher order moments. Some details are given in 
Appendix 2. 

Let us denote by 

9z(S[xo) = 7 dte-ag(S, tiXo) (6.6) 
0 

this Laplace transform. Here we have set 

d g(S,t[Xo)-= ~[ P{ T < t} (6.7) 

with 

T = inf{t : X(t) > SIX(O) = Xo}. (6.8) 



Then, for each 8 < x 0 we have (Appendix 2): 

(!nXo--1,]"' 
ff;~(elx~ \ lne-b  ) 

7S[A~,C~;2ba2f-(lnxo-b) ] 

7SIAl, C1;2baf(lne-b) 1 " 

(6.9) 
Here we have set: 

r (1  - c )  
7S(a, c; x) = ~(a, c; x) 

F(a--c + 1) 

V(c- 1) xl 4 -cq~(a-c + 1, 2 - c ;  x), (6.10) 
F(a) 

where ~(a, c; x) is the Kummer function: 

r c ; x) 
= 1 +  k a(a+l ) " (a+n-1 )xn  

~=1 c(c + l)...(c + n-1)  n! (6.11) 

and where At and C1 (whose integer values should be 
excluded) are defined as follows: 

(6.12) 
2b C~ = 1 + 75[(s-b f)2 + 220-2]'/2. 

For each r/>Xo, instead, one has: 

g~(r/lx~ = \ l n r / - b  J 

2bf 
(lnxo - b)] 

having again excluded non integer values of C~. 
The mean first passage time t l (r/Ix o) can finally be 

calculated. In Appendix 2 this is obtained in a 
straightforward way for all r />x o by means of a 
method due to Siegert (1951). The result is the 
following: 

tl(r/lxo)= b ~ l n r / - b  s -  b-- 'tln 
~. 1 (2b f ) "  + 

.2"=~ n [2b(s - b f)  + 0-2j ~ .~b(s  - b f )  + na 2 ] 

�9 [ ( l i ar / -  b)" - ( lnxo  - b)"]~ .  (6 .14)  
J 

A ppend i x  1 

We shall  consider  the  diffusion process  hav ing  m o m e n t s  

.B~ ( x) = x (1-- ~) (pxOq) 
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The higher order moments t,(r/lXo) may be obtained 
a s :  

n x , , ,  d g .(r/I o) 
t,(r/]Xo) = ( -  1) ~ 7  a=o' (6.15) 

with gx01lXo) given by (6.9) and (6.13). 
Similarly to the case of Sect. 5, a new diffusion 

process can be constructed by substituting (6.1) with 
the following stochastic equation: 

P{X(0) = Xo} = 1. 

The infinitesimal moments of X(t) are therefore: 

Bi(x)= x(1-1-~) (f lnx- s), 
(6.17) 

Differently from the model earlier discussed, now the 
0-2 

steady state distribution exists if and only ifs - bf > ~-b 

and the moments of all order j ( j =  l, 2, ...) tend 
asymptotically to finite limits if and only if the 
following inequalities are satisfied: 

0 -2 
( j -  1)0-2 <2b f <2s - ~ .  (6.18) 

All this can be proved quite similarly to the case of 
Appendix l. The analytical results can be immediately 
obtained by means of the formulas of Appendix 2 with 
a suitable choice of the parameters. Finally, one can 
prove that the probability of ultimately reaching the 
level/7 is zero ifs - bf > 0-2/(2b) and that P(eJXo) = 1 for 

0 -2 
all e < x o and P(r/] Xo) = 1 if and only if s -  bf  > ~ .  The 

expressions of t 1 (t71Xo) as well as the functions gz(e f Xo), 
(e < Xo), and gz(r/IXo) (t# > xo) can be immediately 
obtained from the formulas of Appendix 2. 

(AI.1)  
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0-2 0"2 / 
These reduce to moments (5.19) if we set p=6 and q=r (with q>fl6) whereas they yield (5.3) for p = 6 -  ~ and q = r -  ~ with 

> af t -  ~ ) .  Making use of(5.4) and of the normalization condition (5.5) the steady state distribution W(x) can be obtained. With the 
~ x  

q 
- /  

O-2 
expressions (A 1.1) of the moments from (5.5) we see that W(x) exists only if q-tip> -~. When this inequality is satisfied one has: 

(2q ) 
2bd_~ +~ F ~ + 2  2q 2q _2~a - z  

W(x)=t ~'~ x ~ 2(x--fl)r "~ ( f l<x<m),  (Al.2) 
F(~-2 fi- +3)  F ( ~  2pfl0-2 1) 

The asymptotic moments E(x j) (j= l, 2, ...) of the process can then be calculated as: 

___ 2p# co -- Zq ._ 2q _ - 
2re ~3 j dxx  tr2+3 2 ( X - - f l ) ~ -  7 2 

E(xa)=fl~ F{2Pt\ 0-2 + 3 ) 2 ( ~ F  2pt0-2 I) p 

Recalling (5.9) and (5.10) from (A1.3) we finally obtain: 

(A1.3) 

E(#) =fl yF(~2 + 2) F (2~- - j + 3 )  

F(2a~ - + 3 ) F ( ~  z - j + 2 ) '  
( ) q - P t  > 2- ; J<  2pfl ~ - + 3  . (A t.4) 

Similar considerations on the convergence of the involved integrals lead us to the statements of the last sentence of Sect. 5. Indeed if 
2Pt 
- -  + 1 < 0  one has: 

O-2 

/ .\~f+lF( 
P(elXo) = (xo-P} 

\ ~-t ) F( 

2q. 2pfl 2pfl, fl "~ 
62 , 0" 2 1; 0.2 ' xo ~ fl 7 
2q. 2pfl  1 ; 2pfl .  ~ f l ) '  
0.2 ~ (72 0.2 ~ 

2q 2pt 
P(e]xo) being otherways unity. Furthermore if~- 5 - -~-  < 1, it is: 

l+2p# 2qe( 2q.2pfl 2q 1.2Pfl 
(.o-t) . . . .  

e('IlXo) = \ rl _ fl j e ( _ 2q. 2pfl 2q. + t 2pt 
\ 0.2 ' O-2 0.. ~2 

2q ) 
a2 +2; 

2q ~ )  
0-2 +2; 

(A1.5) 

(AI.6) 

Therefore, this moment is finite only ifq -t ip > 0.z/2. For the case of model (5.19) this inequality reads r -  f16 > 0-2/2. From (A1.7) one 
finally obtains: 

2 - 1 
tl(rlfx~ k~l~k+~(--2Pfl--2crz)k 1 [ ( 1 -  ~)k - ( 1 -  ~ ) k  1 

�9 *1 pfl+0-ZFxo-,,+ ln~o] . ~ (--2pfl--2~rz)k 1 

- 1 -  F 1 ; k + l ; k + 2 ; 1 -  , q - f l p > ~ .  

with POllXo) = 1 otherways. For completeness we write the expression of the average first passage time for the process having moments 
(AI.1). Making use of formula (5.16)one has: 

ti(t/ixo)= 7Z~-2 .[ dzz ~2 (z-fl) . . . .  jdyy ~2 (y_fl) r ,2 - (rl> Xo). (A1.7) 
o ~o fl 
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Appendix 2 

a) Steady State Distribution 

Let us consider the diffusion process of moments 

B~(x)=x(1-1n-~-~)(plnx-q), 

This process identifies with that of moments (6.2) for 

0 - 2  

P = f -  2b '  (12.2) 

whereas it yields that of moments (6.16) when 

P= f '  (12.3) 

q = s .  

Note that the condition s > b f,  associated to models (6.1) and (6.15), becomes q > b f -  ~ 1 - when (A2.1) are identified with (6.2) 

while it yields q > b f  when (A2.1) are identified with (6.16). For the process having moments (A2.1) the steady state distribution can be 
calculated by means of  (5.4). One then has: 

V ~ 2 b p _ a 2(bp2b - q) 
e x p | 2 ~ d y ~ | = c l x  ~ I lnx-b]  (A2.4) 

L z ~ztY) d 

where c~ denotes a constant of integration. Furthermore one has: 

~b k ~ ~ = c ~ \  ~ - + 1  exp b +1 F - ~ ( q - b p ) - i  (12.5) 

0 - 2  . . . 0 - 2  

ifq -- bp > 2b' whereas the integral on the 1.h.s. of(A2.5) Is divergent lfq - bp <= ~z-,. According to (5.4) and (5.5) we can thus conclude that 
ZI) O" 2 

for the process of moments (A2.1) the steady state distribution W(x) exists only if q-bp  > ~ .  In this case one has: 

W(x)=(l+2bp)'(q-bP)-lexp[b(l+2bp~ l 2b -I 2 b  _ _ 

\ m \ 

Recalling (A2.2) and (A2.3) we thus conclude that for the process having moments (6.2) the steady state distribution always exists while 
from (A2.6) expression (6.3) of the text follows, Instead, in the case of the process having moments (6.16) the steady state distribution 

0 - 2  

exists only if it is s > b f  + ~-b. Note the analogy of these results with those pointed out for the first time by May within the context of 

logistic growth processes (May, 1973; Feldman and Roughgarden, 1975). 

b) Asymptotic Moments 

The asymptotic moments of any order can be obtained by making use of (A2.6). The result is 
2 b  

2bp 2b - 1 

where we have set: 
bp 2b 

aV j - -  2 (1 +~2 ) ~ ~ , ~ - ( q - b p ) -  2 
M= 5 dxx , ~ 

eb 
2bp 

The integral (A2.8) is convergent for j <  ~ -  + 1. Hence (cf. Gradshteyn and Ryzhik, 1965, No. 3.382) we obtain: 

(A2.7) 

(12.8) 

(12.9) 
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2bp 
whereas the moment oforderj  does not exist forj > ~5- + 1. From (A2.9) expressions (6.4) and the moments for the case of model (6.16) 
immediately follow. 

c) Recurrence of the Process 

Let e be such that x0 < e < e b, being otherways arbitrary. Making use of (4.51)~ (4.54) of Ricciardi (1977, p. 111) one obtains: 

x 2bp 2b 

i~ z ~  Onz- b)~ (bp-~) 
P(e]Xo) = 1 zbp 2b " (A2.10) 

dz z ~  Onz- b) ~ (bp-q) 

6 2 

The integral on the denominator on the r.h.s, of (A2.10) converges only if p<  - 2 b '  which cannot occur in our models. Hence, 

P(elxo) = 1. Furthermore, for each r/(q >Xo) one has: 

2bp 2b 

i dz z~-Onz-  b) ~r(b; -q) 
P(q[Xo)=l x0 2bp 2b b - ' (A2.11) 

i dzz ~ Onz-b) ~(p q) 
eb 6 2  

with the integral in the denominator being convergent if q -  bp< ~ and otherways divergent. Recalling (A2.2) and (A2.3) one thus 

concludes that P(q I xo) = 1 for all q > Xo in the case of the process of moments (6.2). For the case ofthe process of moments (6.16) P(t/[Xo) is 
6 2 6 2 

unity only if s - b f  > 2b When s -  bf  < 2b one instead obtains (Gradshteyn and Ryzhik, 1965, No. 3.381): 

2b 2b f 

e( , l lxo)  = - - -  ~ -  ~ ,  (A2.12) 

where ~ denotes the incomplete gamma-function. 

d) Determination of g~(Slxo) 

As is well known, gx(S]xo) is solution of equation 

\ - b - ]  ~x~ + x ~ 1 7 6  - 2 g ~ = 0  

whose coefficients are the moments (A2.1). By means of the substitution 

1 
z = ~ l n x o -  1, 

co(z) = z-~o~(z), 

A ~ t l - ~ ( q - b p ) +  1 - ~ ( q - b p ) )  + 7 ]  j > 0 ,  

equation (A2.13)takes the following form: 

2b z d2c~ 2 + [ 2 A +  62(q-bp)-  2b/a2 \ do _ 2b /62 . 
- -  ~ o-: A I , j  

Setting then 

from (A2.15) one obtains: 

d2fo [~ 2b 7 de) 
( ~  + L/2A + ~(q-bp)-:l-z=j a(, - A (=0  

(A2.13) 

(A2.14) 

(A2.15) 

(A2.16) 

(A2.17) 
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whose general solution is (Tricomi, 1954): 

co(O = R~(A, C; ~) + Q~-qb(A- C + 1, 2 -  C; O, 

where 
2b 

C=2A+ a~(q-bp) 

(A2.18) 

(A2.19) 

(A2.26) 
g.~(elh) =0.  

and where R and Q denote arbitrary constants. Making use of (A2.14) and (A2.16) we thus obtain: 

')] 
_ [ l n x o _  -C[b(1 2bP~l' cq)[A_C+I, 2_C;O(I+ 2bpp ~ 9 + , 0} 

As customary in this type of problem, constants R and Q can be determined by setting an artificial absorbing boundary at some state h 
and by looking for the unique solution 94,a of (A2.13) such that 

lim 9~,h(xo) = 1, 
~o~S (A2.21) 
lim g,~,dXo) = O. 
xo~h 

The desired function gx(SJxo) is then obtained as the limit of such solution as h tends to one of the end points of the diffusion interval 
without passing through S. Note that such limit amounts to removing the artificial barrier h. 

We first consider the case S -= t/> Xo. We then take h < t/and pass to the limit as h tends to e b. Recalling (A2.20) and making use of 
(A2.21) we obtain: 

(lnt/ l~l-C(lnh ) c - 1 `  col(h) , 
~1(.)-\~-- / \T-1 ~02~ 

where 

(pl(w)=el)[A,C; [" 2bp\['lnw_ 

2bp lnw 

Taking the limit of (A2.22) as h~e b we then get: 

1/'lnt/\__ ) A 
!imoR = O ( C -  1) [~o~(~1]- ~ -  - 1 , 

(A2.24) 

lira Q=O(1-C)[q~2(")]- ~ [b\(1 + ~r2-jj2bp']]~-c' 

where 0(. ) denotes the Heaviside unit step function. From (A2.20) and (A2.24) we finally obtain: 

[ ~o~(Xo), 
=~ <(~) c< i, 

(A2.25) ~t.,~o/ !(inxo_b~A q),(Xo ) C> I. 
[ \ l n t / - b  ] q~(t/)' 

In the case of model (6.2), for which it is always C< 1, expression (A2.25) yields (6.13) of the text. 
A similar calculation leads to the expression of g~(e]Xo) with eb< ~ < Xo. Now, the conditions to be imposed are: 

a~(~le) = 1, 
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Thus doing, constants R and Q appearing in (A2.20) are determined as: 

/ln~ "~-A( [lne xd-Ci lnh  _1~  c-1 . , q h ( h ) )  -1 

Q = ( ~ _ -  l ) - a  [ / ( 1  2b~p)}C-1 {(lb~___ 1) i - c  @z(e)- cPl(e)\ ~--|/'lnh l ~ l - c  ~o2(/, ; - i j  @i(h) J . (12.27, 

To calculate the limit of(A2.27) as h ~ oo it is convenient to express the functions q~ in terms of function 7 j defined by (6.10). We then have: 

(lbhh 1~ i -ccpa`h)_  F(A) -J ~(h)F(C-l)Cb(l+~)] c- '  

1 + 7 ) t , , T -  ) j  r(1-c) 
" ~ol(h ) F(A - C+ l) (A2.28) 

whose limit as h~oo  is easily obtained since for A > 0 401 diverges while ~ goes to zero. 
In the limit as h--, Qo we thus finally obtain 

C 2bp lnxo (lnxo_b,A~d[A, ;b(1 + { ) (~-1) ]  
ga(elxo) = \ lne-b J 

which yields (6.9) of the text as a particular case. 
From (A2.25) and (A2.29) one then easily concludes that for the process having moments (6.16)it is P(~lXo) = P(q [Xo) = 1 for all e and 

such that e b < e < Xo, Xo < t/< oe. 

e) Determination of ti(tllXo) 

Even though the mean time necessary for the process to attain for the first time the state 17 starting from Xo(q > Xo) can be obtained by 
calculating the derivative with respect to 2 of the function (A2.25) for 2 = 0, we shall determine it more simply by making use of Siegert's 
formula: 

tlO1]Xo) = J dz ~., 7- . . . . .  j dy W(y), (A2.30) 
xo sJztz ) vvtz) eb 

with W(x) given by (12.6). Hence: 

h2. ebv 2b v e ,  ~-,~ ,,Tz@v-q) . . . .  
ti(t/lXo)= _~-J azz tmz--o~ utz), (A2.31) 

x o  

where 

lnz (2bp + l~y] (y -b )  ~(b,-q)-2 U(z)= ! d y e x p [ - \ - ~ -  ] 

= e x p [ - b ( l + 2 b p ~ ] ( 1  2 b p ~ i + ~ ( ~ ' - q ) I 2 ~ 2 ( q - b p ) - l , ( l n z - b ) ( l + 2 b p ~ ]  (12.32) 

i fq-bp > 321(2b) (if, instead, q-bp<= ~2/(2b) the function U is divergent and thus ti = oo). On the r.h.s, of (A2.32) 7 is the incomplete 
gamma-function. From (12.32) one easily gets: 

2b 2 o ~ -~<q-bp) [-2b . . . .  ] 
tl(qix~ ~Y-J dze ~ Y [ ~  t q - ~  i ; z 

where we have set: 

z = ( lnxo--b)(1 + 2bp~,a2j 

0 = (lni7 - b) (1 + 2ob--~P). 

q -  bp > ~ , (A2.33) 

(A2.34) 
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By expressing the incomplete 7-function in terms of Kummer's function (6.11)via the well known identity 

x ~ y(~, x)= ~-e-~(1,1 +~; x) 

after a term-by-term integration we finally obtain: 

2b 2 [-2b ]-i ~ln lntl-b 
U"lx~ t lnxo--b 

1 ~ t + ~  5-) [(lntl-b)"-(lnxo-b)"] q - b p > ~ .  

kT(q-bp)jk~(q-b,)+i ... 7(q-p)+.- i  

(A2.35) 

(A2.36) 

From (A2.36) formula (6.14) of the text immediately follows while for the case of the process having moments (6.16) formula (A2.36) 
yields: 

tl(qlx0)= ~ -  ~ ( s - b f ) - i  lnlnxo_b 

( l+2b f y  

1 \ ~2 ) [(lnq-b)"-(lnxQ-b)q_ s-b f> . (A2.37) 
+Z F2b ]F2b 1 [ ~ ] "= ' "  . . .  
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