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Abstract. We found a new class of two-dimensional 
random textures with identical third-order statistics 
that can be effortlessly discriminated. Discrimination is 
based on local "granularity" differences between these 
iso-trigon texture pairs. This is the more surprising 
since it is commonly assumed that texture granularity 
(grain) is determined by the power spectrum which, in 
turn, can be obtained fi'om the second-order statistics. 
Because textures with identical third-order statistics 
must have identical second-order statistics (i.e., identi- 
cal power spectra), visible texture granularity is not 
controlled by power spectra, and not even by third- 
order statistics. 

Since 1962 much effort has gone into the generation of 
texture pairs with identical nth-order statistics (iso-n- 
gon statistics ~) but different (n+ 1)th-order statistics 
(Julesz, 1962). It was assumed that the stochastic 
constraint of identical nth-order statistics would pre- 
vent a texture pair from having different local features 4~ ..~ 
that the human visual system could effortlessly discri- -~ q:~ 
minate when n was adequately large. In 1962 one- ~ .  
dimensional Markov textures were found with identi- ,~ `6 
cal n-th order statistics (Rosenblatt and Slepian, 1962). ~, ,~ 
With the help of these Markov processes Julesz ob- r162 
served that textures with identical one-dimensional ~ 
second-order (iso-dipole) statistics but different statis- 
tics of third and higher order usually could not be 6" ~1 
discriminated in a brief flash (under 160 ms duration to ~ R 
prevent eye movements and shifts of attention) (Julesz, ~, ~/ 
1962). Since iso-dipole textures have identical power 
spectra 2, this observation seems to imply that in -~ r  

In random geometry n-gons of all shapes are randomly thrown t~ 
over an image, and the statistics are determined that all n vertices of 
each n-gon land on a given combination of colors 

Dipole statistics determine the autocorrelation function, from 
which the power spectrum can be obtained by Fourier 
transformation 

texture discrimination the phase (spatial position) 
spectra are ignored, and textur.es with identical power 
spectra cannot be discriminated without scrutiny. 

Only in 1973 were ways found to generate two- 
dimensional textures with iso-dipole statistics but dif- 
ferent third- and higher-order statistics (Julesz et al., 
1973 ; Julesz, 1975). A typical iso-dipole texture pair is 
shown in Fig. 1. While the majority of such iso-dipole 
texture pairs could not be effortlessly discriminated, 
recently a few iso-dipole textures were found that 
yielded strong discrimination based on the quasi- 
collinearity, corner, and closure of local features in one 
of the textures (Caelli and Julesz, 1978; Caelli et al., 
1978), as shown in Figs. 2a, b, and c. 

While the iso-dipole constraint in most cases yields 
texture pairs that cannot be discriminated, the counter- 
examples given in Fig. 2 clearly show that the iso- 
dipole requirement is not adequate to suppress a few 
special local features to which the visual system seems 

Fig. 1. A typical nondiscriminable iso-dipole texture pair, in which 
an inserted area is composed of micropatterns that are the mirror 
images of the micropatterns in the outside area. (From Julesz et al., 
1973) 
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Fig.  2a--e. D i s c r i m i n a b l e  i s o - d i p o l e  t e x t u r e  pa i r s ,  for  w h i c h  d i s c r i m i n a t i o n  is b a s e d  o n  loca l  f ea tu res  of :  a quasi -col l ineari ty ,  b corner ,  a n d  c 
c losure .  ( F r o m  C a e l l i  e t  al,, 1978) 
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F ig .  3. D i s c r i m i n a b l e  i s o - t r i g o n  t e x t u r e  pa i r .  T h e  s m a l l  s q u a r e s  in 
the  f irst  r o w  a n d  m i d d l e  c o l u m n  a r e  se lec ted  b l a c k  a n d  w h i t e  a t  
r a n d o m ,  wh i l e  e a c h  2 x 2 s q u a r e  left  o f  t he  m i d d l e  c o l u m n  c o n t a i n s  
even  n u m b e r  o f  b l a c k  squa re s ,  wh i l e  o d d  n u m b e r  of  b l a c k  s q u a r e s  to  
the  r i g h t  

F ig .  4. S a m e  as  Fig.  3 excep t  t h a t  in  p l ace  of  b l a c k  a n d  w h i t e  s m a l l  
s q u a r e s ,  s q u a r e s  c o n t a i n i n g  a + 4 5 d e g  o r  - 4 5 d e g  d i a g o n a l  l ine  
s e g m e n t ,  r e spec t ive ly ,  a r e  u s e d  

to  be  p a r t i c u l a r l y  sens i t ive .  I n  th i s  a r t i c le  a n  e x a m p l e  is 
g iven  to  s h o w  t h a t  e v e n  a t e x t u r e  p a i r  w i th  i s o - t r i g o n  
s t a t i s t i c s  c a n  y ie ld  s t r o n g  d i s c r i m i n a t i o n .  T h e  v i sua l  
f ield is cu t  i n t o  a n  a r r a y  of  s m a l l  s q u a r e s  ( s q u a r e  tessel-  
l a t ion) ,  e a c h  s q u a r e  to be c o l o r e d  b l ack  or  whi te .  In  o n e  
t ex tu re ,  e a c h  2 x 2 s q u a r e  cell has  a n  e v e n  n u m b e r  of  its 
4 s m a l l  s q u a r e s  c o l o r e d  b lack .  I n  the  o t h e r  t e x t u r e  e a c h  
2 x 2 s q u a r e  cell ha s  a n  o d d  n u m b e r  of  b l a c k  squa re s .  
E i t h e r  t e x t u r e  c a n  be  d e t e r m i n e d  c o m p l e t e l y  b y  
spec i fy ing  the  c o l o r s  i n  o n e  r o w  a n d  c o l u m n  o f  the  
a r r a y .  In  Fig .  3 the  t o p  r o w  a n d  c e n t e r  c o l u m n  
( m a r k e d  b y  a r r o w s )  we re  c o l o r e d  b y  f l i p p i n g  a co in .  
T h e  s q u a r e s  to  the  left o f  c e n t e r  were  c o l o r e d  as a n  

e v e n  t e x t u r e  a n d  t h o s e  to the  r i g h t  as a n  o d d  t ex tu re .  I t  
is n o t  b a r d  to  s h o w  t h a t  a n y  t h r ee  s q u a r e s  h a v e  
i n d e p e n d e n t  e q u a l l y  l ike ly  r a n d o m  c o l o r s ;  t h e n  b o t h  
t e x t u r e s  h a v e  the  s a m e  t r i g r a m  s ta t i s t ics .  H o w e v e r ,  t he  
e v e n  t e x t u r e  is c o m p o s e d  of  b lack  a n d  wh i t e  rec t -  
a n g u l a r  b l o c k s  w h i c h  m a k e  it easy  to d i s t i n g u i s h  
f r o m  the  m o r e  e r r a t i c  o d d  t ex tu re .  F o r  p roof ,  see 
A p p e n d i x .  

A l t h o u g h  it  is m o s t  u n l i k e l y  t h a t  s u c h  a n  a r t i f ic ia l  
t e x t u r e  p a i r  w o u l d  be  e n c o u n t e r e d  in  a real - l i fe  si- 
t u a t i o n ,  it  serves  as  the  first  k n o w n  e x a m p l e  o f  a n  
ef for t less ly  d i s c r i m i n a b l e  t e x t u r e  p a i r  w i t h  i d e n t i c a l  
t h i r d - o r d e r  s ta t i s t ics .  F u r t h e r m o r e ,  m o s t  o b s e r v e r s  
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would consider the odd texture more "granular" than 
the even texture. It is indeed surprising that not only 
the iso-dipole requirement but even the iso-trigon 
stochastic constraint fails to prevent differences in 
apparent granularity. 

One might wonder about the usefulness of dipole 
statistics in the study of texture perception when even 
iso-trigon textures can yield texture discrimination. 
However, the counterexamples found thus far are few, 
and help to identify those local features that are used by 
the texture perception system. Until now it was as- 
sumed that differences in the size (or aspect ratio) of 
local clusters were reflected in differences between di- 
pole statistics (or the corresponding spectra). In the 
light of the present result, however, these local cluster 
detectors of size have to be added to the already 
known other local feature detectors tuned to quasi- 
collinearity, corner, and closure, that seem to operate 
in spite of the global iso-dipole stochastic constraint. 

The method, yielding the iso-trigon texture pairs of 
Fig. 3, can be used to generate other kinds of iso-trigon 
textures. For instance, if instead of using black and 
white small squares in Fig. 3, one draws a +45 ~ or 
- 4 5  ~ diagonal line segment in the small squares, 
respectively, an effortlessly discriminable texture pair is 
again obtained. In the even texture closed, diamond- 
shaped structures are formed, while the odd texture 
appears as a maze-like structure, as shown in Fig. 4. 
Furthermore, one can generate a new class of iso- 
dipole textures by applying linear filtering (e.g., blur- 
ring) on the texture pair of Fig. 3. While the filtering 
may change the iso-trigon constraint, the texture pair 
will remain iso-dipole (since the identical power spec- 
tra are multiplied by the same filter characteristics). 
Thus filtering the texture pair of Fig. 3 gives rise to 
halftone textures (i.e. many shades of gray) with identi- 
cal power spectra, and if the filtering is not too drastic 
the textures will be discriminable. The reader can 
perform such blurring by defocusing Fig. 3 (e.g. by 
squinting). 

It might still be assumed that as n increases the 
ratio of discriminable to nondiscriminable iso-n-gon 
textures becomes vanishingly small. Indeed, one can 
select (in place of the 2 x 2 square shaped aperture, or 
"floater", used in our study) some other floaters of 
more complex shapes, containing 5, 6, or more small 
squares, in order to generate iso-4-gon, iso-5-gon , etc. 
texture pairs. In another study (Julesz, Gilbert, and 
Schmidt, in preparation) it will be shown that only 
certain floater shapes can be used. Here it suffices to 
note, that iso-4-gon textures were found that yielded 
weak discrimination, but in spite of intensive effort, all 
the iso-5-gon textures that were tried could not be 
discriminated. Nevertheless, the finding that granu- 
larity changes of a texture can be controlled only by 

4-gon statistics is an unexpected result, and of use to 
those who want to reduce grain in films or noise in 
displays. 

Acknowledgement. J. D. Victor was supported in part  by NIH Grant  
EY 188. 

Appendix 

Dissect the visual plane into an array of squares and 
color squares black or white to obtain a visual texture. 
Define a(x, y) = 1 if the square at row x and column y is 
black. Let a(x, y)=O if this square is white. Define an 
even texture (or an odd texture) to be a texture for 
which 

a ( x + l , y + l ) + a ( x + l , y ) + a ( x , y + l ) + a ( x , y )  (1) 

is even (or odd) for every x,y. 
The mathematical condition that a texture be even 

(or odd) is a binary recurrence equation in which the 
sum (1) is set equal to 0 (or 1). A solution will express 
a(x,y) in terms of boundary values, for instance the 
values f (x)=a(x,O) and g(y)=a(0,y) along column 0 
and row 0. For an even texture 

a(x, y) = f (x)  + g(y) + h (mod 2). (2) 

where h = f ( 0 ) =  g(0)= a(0, 0). For an odd texture 

a(x, y) = f (x)  + g(y) + h + xy (mod 2). (3) 

Let row 0 and column 0 be colored by flipping a coin, 
so that f (x)  and g(y) are 0 or 1 with probability �89 

Pick any three squares (xl, Yl), (x2, Y2), (x3, Y3). The 
eight possible ways that these squares may be colored 
are equally likely, both in the even texture and in the 
odd texture. To prove this, consider any one of the 
eight colorings, say the one with a(x l , y l )=al ,  
a(xz, Yz)= az, a(x3, Y3)= aa, and count how many choi- 
ces of h, f (xO, f(x2), . . .  , g(Y3) produce this coloring. In 
the odd texture, the choices are solutions h, f(Xa), 
f(x2) . . . .  , g(Y3) of (3), i.e. 

h+ f ( x l ) + g ( Y l ) = a l  + x ly l  

h + f(x2) + g(Y2) = a2 + x2Y2 

h + f (x3)  -}- g(Y3) = a3 -I- x3y 3 

(mod2) 

(mod2) 

(mod2). 

(4) 

There are several cases, depending on whether or not 
some points lie in the same row or column. 

Case ! (no two points in the same row or column). 
There are seven unknowns in (4): h, f ( x l )  , 
f(x2) . . . .  , g(Y3). But f (xl) ,  f (x2) , f (x3) are determined 
once h, g(Yl), 9(Y2), g(Y3) are given. Then 24 out of 27 
equally likely choices give the desired coloring. 
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Case 2 (two points in the same row), If x~ = x  2 then 
f(xl)=f(x2) and (4) has only six unknowns. Once h, 
g(Y2), and g(Y3) are specified, (4) determines f ( x 2 )  , 

f(x3), and hence f(xl) and g0q). The coloring is 
obtained with 2 3 out of 2 6 equally likely choices. 

Case 3 (three points in one row). If x 1 =Xz=X 3 then 
f (xO=f(Xz)=f(x3) and (4) has five unknowns. If h 
and f(xl) are specified, then (4) determines g(Yl), g(Y2), 
g(Y3). The coloring is obtained with 2 2 out of 2 s 
choices. 

Case 4 (one row and one column contain two points 
each). Suppose x 1 = x  2 and y~ =Y3. Then f (xl)=f(x2) , 

g(Yl) =g(Y3) so that h, f(x2), f(x3), g(Y2), g(Y3) are the 
unknowns. If h and f(xz) are specified then (4) de- 
termines the other unknowns. The coloring is obtained 
with 22 out of 25 choices. 

Case 5 (two or three points share a column). The 
argument is the same as in case 2 or 3. 

In cases 1 . . . . .  5 it was tacitly assumed that the 
coordinates xl, x 2 . . . .  ,Y3 are not zero. If x~=0  for 
example, then f(xa)=f(O)=h and the number of un- 
knowns is reduced. But in every case, there is a corre- 
sponding reduction in the number of free parameters 
on which the solution of (4) depends. The desired 
coloring a~, a2, a 3 is always obtained from 1/8 of the 
equally likely ways of determining h, f(xl) , 
f(x2), "", g(Y3)" 

The same proof applies to the even texture. Terms 
xly 1, x2Y2, x3y 3 are missing from (4) but that does not 
affect the argument Thus odd and even textures, 
although easily discriminated by eye, have the same 
third order probabilities. 
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