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Abstract. Behavioral studies have shown that a blind 
fish is capable of detecting and recognizing stationary 
objects in its surroundings. It is proposed that the 
displacement of water caused by the fish as it moves is 
the basis for this detection capability. Alterations in the 
displacement of water around the fish, caused by the 
obstacle, act as stimuli for the lateral line organ. The 
question of how these stimuli acting on the skin of the 
fish, image the environment and what information is 
thus made available to the fish is the concern of this 
paper. The stimuli for the lateral line organ are derived 
mathematically. Two cases are treated: that of a fish 
gliding past an obstacle and that of one approaching 
an obstacle. 

1 Introduction 

When a fish glides through water, a current field is set 
up around its body due to the displacement of water at 
its head and the suction at its tail. An obstacle in the 
vicinity of the fish will alter this current field as shown 
schematically in Fig. 1. The alterations in the water 
displacement on the skin of the fish will depend on the 
obstacle's size and shape, and on its distance from the 
fish. These alterations act as stimuli for the lateral line 
organ. If the fish were able to evaluate these stimuli, 
this would be a way for it to recognize objects in its 
surroundings. 

On the basis of this hypothesis (v. Campenhausen 
et al., 1981), behavioral experiments have been carried 
out on the blind cave fish Anoptichthys jordani 
(Weissert and v. Campenhausen, 1981). The results of 
these experiments show that the fish is able to discrimi- 
nate between stationary objects with respect to their 
shape. It should be noted here that the range for this 
discriminatory capability seems to be limited to a small 
distance away from the fish. The range within which a 

fish can detect a stationary object such as the aquarium 
wall is limited to a few centimeters (Dijkraaf, 1962). 
However, a fish can detect smaller objects, e.g., thin 
bars with diameters down to 2mm, at a distance of few 
millimeters (v. Campenhausen et al., 1981). 

The lateral line organ responds to the movement of 
the water relative to the fish's skin (Dijkraaf, 1934, 
1967). The cupulae of the free neuromasts, which are 
arranged in certain patterns on the head and the body 
surface, are affected by a shear motion due to the water 
displacement and thus excite the hair cells which are 
connected with the cupulae by means of sensory cilia 
(G6rner, 1961; Flock and Wers/ill, 1962). By contrast, 
the cupulae of the neuromasts in the canal organ are 
situated in canals beneath the skin, which are in 
contact with the external medium via pores. When a 
pressure difference in the external medium arises 
between the outer openings of the pores, the fluid 
inside the canals is shifted. This subjects the cupulae 
between the pores to a shear motion and thus excites 
the hair cells (Dijkraaf, 1952; Kuiper, 1967). Conse- 
quently, the water displacement and the pressure gra- 
dients on the body surface of the fish constitute the 
stimuli for the lateral line system with the aid of which 
the fish, according to the above hypothesis, can scan its 
surroundings. This gives rise to the questions of how 
these stimuli acting on the skin of a moving fish image 
the environment and what information is thus made 

Fig. 1. Schematic diagram of the current flow around a gliding 
fish. Left: in open water. Right: passing an obstacle 
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available to it. The aim of this paper is to investigate 
these questions by determining mathematically the 
spatial and temporal course of the stimuli on the skin 
of a fish gliding past or approaching an obstacle. 

In this context it must be noted that the current 
field produced by a moving fish depends on the fish's 
shape. So it can be expected that the shape of the fish 
will also play a role in the detection mechanism. There 
is a great variety in the body shape of fishes, and this 
can be correlated with performance criteria (Webb, 
1978, 1984). Consider a fish of disk-like shape with 
large flat sides. The current field produced by a moving 
fish of this shape can be approximated for the middle 
region along the fish's sides by a two-dimensional field. 
This is possible because the gradient of this field will be 
small in the dorso-ventral direction from the middle 
region due to the flatness of the fish's body. This 
assumption makes it possible to apply powerful 
methods used in hydrodynamics for the analysis of 
two-dimensional fields. In this context the following 
analysis will be carried out for obstacles with the shape 
of a cylindrical bar oriented parallel to the dorso- 
ventral axis of the fish and the results will be restricted 
to the middle region along the fish's side where the 
canal organ is located. For the field currents at any 
locus of the fish's surface and for fish of other shapes, a 
three-dimensional description is to be preferred. The 
present analysis is restricted to the two-dimensional 
case. 

2 Methods 

2.1 Presuppositions for the Computation 

1. The current field around a fish gliding in open water 
can be simulated by a certain configuration of sources 
in the head region and sinks in the tail region. Equating 
the gliding fish's body with this configuration of 
singularities, whose current field functions are known, 
makes it possible to describe the current field around 
the fish mathematically. 

2. A stationary object in the vicinity of a gliding 
fish will alter the fish's current field. In mathematical 
terms this alteration can be described as resulting from 
the influence of a configuration of singularities induced 
in the object by the lrioving fish. The substitute 
configuration for the object depends on its shape and 
size, and on its position relative to the fish and is 
determined by means of the method of images (cf. e.g., 
Curle and Davies, 1968). 

3. When a stationary object is introduced into the 
current field of the gliding fish, care must be taken that 
the calculated current still runs parallel to the surface 
of the fish's body. To avoid theoretical currents 

crossing the surface of the fish, the substitute configu- 
ration of the object has to be imaged in the fish's body. 
This entails a new substitute configuration for the fish's 
body which in turn must be imaged in the object. 

From this it can be seen that an interaction between 
real bodies and a current field can be described by an 
infinite series of singularity substitute configurations. 
The resulting current is then the vectorial summation 
of all component currents caused by the individual 
singularities in this series. The prerequisite is, of course, 
that the series converges. Fields of this type, which 
depend on the influence of two objects are called 
double periodic (cf. e.g., Betz, 1964). In a few cases a 
closed mathematical formula can be found for them, 
depending on the geometry of the bodies involved. If, 
as in our case, this is not possible an iteration 
procedure has to be applied until a certain exactitude 
has been achieved. This is the approach used in this 
paper. 

4. The method of images has been developed in the 
two-dimensional case for the application to straight 
lines and circles. But so far no similar method is known 
for directly calculating the current for the fish shape (cf. 
Curle and Davies, 1968). In two-dimensional space, 
however, it is possible to transform a fish-like shape in 
a plane into a circle in another plane by a conformal 
mapping. In this other plane, the method of images can 
be applied to the circle so that, after retransformation 
into the original plane, the substitute configuration for 
the fish-like shape can be obtained. In two- 
dimensional space the situation corresponds to that of 
a gliding cylinder with a fish-shaped cross-section 
(dorsal view of a fish) with a stationary circular 
cylinder in its current field (as indicated in Fig. 1). In 
the following, the term "gliding cylinder" will be used 
for the fish and "stationary cylinder" for the obstacle. 

5. Finally it is assumed that the temporal altera- 
tion of the current field does not occur too rapidly so 
that, for any instant in time, it can be assumed to be 
stationary and the current to be laminar. The current 
field can then be calculated for a series of instants in 
time, i.e., for a series of positions of the gliding cylinder 
relative to the stationary cylinder. 

2.2 Description of the Individual Steps 

The calculation was divided into a sequence of steps 
according to the above assumptions. Figure 2 shows 
this sequence diagrammatically. The details of the 
conformal transformation will be treated later, so for 
the moment, the reader is asked to pay attention to the 
fish-shaped figure and the solid line circle. 

Step 1) : The gliding cylinder (g. Cyl.) is replaced by a 
configuration of singularities (SC). 
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Fig. 2. Schematic diagram of the procedure 
for calculating the current velocity 
distribution on the surface of a cylinder 
gliding past a stationary cylinder; g. Cyl. 
= gliding cylinder; s. Cyl. = stationary 
cylinder 

Step 2) : The substitute configuration for the g. Cyl. is 
imaged in the stationary cylinder (s. Cyl.) generating a 
new configuration SC' which replaces the s. Cyl. with 
respect to its influence on the current field. 

Step 3) : The imaging of SC' in the g. Cyl. (required by 
presupposition 3. above) can only be performed after 
transformation of SC' by means of a conformal 
mapping from its plane (W plane) into another plane 
(Z plane) where the cross-section shape of the g. Cyl. 
can be transformed into a circle. Step 3 is then the 
conformal mapping of SC' into a corresponding con- 
figuration SC" in the Z plane. 

Step 4): The transformed configuration SC" in the 
Z plane is imaged in the transformed circle of the 
g. Cyl. This generates a new configuration SC" which 
fulfills the requirement that the current must run 
parallel to the surface of the g. Cyl. 

Step 5): The complex current field function is es- 
tablished with the substitute configurations SC" and 
SC" which are then used to ascertain the values of the 
current velocities at the contour lines of the circle 
corresponding to the g. Cyl. Since the point of depar- 
ture is the configuration SC" substituted for the s. Cyl., 
the values ascertained for the current velocities repre- 
sent exclusively the changes due to the presence of the 
s. Cyl. in the current field. The values obtained for the 
change in the current velocity in the Z plane then have 
to be multiplied by a transformation factor to obtain 
the corresponding values for the W plane. 

Step 6) : The newly generated configuration SC" must 
now be imaged in the s. Cyl. in accordance with 
presupposition 3. Since the s. Cyl. no longer has a 
circular cross-section in the Z plane, SC" must be 
retransformed to a corresponding configuration SC .... 
in the W plane. S C "  can then be imaged in the s. Cyl. 
in the W plane. 

This brings the procedure back to Step 2 again. The 
whole procedure is then repeated from Step 2 onwards 
as many times as is necessary to obtain values for the 
current velocity change which are added together until 
the additionally gained values are so small they can be 
neglected. This is definitely the case if the distance 
between sources and sinks becomes so small that they 
neutralize each other. 

2.3 Calculation of the Substitute Configuration 
for the Gliding Cylinder 

This paper will deal with three cases with three 
different cross-section shapes for the gliding cylinder, 
viz., circle, ellipse and fish-shape (dorsal view of a fish). 
The cross-section of the stationary cylinder is always a 
circle. 

2.3.1 Circular Cross-Section. A circular cylinder with 
the radius R gliding at a velocity G in the direction of 
the positive X axis can be replaced with a dipole of the 
strength 

D = G R  2 . (1) 

The dipole is oriented in the direction of the positive 
X axis. A dipole is the threshold case of a source and a 
sink with the strengths + m and - m when the distance 
a between them disappears as they approach zero but 
at the same time the variable m. a (strength of the 
dipole) still has a defined value. 

2.3.2 Elliptical Cross-Section. One proceeds from a 
circle in the Zplane with its center at the zero point 
(broken line in Fig. 2). Such a circle can be transformed 
into an ellipse in the Wplane with conformal mapping. 
The transformation is carried out according to: 

W= Z-t-(cZ/z),  (2) 
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where W = u + iv and Z = x + iy and C is a constant. 
The constant C in this equation is equal to half the 
distance between the zero point and a focal point of the 
ellipse in the Wplane. A gliding circular cylinder can be 
replaced by a dipole as shown above. If it were possible 
to transform this dipole substitute for a circular 
cylinder in the Z plane into the W plane, one would 
obtain the substitute configuration for a cylinder with 
an elliptical cross-section. This, however, is not directly 
possible due to the transformation properties from the 
above equation according to which the Z plane is 
mapped in two planes, the so-called Riemann planes. 
Anything outside a circle of the diameter 2C is mapped 
in one Riemann plane, termed the Wplane here, and 
anything inside such a circle is mapped in another 
Riemann plane, W'. The two Riemann planes are 
connected by a so-called branch cut between the focal 
points of the ellipse, i.e., between u--2C and u = - 2 C .  
This branch cut corresponds to the circle C with the 
diameter 2C in the Z plane. 

The indirect way of transforming the dipole inside 
the circle C in the Z plane into the Wplane consists in 
transforming the current it causes at the circumference 
of the circle C instead of transforming the dipole itself. 
The current is resolved into its radial and tangential 
components. The radial components are then to be 
understood as line distributions of sources or sinks on 
the circle circumference, viz., as sources for positive 
(from inside to outside) components, and as sinks for 
negative (from outside to inside) ones. The tangential 
components are interpreted as line distributions of 
circulations on the circumference. According to the 
direction of rotation of the tangential components 
relative to the center point of the circle, the circulations 
are assigned a positive (clockwise) or negative (anti- 
clockwise) sign. The source, sink and circulation line 
distributions on the circle circumference can then be 
transformed into the W plane at the branch cut 
between 2C and - 2 C .  Each point on the branch cut 
corresponds to two points on the circle C in the Z 
plane, the positions of which are symmetrical relative 
to the x axis. This means that the line distribution 
of the branch cut is the sum of the line distributions 
on the circumference half symmetrical to the x axis. 

Before the transformation of these line distri- 
butions from the Z into the Wplane, however, it must 
be taken into account that a permanent dipole belong- 
ing to circle C exists in the Z plane which must not be 
transformed into the W plane. This dipole has the 
strength 

D~ = G. C 2 . 

The dipole to be transformed has the strength 

D = G" R 2 - -  G" C 2 , (3) 

where G is the gliding velocity of the cylinder, and R the 
radius of the circle in the Z plane corresponding to the 
ellipse in the W plane. 

The complex potential function F(Z)  for the curr- 
ent field of the dipole is 

F(Z)  = - D / Z  (4) 

from which the potential function P(Z)  is derived as 
the real component of F(Z): 

P ( Z ) = R e { F ( Z ) }  (5) 

with Z = r-e  i~ (representation of Z in polar coordi- 
nates). It follows that the radial current velocity 
components at the circumference of the circle C are 

Src(O ) = (dP/dr)c = D . cos (O)/C z (6) 

and the tangential components 

Sic(O) = (l/r) (dP/dO)c = D . sin(O)/C 2 . (7) 

One can see from the equations for Src and Stc that the 
radial components have the same amplitude and the 
same sign symmetrically to the x axis, while the 
tangential components have the same amplitude but 
different signs. On transformation into the Wplane, the 
current components on the circumference of the 
circle C are summated symmetrically to the x axis as 
already mentioned. This means that the line distri- 
butions of sources and sinks on the branch cut in the 
Wplane double their strength while the circulation line 
distributions cancel each other out. 

The strength of the source or sink line distribution 
in a small differential sector of the circumference of the 
circle C is 

dMz(O ) = Sr~(O). C .  dO. (8) 

In accordance with the conservation law of mass 
dMz(O) has to be transformed into the W plane as 
dMw(u) with the same strength. The following equa- 
tion can be substituted for dMw(u): 

dM~(u)  =S.~(u)du,  (9) 

where Su~(u) is the line distribution density of sources 
and sinks on the branch cut. The solution of this 
equation for Suc(U) is 

S,~(u) = (O. u/C2)/(4C 2 - u 2) 1/2. (10) 

The substitute configuration for a cylinder with ellip- 
tical cross-section is then the source and sink line 
distribution on the line between the two focal points of 
the ellipse with the line distribution density S,c(u). 

2.3.3 Fish-Shaped Cross-Section. If, in the Z plane, the 
concentric circle R is shifted to the right until it touches 
the circle C at the point - C (solid line circle in Fig. 2), 



then a figure in the W plane resembling the fish-shape 
corresponds to the shifted circle. This figure is called a 
symmetrical Joukowsky profile (Betz, 1964). 

In this case, the dipole of the circle R in the Z plane 
is situated at 

x = R - C = L  (11) 

and has the strength 

D r = G" R 2 . 

Before transforming into the W plane, the radial 
components Src(O)c of the permanent dipole must be 
subtracted from the radial components of this dipole 
Src(O)r on the circle C. For the radial components to be 
transformed, one obtains the following expression: 

Src( O) = Sr~( O ) r -  Src( O)c 

= Dr((C 2 + L2) �9 cos(0)-  2 L C ) /  

(C 2 + L 2 -  2 L C .  cos(0)) 2 

- -D~.  cos(O)/C 2 . (12) 

After the transformation into the W plane, the 
resulting substitute configuration for the source and 
sink line distribution density for a cylinder with a fish- 
shaped cross-section is 

S,~(u) = ( ( (C 2 + Lz) . u - 4 L C 2 ) / ( C  2 + L 2 - -  Lu) 2) 

�9 D J ( 4 C  2 -  uZ)a/2 

- Or (u /C2) / (4C  2 - u2) '/2 . (13) 

To carry out the calculation, the continuous line 
distribution of the branch cut was converted into 
discrete sources and sinks. The number of discrete 
sources and sinks was limited to a total of 20 to avoid 
large calculation effort. 

2.4 Re f l ec t i on  o f  the Subs t i tu t e  Conf igura t ion  
and Calculat ion  o f  the Curren t  Veloci ty  

The calculation is carried out for the case in which the 
stationary cylinder has a circular cross-section. 

2.4.1 The  Gliding Circular  Cyl inder .  Since the cross- 
section of the g. Cyl. is a circle here, the whole 
calculation will be carried out in the Z plane. As shown 
above, the substitute for a gliding circular cylinder is a 
dipole. To facilitate imaging the dipole, the coordinate 
System Z, at the zero point of which the center point of 
the g. Cyl. is situated, is transformed into a new 
coordinate system Z', at the zero point of which the 
center point of the s. Cyl. is situated, and on the 
horizontal axis of which the dipole is situated. The 
relation between Z and Z' is 

Z ' =  Z e - i a -  IZo[ , (14) 
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where Z o  = x o  + iyo are the center point coordinates of 
the s. Cyl. in Z, and a = arctan (yo /xo) .  

The complex potential function for the current field 
of the dipole Dg in the coordinate system Z' is 

Fo(Z" ) = --  D o - e - ~ " / ( Z ' +  IZo[ - X , )  . (5) 

X, is introduced to adapt the function F o to the 
requirements of the iteration procedure which imple- 
ments the interaction between the two cylinders. In the 
first iteration step X, has the value zero, in subsequent 
steps, however, values greater than zero. 

To obtain the complex potential function for the 
dipole imaged in the s. Cyl. Fh, Z '  is replaced by 
R~/Z"  in the complex conjugated potential function F* 
where R 0 is the radius of the s. Cyl. 

F h ( Z 3  = F* . (R~ /Z ' )  

= --  D o " e ia / ( (R~/Z3 + IZol-  X,). (16) 

Then, after retransformation to the Z coordinate 

Fh(Z  ) = --  D h �9 ei(n + a ) / ( Z ,  e - i, _ Lh), (17) 

where 

Oh = D o" R ~ / ( I Z o l -  S , )  z 

and 

Z h = I Z o l -  R ~ / ( I Z o l -  S , ) .  

To image the substitute dipole of the s. Cyl. back 
into the g. Cyl., one proceeds as before. In the complex 
conjugated potential function F*, Z is replaced by 
R 2 / Z ,  where R is the radius of the g. Cyl. The equation 
for the re-imaged dipole Fgh is then 

F o h ( Z  ) = - Doh . e - i a / ( z "  e - i , _  Lgh) ' (18) 

where 

Doh = D h �9 RZ/L2h 

and 

L o h  = R 2 / L h  . 

In the next iteration step, the dipole strength D o is 
replaced by Doh in the equation for Fg, and X, is 
equated to the value of Lg h. 

As can be seen from the equations for D h and Dah , 

the dipole strength is multiplied by the factor K 

g = R~ g z / (  (IZol - -  X . )  2 

�9 ( IZo l  - -  R~/(IZol  - X . ) )  2) ( 1 9 )  

at each iteration step. If the value for K is smaller than 
1.0 then the convergence requirement for the iteration 
is met. For a certain value of R, the factor K tends to 
increase as R o increases. R o has its maximal value, viz., 
infinity, for a flat wall In this case the maximal value 
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for X, is 

X,,. max = R + b - (b e + 2b R) 1/2, (20) 

where b is the distance between the wall and the 
cylinder. 

If one calculates the limit of K for Ro = 0% one 
obtains 

Lim K = R Z / ( R  + b + (b 2 + 2 b R ) i / z )  2 . 
Ro=oO 

(21) 

For values of b > 0, Lira K < 1.0. 
RO=OO 

This meets the convergence requirement for the 
iteration procedure as long as there is a space between 
the two cylinders. 

The potential function for the current evoked by 
the presence of the s. Cyl. is the sum of the real 
components of the complex potential functions Fh and 
Fob. The derivation of the potential function according 
to x or y respectively leads to the current velocities 
dC,x or dC~y respectively. The result for an iteration 
step is then 

dC,,x(x, y), = Dh, . (Y~ . cos(2a) - XZ~h �9 cos(2a) 

- - 2 .  Xch" Y~h" sin(2a))/mh 

_ Dgh. (y2  _ X[o)/M ~ (22) 

and 

dC~y(x, y), = Dh, . (XZ~ �9 sin(2a)-- Y~. sin(2a) 

- 2.  Xch" Y~h" cosC2a))/Mh 

--Oghn" (2. Xco. Y~o)/Mo (23) 

where 

2 2 2  Mh = (X~h + Ysh) , 
2 2 2  

Mo = (Xco + Y~o) ' 

X c h  = X - -  L h n  " cos(a), 

Y~h = Y--  Lh, sin(a), 

X~g = x -- Lob . cos(a) 

and 

Y~g = y -  Loh . sin(a). 

If these components are added for the iteration steps 
which follow each other, the result is 

d G A x ,  y) = 5", dCox(x, y). 
n 

dC,,r(x, y) = Z dC,,~,(x, y),, 
n 

and 

dC,,(x, y) = (dC,,x(x, y)2 + dC,,,(x, y)2)1/2. (24) 

Since the calculation was carried out numerically on a 
computer, the iteration was interrupted as soon as the 
additional values for dC~ became smaller than 10 - 3 of 
their value in the first iteration step. 

2.4.2 The Gliding Cylinder with an Elliptical Cross- 
Section. As shown above, the gliding elliptical cylinder 
can be replaced by a configuration of discrete sources 
and sinks. In the coordinate system W =  u + iv, each 
source or sink has the coordinates Wq, and the center 
point of the s. Cyl. has the coordinates Wh. To derive 
the function for the source imaged in the s. Cyl., the 
coordinate system W is transformed into the coordi- 
nate system W' according to the relation W' = W -  Wh. 
The complex potential function F o for the current field 
of the source with the strength is then 

Fo(W" ) = Q. l n (W' -  Wq'). (25) 

By replacing W' with R~/W' ,  where Ro is the radius of 
the s. Cyl., in the complex conjugated function F*, one 
obtains the complex potential function for the imaged 
source Fh 

F* .  (R~/W')  = Q.  l n ( R ~ / W ' -  Wq'*) = Fh(W" ) . (26) 

After retransformation to the W coordinate, the func- 
tion Fh is 

Fh(W) = Q. (ln (Wh-- Wa)- l n (W-  Wh) 

+ l n ( W - ( W h + R ~ / ( W q -  Wh)*))) �9 (27) 

The first term (ln(Wh--Wq)) is a constant which con- 
tributes no value to the current velocity. The second 
term depends entirely on the coordinates of the s. Cyl. 
However, since each source Q has a corresponding sink 
- Q  in the substitute configuration, this term disap- 
pears through the summation of the functions of all 
sources and sinks in the configuration. The function 
Fh(W) then becomes 

Fh(W) = Q. l n (W-  (Wh + Rz/(wq - Wh)*)). (28) 

According to the function Fh, the imaged source has 
the strength Q and the coordinates Wqh=W h 
+ R2/(Wq - Wh)*. 

For imaging in the g. Cyl. the imaged source must 
first be transformed to the Z plane with the aid of 
conformal mapping. In the Z plane the ellipse appears 
as a circle. In the Z plane the complex potential 
function is then 

Fh(Z) = O. l n ( Z -  Zqh). 

After imaging in the g. Cyl. one obtains 

Foh(Z ) = Q . l n ( Z -  Ra/Z*h) 

for the re-imaged source. The sum of the real compo- 
nents is the result of the potential equation for the 
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current change in the field for one iteration step. For 
further iteration steps, the re-imaged source has to be 
transformed to the W plane and imaged in the s. Cyl. 

The derivation of the potential equation according 
to x or y respectively results in the current velocities 
dC~x or dCvy respectively. For an iteration step n and a 
source or a sink m, the result is then 

dGx(X, y)n, m = Q= . ( ( x -  Gh, .~)/D 1 

+ ( x -  R 2. Xqh ,.,./IZqh ,.,.12)/D2), (29) 

dCvy(x ,  y )n ,  m = Qm " ((Y - Yqh, nm)t D 1 

+ ( y -  R 2. Yqh,,m/lZqa,,mlZ)/D2), (30) 

where 

y 2, Dl=(x-Xqh, , , , )2 +(Y - ~h,n,,) 

D2 = (x - R 2. X qh,n,./IZqh ' nml2) 2 

+ ( Y -  R2" Yqh,,,,]lZqh,,,,12) 2 

and 

[Zqh,nml 2 __ 2 y 2  - X q h , n m  "{- qh,  nm �9 

The total change then results after forming the sum 
over n and m as 

By inserting the coordinates x and y of the transformed 
contour points of the ellipse into the Z plane one 
obtains the values for the velocity change at this point 
in the Z plane. To obtain the corresponding values in 
the W plane, dCv(x,y) must be multiplied with a 
transformation factor Tf, 

T f  : (((1 - C2(x  2 -y2)/Z )2 

+ (2CZxy/Z4)2)l/z)-l. (32) 

The iteration was discontinued as soon as the ad- 
ditional values for dC~ became smaller than 10-3 of 
their value in the first step. 

2.4.3 The Gliding Cylinder with Fish-Shaped Cross- 
Section. There is no essential difference between the 
calculation of the velocity change in this case and in 
thatof  the elliptical cylinder. As mentioned above, the 
fish shape in the W plane corresponds to a circle shifted 
to the right in the Z plane so one must only take into 
account the new coordinates of this circle in the 
calculation. There is, however, one difference from the 
ellipse, namely that the profile point in the W plane 
corresponds to a singular point x = - C in the Z plane. 

This means that the current velocity must have the 
value zero at this point. Consequently, a circulation 
appears which makes the current velocity at the profile 
point equal to zero. The additional amount of this 
circulation must then be added to the current velocity. 

3 Results 

To facilitate understanding, the gliding cylinder will be 
designated according to its cross-section shapes, i.e., 
circle, ellipse and fish, while the term "obstacle" will be 
used for the stationary circular cylinder in the follow- 
ing. The calculation was performed for the following 
measurements of the three shapes in arbitrary units: 

Circle: diameter 40 units. 
Ellipse: width 40 units, length 100 units. 
Fish: width 40 units, length 100 units. 
The diameter of the obstacle was 40 units. The 

"parallel interval", defined as the distance between the 
surface of the obstacle and the surface of the gliding 
cylinder when its widest section was opposite the 
obstacle, was 1 unit. 

The widths of the three shapes vertical to the 
gliding direction were made equal so as to be able to 
equate the amount of water displaced per time unit in 
the three cases at the same gliding velocity G. 

3.1 Current Velocity Distribution (CVD) 

The distribution of the current velocity Cv along the 
extended contour line of the circle, ellipse and fish 
respectively gliding past the obstacle is shown in 
Fig. 3a, b and c respectively. Since the gliding velocity 
appears as a coefficient in the calculation, the values of 
Cv are represented as normed for G. 

For the ellipse and the fish in Fig. 3b and c, L 
corresponds to the extended contour line of the circle 
belonging to each in the Z plane. Points on the line L 
are connected by lines to the corresponding points on 
the real contour line. 

Each curve in these figures plots the current 
velocity distribution (CVD) for a certain position of the 
gliding cylinder relative to the obstacle. The curves 
shown shifted for the positions following each other 
are to be understood as a series of current velocity 
changes within the time t. Positive values for Cv 
indicate a current velocity relative to the surface of the 
gliding cylinder in the opposite direction to the gliding 
movement. 

The first curve A in each of the Fig. 3a, b, and c 
represents the CVD at the position A of the gliding 
cylinder relative to the obstacle as is shown in the 
upper figures. The influence of the obstacle on the 
current around the gliding cylinder is very small at this 
position. The CVD is the same as for gliding in open 
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Fig. 3a--d. The current velocity distribution on the surface of a cylinder gliding past a stationary cylinder, a Gliding cylinder with a 
circular cross-section; 6 gliding cylinder with an elliptical cross-section; c gliding cylinder with a fish-like cross-section, d The current 
velocity distribution on the surface of a gliding cylinder with a fish-like cross-section approaching a stationary cylinder. G: gliding 
velocity; L: stretched contour of the g. Cyl.; t: time 
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Fig. 4a and b. The change in the current velocity distribution (dC~) on the surface of the gliding cylinder due to the stationary cylinder. 
a for the case of gliding past the stationary cylinder; b for the case of approaching the stationary cylinder 

water. A wave forms in front of the gliding cylinder 
when this comes nearer to the obstacle. The wave 
reaches its maximum amplitude when the head of the 
gliding cylinder is opposite the obstacle (position B) 
and then dies away again at the tail end (position C). 

Comparison of the three figures shows that the time 
and space course is similar for the three shapes. The 
maximum values for C,, however, are different for the 
different shapes even though the amount of water 
displaced is the same in the three cases. The maximum 
value of Cv is lowest for the circle and highest for the 
fish. The explanation is that the proportion of dis- 
placed water which can flow around the outer sides of 
the obstacle and the circle (rather than between them) 
is higher than the proportion of displaced water which 
can flow around the outer sides of the obstacle and the 
fish. 

The calculations were performed for the three 
shapes of the gliding cylinder so as to be able to 
compare the effect of the shape on the current gen- 
erated. In the following, the fish shape alone will be 
considered. 

The CVD was also calculated for the fish for the 
case where the gliding motion was directed frontally 
towards the obstacle (Fig. 3d). The first curve in Fig. 3d 
shows the CVD for the position A relative to the 
obstacle (cf. upper illustration). The influence of the 
obstacle on the current is once again very small. On 
further approach, Cv increases constantly at the head 
and then, in the last quarter of the distance, very 
strongly. The parallel interval at the last position B is 1 
unit of the fish length. 

So that the influence of the obstacle on the current 
around the gliding cylinder can be seen better, the 
current velocity change dC~, which is obtained by 
subtracting the current velocity for gliding in open 
water C~o from Cv, is shown for the cases of gliding past 
and frontal approach in Fig. 4a and b. These diagrams 
give an impression of the stimulus to the lateral line 
system according to the current field hypothesis men- 
tioned in the introduction. To get an idea of the actu- 
al stimulus strength, the current changes shown in 
Fig. 4a and b should be taken as ratios of dCjC,o. 

Figure 5a and b show the value dCv/C,o, which 
indicates the degree of change in the current velocity 
for the same cases relative to that for gliding in open 
water. If the lateral line system functions according to 
the Weber-Fechner rule, this description will be the 
most appropriate. The large change at the head occurs 
because the values for C~o in this area are very small. 
The absolute sensitivity of the sense cell will be the limit 
for the perception of stimulus details in the head 
region. 

3.2 Pressure Distribution (PD) 

After calculating the current velocity, the Bernoulli 
equation can be used to ascertain the pressure distri- 
bution and the pressure gradient on the surface of the 
gliding cylinder. The Bernoulli equation is: 

( P -  Po)/(0.5~C2o)= 1 2 2 - ( ( c v ) / ( c v o ) ) .  

Where Po and C,o are the pressure and the current 
velocity in infinity, P and C. the pressure and the 
current velocity at a certain point on the cylinder 
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Fig. 6a and b. The pressure distribution on the surface of the gliding cylinder, a for the case of gliding past the stationary cylinder; b for 
the case of approaching the stationary cylinder 

surface, and ~ is the density of the water. A plot  of  this 
calculated pressure distr ibution is shown in Fig. 6a for 
the case of  gliding past  an obstacle, and in Fig. 6b for 
the case of  frontal  approach.  The corresponding 
pressure gradients for the two cases are shown in 
Fig. 7a and b respectively. 

3.3 Variations in Size and Distance 
of the Obstacle 

In  the gliding past  case, the dependency of  the current  
velocity distr ibution on the radius R o of the obstacle 
and on the parallel interval D were calculated (results 
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Fig. 7a and b. The pressure gradient on the surface of the gliding cylinder, a for the case of gliding past the stationary cylinder; b for the 
case of approaching the stationary cylinder 
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Fig. 8. Plot of the current velocity distribution as a function of the 
radius of the stationary cylinder Ro 
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Fig. 9. Plot of the current velocity distribution as a function of the 
distance of the stationary cylinder from the gliding cylinder 

shown in Figs. 8 and 9). The curves shown shifted are 
the spatial distribution of dCv for a certain Ro or D 
respectively at the moment  when the gliding cylinder 
and the obstacle are on the same plane. The shift is 
made according to a logarithmic scale of the radius Ro 
or the parallel interval D respectively. 

To describe the influence of the size of the obstacle 
and its distance from the fish on the stimulus distri- 
bution two parameters  for the current velocity distri- 
bution can be defined: the max imum positive ampli- 
tude dC . . . . .  and the width W. The width is defined as 
that  length of the contour  range in which dC~ has 
positive values. As can be seen from Fig. 8, dC . . . . .  and 

W increase as Ro increases. When the parallel interval 
increases, dCv.m,x is reduced while W is increased (cf. 
Fig. 9). 

When the mode of representation is reversed, i.e., 
when dC . . . . .  and W are made the coordinate systems, 
and the corresponding combinations of the radius R o 
of the obstacle and the parallel interval D are plotted as 
points, and all points with the same value for the 
parallel interval are connected with a line, one obtains 
a group of curves such as is shown in Fig. 10. This 
means that there is an unequivocal combinat ion of the 
size and the distance from the obstacle for every 
combination of dC . . . . .  and W. 
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For  the case of frontal  approach,  dC . . . . .  is shown 
in dependence on the distance between the fish's head 
and the surface of  the obstacle for various radii of  the 
obstacle in Fig. 11. As can be seen, one can define a 
range of  up to 10 times the fish's length with respect to 
the radii of  the obstacle in which dC . . . . .  increases. 
Wi th  respect to the parallel interval, it can be assumed 
that  no noticeable increase in dC . . . . .  occurs until a 
distance shorter  than the length of the fish is reached. 

D i s c u s s i o n  

This paper  aims at describing the stimulus for the 
lateral line system mathematical ly,  and in part icular  
those stimuli which are the result of modificat ions to 
the current  generated by the fish itself as it glides. 

As the results show, a s tat ionary obstacle in the 
vicinity of  the gliding fish modifies the current  field in 
such a way that  a well defined spatial and temporai  

( 

Fig. 11. Plot of the current velocity increase in the case of 
approaching the stationary cylinder as a function of the distance 
D to it. The parameter for each curve is the radius of the 
stationary cylinder R o 
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current velocity distribution (CVD) and a pressure 
distribution (PD) occur on the fish's body surface. It is 
of interest to note here that the gliding velocity of the 
fish enters into the calculation of the CVD as a 
coefficient. As a consequence, the spatial and the 
temporal distribution of current velocity and pressure 
will not be altered in their form when the gliding 
velocity varies; only the amplitude and time duration 
will be changed. This means that, for the fish to be able 
to analyse the stimuli on its body surface as well as to 
correlate the spatial and temporal distributions of the 
stimuli, the gliding velocity must be accessible to it as a 
scaling factor. In view of the dependency of boundary 
layer thickness and frequency content of the stimulus 
on the gliding velocity, there must be an optimal 
gliding velocity for the fish. 

As described above, the CVD in the case of gliding 
past an obstacle (Fig. 3c) can be characterized by a 
limited area of increased current velocity with adjoin- 
ing areas of reduced current velocity (CV). The width of 
these areas and the amplitude of the CV depend on the 
size of the obstacle and on its distance from the fish. 
The way in which these two parameters affect the CVD 
differs. For instance, an increase in the size of the 
obstacle yields an increase in the amplitude of the CV 
and in the width of the area in which this occurs 
(Fig. 8). By contrast, an increase in the distance of the 
obstacle from the fish leads to a smaller increase in the 
amplitude of the CV, while the width of the area of its 
occurrence increases (Fig. 9). These different ten- 
dencies of the chosen characteristics for the CVD, the 
amplitude of the increased CV and the width of the 
area in which it occurs, indicate the possibility that 
they could be used to code the size and distance of the 
obstacle. This possibility becomes clearer when all 
combinations of size and distance of the obstacle are 
plotted in a coordinate system in which the axes are the 
amplitude of the increased CV, and the width of its 
area. In such a representation, as Fig. 10 shows, 
different combinations of size and distance of the 
obstacle correspond to different points in the coordi- 
nate system. Consequently, the two value pairs can be 
transformed into each other. For the fish, this means 
that information can be gained on both the size and the 
distance of objects in its surroundings by analyzing the 
CVD on its whole body surface. In other words, a fish 
may not need a mechanism for size constancy. 

It may be noted here that the accuracy with which a 
fish can analyse the CVD on its body surface depends 
on the number of CV measuring points on the surface, 
i.e., on the number of neuromasts. This may explain 
why a large number of neuromasts are found in certain 
species of fish such as the blind cave fish (Schemmel, 
1967) which is thought to explore its surroundings by 
using the lateral line system. 

In the case of frontal approach, the results showed 
that the CV does not increase noticeably until the fish 
is at a relatively short distance from the obstacle, and 
the increase occurs only in a limited area at the front 
region (Fig. 3d). In three-dimensional space, it is to be 
expected that increases in CV will be smaller since 
there is more space for the current to be deflected. 
Accordingly, one must conclude that a fish should be 
able to register very small changes in the CV in the 
region of its head, if it is to avoid an obstacle at a safe 
distance. The head is an area favorable for registering 
such small changes since the boundary layer on its 
surface is thinner than elsewhere on the body surface 
(Schlichting, 1951). It is possibly due to this demand on 
the lateral line system that the neuromasts are more 
numerous and the canal system has several organs in 
the head region. 

The situation studied here is that of a fish gliding 
past or approaching a stationary obstacle. The con- 
trary situation, that of a stationary fish and a moving 
object leads to a different CVD on the body surface of 
the fish. So, a fish in this situation experiences a 
different stimulus distribution from that generated 
when it glides itself. An interesting question arises in 
this connection: which parameters of the stimulus 
distribution does a fish use to recognize an object as 
having the same shape, even though the stimulus 
distribution arising on its body surface due to the 
object varies? 
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