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Abstract. A solution to the correspondence problem 
for stereopsis is proposed using the differences in the 
complex phase of local spatial frequency components. 
One-dimensional spatial Gabor filters (Gabor 1946; 
Marcelja 1980), at different positions and spatial 
frequencies are convolved with each member of a 
stereo pair. The difference between the complex phase 
at corresponding points in the two images is used to 
find the stereo disparity. Disparity values are com- 
bined across spatial frequencies for each image loca- 
tion. Three-dimensional depth maps have been com- 
puted from real images under standard lighting con- 
ditions, as well as from random-dot stereograms 
(Julesz 1971). The algorithm can discriminate dispar- 
ities significantly smaller than the width of a pixel. It is 
possible that a similar mechanism might be used in the 
human visual system. 

Introduction 

Successful computer methods for solving the stereo 
correspondence problem often involve the use of 
specific "features" as matching primitives (Barnard 
and Thompson 1980). These features are assumed to 
correspond to real structural properties of objects in 
the scene. Marr and Poggio (1979) have proposed the 
use of zero-crossings of the filtered images as the 
matching primitive, since the zero-crossings may cor- 
respond to real edges. Grimson (1985) modified this 
algorithm to impose continuity along contours. Ohta 
and Kanade (1985) use derivatives to find edges on 
each scanline, and then link edges between different 
scanlines to provide global constraints. And Kass 
(1983) performs matching based upon "feature vectors" 
of the first and second partial derivatives at different 
spatial scales. 

A problem with matching based upon specific 
features is that it may be possible to find images for 
which the features are either misleading, sparse, or 
absent (Mayhew and Frisby 1981). J.G. Daugman 
(personal communication) has shown that it is possible 
to transform any image into an equally recognizable 
one which contains no zero-crossings. One could 
interpret any such image by using additional features, 
such as those suggested by Kass (1983). Mayhew and 
Frisby (1981) have suggested the use of peaks of the 
filtered image in addition to zero-crossings, and Poggio 
and Poggio (1984) mention that zero-crossings are 
probably not the only matching primitive in the 
human visual system. But feature-based algorithms 
require the existence of a sufficient number of features 
in the image, and give only sparse data if the features 
occur infrequently. Often such algorithms rely on a 
scarcity of features in order to make unambiguous 
matches. Unfortunately, this means that disparity can 
only be computed at relatively few points in an image. 
As a consequence, the output of such algorithms may 
not be useful for reconstructing smoothly curved 
surfaces or complex objects. 

Stereoacuity is often limited by the spacing of the 
feature detectors. Detectors are usually spaced one 
pixel apart, and the pixel width therefore determines 
the disparity resolution. Without hyperacuity, large 
camera spacings are required to obtain adequately 
large disparities (Verri and Torre 1986), and this leads 
to a greater possibility of ambiguous or missing 
matches due to occlusions and viewpoint differences. It 
is possible to interpolate between points in the original 
image or convolution product. This technique can be 
used to find the location of edges to subpixel accuracy 
(Marr et al. 1979; MacVicar-Whelan and Binford 1981). 

Algorithms which are not based on matching 
features are often called "correspondenceless" algo- 
rithms. An example is the use of cross-correlation to 
match small areas of each image (Hannah 1974; 
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Panton 1978; Moravec 1980). Theoretically, depth 
estimates may be generated for every point in a scene, 
allowing dense depth maps and the interpretation of 
complicated surfaces. Correlation requires that the 
image have sufficient local texture at each point to be 
matched, but that the texture not be repetitive or dis- 
continuous (Lim and Binford 1987). Such techniques 
are very sensitive to noise, as well as to contrast or 
lighting changes between the two images which may be 
caused by the differing locations of the cameras. Other 
"correspondenceless" algorithms involve subtracting 
the left and right images and using the difference as a 
measure of disparity (Sperling 1970; Krotkov 1986). 

To avoid the problems of lighting or noise dif- 
ferences between the two images one can apply band- 
pass filters to the images before attempting either a 
correspondenceless or a feature-based analysis. The 
left and right images may match quite well within one 
or more spatial-frequency bands, and a combination of 
information from different bands may be able to 
further reduce inaccuracies due to bandlimited noise. 
Biological inspiration for such methods comes from 
experiments showing that the visual cortex encodes 
information using bandpass spatial-frequency filters 
(Campbell and Robson 1968; Julesz 1971; Pollen and 
Taylor 1971; Maffei and Fiorentini 1973; Julesz and 
Miller 1975; Levinson and Blake 1979; Shapley and 
Lennie 1985). 

A useful bandpass filter is the spatial Gabor filter 
(Gabor 1946; Marcelja 1980) which has both limited 
spatial width and finite bandwidth, and whose shape is 
similar to the receptive field profile of simple cells in 
primate visual cortex (Marcelja 1980). Although many 
similar filters can also be used, the Gabor filters allow 
easy separation of the modulating component (which 
determines the spatial frequency) and the envelope 
(which determines the bandwidth). These filters have 
been used for motion sensing by several authors 
(Watson and Ahumada 1983; Adelson and Bergen 
1984; Sperling and van Santen 1984; Watson and 
Ahumada 1985; van Santen and Sperling 1985; Adel- 
son and Bergen 1985; Heeger 1986), often by extracting 
the local spectral energy and analyzing it over a finite 
time interval. Such an analysis is not applicable to a 
stereo vision system, however, since only two frames of 
image data are available and algorithms therefore do 
not have access to the continuous information for 
which energy analyses are particularly suited. 

The method proposed here is to convolve the left 
and right images with a complex Gabor filter and to 
use the difference in complex phase at each point to 
indicate a local shift between the two images. The 
disparity at a point is linearly proportional to the local 
phase difference in approximately the same way that a 
uniform shift of the entire image is proportional to the 

change in complex phase of the Fourier coefficients. 
The algorithm ignores the amplitude of the local 
spectral components and so does not attempt to 
recognize any features of the scene. It senses disparity 
directly from a locally computed parameter of the pair 
of images, and it therefore requires no formal matching 
process. After disparity is calculated at each spatial 
scale, the different values are combined independently 
to produce a single depth estimate. 

Oppenheim and Lim (1981), Julesz and Schumer 
(1981), and Howard and Richardson (1986) have 
suggested that phase information is critically impor- 
tant for human interpretation of visual scenes. (Note 
that these authors refer to the phase of the global 
Fourier transform, and their comments might not 
apply to the phase of local Gabor filters.) Further 
support for the use of phase information in primate 
visual cortex comes from the discovery that simple cells 
occur in pairs with quadrature relative phase (Pollen 
and Ronner 1981), and could therefore represent the 
phase of a complex filter (Robson 1975). Burgess and 
Ghandeharian (1984) found that for detection tasks, 
humans perform better than the best "phase- 
insensitive" detector. Their results imply that matching 
between images makes use of the complex phase 
information in local regions. For stereopsis, the data of 
Mayhew and Frisby (1981) shows that this phase 
information is recombined from different spatial scales 
to produce a unified perception of depth. Since humans 
cannot compare spatial phase between frequencies 
more than two octaves apart (Lawden 1983), it seems 
likely that the disparity is computed entirely indepen- 
dently at each spatial scale, and that the resulting values 
are compared subsequently. 

The algorithm presented here allows many oppor- 
tunities to eliminate noise and produce reliable depth 
estimates. Since disparity is computed independently 
at each scale, a comparison of the different disparity 
values can help to reduce the effects of bandlimited 
noise. At every step of computation, confidence values 
are generated which are used to affect computations in 
subsequent steps. The first-level confidence value is 
based upon the assumption that the amplitude of the 
Gabor response should match in the left and right 
images (as it would for objects near the fixation plane 
in the absence of noise). The second-level confidence is 
derived from the agreement between different band- 
pass filters on the disparity estimate. And the third- 
level confidence is based upon the assumption that 
most surfaces will be smooth, so that nearby disparity 
values should be similar. If the output of this algorithm 
is used for surface interpolation or object recognition, 
the confidence values may be quite useful. Their 
significance will depend upon the requirements of the 
system using stereopsis for input. 
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Since the change in phase is a continuous variable 
independent of the spatial quantization of the image, it 
can indicate disparity down to the physical limits on 
the system. This means that disparities significantly 
smaller than the width of a pixel can be accurately 
discriminated, thereby allowing smaller camera spac- 
ings and fewer errors from occlusions. A similar 
capability is important for human vision. Humans can 
discriminate disparities as small as 5 s of arc, although 
foveal photoreceptor spacing is no less than 30 s of 
the arc (Morgan and Watt 1982). 

The method proposed here is almost equivalent to 
performing a cross-correlation analysis of a pair of 
bandlimited images. However, in cross-correlation 
algorithms, accuracy depends upon the ability to 
recognize and localize the cross-correlation peak, 
whereas in the algorithm proposed here, disparity is 
measured directly as a function of image properties. 
Since this is a "correspondenceless" algorithm, no par- 
ticular feature set is selected, so the method will work 
on arbitrary real images. The many opportunities for 
elimination of noise allow the algorithm to perform 
well on both synthetic and real images, under a variety 
of natural and non-optimal lighting conditions. 

1 Description of the Algorithm 

If we are presented with two images shifted relative to 
each other by an amount Ax, then the Fourier shift 
theorem states that the difference in the phase of a (one- 
dimensional) horizontal Fourier component of spatial 
frequency co between the two images is coAx. We can 
therefore derive the relative position of the two images 
from the Fourier phase information. If the two images 
constitute a stereo pair, then the value Ax is the 
disparity and will be proportional to distance from 
the fixation plane. The algorithm presented here is 
motivated by the expectation that a similar relation 
between the disparity and the change in complex 
phase will hold when local filters are used instead of a 
global Fourier transform. We use local filters to allow 
for images which do not have the same disparity at all 
points. 

The well-known uncertainty theorem for spatial 
width and spatial bandwidth (first proved by Gabor 
(1946) in the time/frequency domain) dictates that a 
local filter must have a nonzero bandwidth. We use a 
set of different filters with differing ranges of frequency 
sensitivity to span the entire spatial frequency spec- 
trum. We convolve the image with each of these filters, 
and use the information gained from the entire set to 
compute disparity. While any single filter can provide a 
phase value, the use of multiple filters guarantees that 
at least one will have sufficient response to give an 
accurate disparity estimate. 

1.1 Gabor Filters 
As we will see in Sect. 2.8, it is important that both the 
spatial width of the filters and the spatial frequency 
bandwidth be small. One-dimensional filters which 
minimize the product of spatial width and bandwidth 
were first described in the time/frequency domain by 
Gabor (1946), and take the form: 

G(x - x o) = e -~x-xo)~/2~2. ei~o~ -~o). (1) 

These "spatial Gabor filters" are thus seen to be the 
product of a complex harmonic function and a Gauss- 
ian envelope. Xo is the spatial location of the filter, and 
coo is the frequency of the harmonic component which 
will be the central spatial frequency of the power 
spectrum. The Fourier transform has the same func- 
tional form: 

g(co - coo) = e -~,o - o~o)~/2~, e -i~o(o - ~oo), (2) 

where a and �9 are the spatial half-width and spatial- 
frequency half-bandwidth of the filter, and the product 
az is 1. This is the theoretical minimum for all complex- 
valued linear filters (Gabor 1946). The real (even) and 
imaginary (odd) components of the filter are given by: 

G . . . .  ( x  - Xo) = e- x-  o 2/2 2. cos  [COo(X - Xo)],  (3) 

Goda(X -- Xo) = e -(x- xo)2/2~, sin [coo(X -- Xo)], (4) 

and are shown in Fig. 1. 
For our purposes here, we will maintain the shape 

of the filters constant at all scales. This means that the 
spatial width ~ will be proportional to the wavelength 
2re/coo, and the number of cycles of the harmonic 
function within the Gaussian envelope will be the same 
for all filters. Therefore, z is proportional to COo, and we 
refer to this as a "constant relative bandwidth" rela- 
tion. The relative full bandwidth in octaves is ob- 
tained from: 

2=log2 (CO~ + Z) =log2 (l +t~ 
\COo-V / \1 - t ] '  (5) 

where t is the proportionality constant such that 
z=tcoo, and t < l .  If t=0.33, for example, then we 
obtain a constant relative full bandwidth of one octave. 

a b 

/ I I 
/ i 

/ 
/ 

i~ 

/ 
t 

/ 
/ 

/ 

Fig. 1. a Odd, and b Even-symmetric Gabor  filter impulse 
response. Relative bandwidth is one octave 



408 

Note that o- and z represent the standard deviations of 
the Gaussian envelopes, and are not the same as the 
widths at half-height often used by other authors. The 
definitions of a and z are related to the half widths at 

half-height by O'half = 0-~,  and "Chalf ~ -  "C~. The relative 
full bandwidth at half-height in octaves is therefore 
given by: 

~.ha,f=log2 \ ~ / / = l O g  2 ~ _ ~ ) ,  (6) 

where thalf = Zhalf/030 = t ] ~ .  

1.2 The Complex Phase Difference 

If there is a constant disparity across some part of the 
scene (a flat surface in the frontoparalM plane) then in 
that region we have L(x, y)= R(x + Ax, y) where L(x, y) 
and R(x, y) are the left and right images, respectively. 
For any point (Xo, Yo> and particular Gabor filter G 
with central frequency COo, we can form the one- 
dimensional products: 

c~(Xo, Yo) = f R(x, Yo) G(xo - x)dx, (7) 

CL(Xo, Yo) = 5 L(x, yo)G(xo -- x)dx 

= [. R(x + Ax, yo)G(xo -- x)dx (8) 

and we compute the complex phase difference 
arg [%] - arg [CR] = A q'. 

We now approximate Ax by A ~/COo. This is strictly 
valid only for filters of infinitesimal bandwidth (a 
Fourier decomposition), arising directly from the 
Fourier shift theorem. It is approximately true for 
Gabor filters under certain conditions (see Sect. 2). 

1.3 Combination of Disparities 
from Different Spatial Scales 

The combination of disparities across spatial scales is 
performed by a simple weighted average, with the 
weighting being provided by the first-level confidence 
values. Therefore, if bandlimited noise is present, 
disparity estimates computed from that spectral region 
will be ignored. We compute 

2 dxo, rl(09) 
d = o~ , (9) 

2 q(co) 
co  

where d is the average disparity, rl(co) is the 
first-level confidence (between 0 and 1) at each spatial 
frequency co, and Axo, is the computed disparity for 
each spatial frequency. 

1.4 Computation of  Confidence Values 

Since the amplitudes of the Gabor responses ICRI and 
lCLI are not used for disparity determination, they can 

be used as an independent measure of confidence. At 
the lowest level, if there is insufficient amplitude for a 
particular filter in one or both images, then the phase 
information can be considered meaningless, and a 
confidence of zero assigned. 

If there is sufficient amplitude in both images, then 
a comparison of the value of ICR[ and I%1 can be made. 
By analogy with the Fourier shift theorem, we would 
expect that if one image were a uniform shift of the 
other (a flat surface at constant disparity), then the 
Gabor amplitudes would be similar. The amplitudes 
are exactly the same only in the Fourier case of 
infinitesimal bandwidth, but for Gabor filters they are 
approximately the same if the disparity is not too great. 
If the Gabor amplitudes are very different, this may 
indicate the presence of noise in the image, or a 
disparity which is beyond the detection limit of a 
particular filter. Here, we use the ratio of the smaller to 
the larger so that a value of 1 indicates a high 
confidence: 

' ' i [ICRI I%1] 
rltco/= m n [I~L~, L-C~RI j . (10) 

At the next level, confidence is derived from a 
comparison of the disparities computed at each spatial 
scale. The weighted average is computed as in (9), and 
the extent to which the disparity estimates deviate from 
this gives the confidence: 

r z (co) IAx~o -- d] 
r 2 =  ~ (11) 

2 rl(co) 
(/1 

The deviations 1Axe-dl  are weighted by the first-level 
confidence q(co), as in (9), so that the second-level 
confidence reflects the contributions of different spatial 
frequencies to the computed disparity d. Note that high 
confidence will be indicated by values of rz close to 
zero. To convert to a more usable form, we set 

1 (12) t 

r2= l+ r2  

which gives a value between 0 and 1, with 1 indicating 
high confidence. 

1.5 Implementation Details 

Gabor filters are typically chosen with a bandwidth 
between one-half and one octave, and with overlapp- 
ing regions of spectral sensitivity. The choice of center 
spatial frequencies is arbitrary, but should be low 
enough so that the spatial width of the filters is larger 
than the largest expected disparity. Better results can 
be obtained if something is known about the image in 
advance, so that spectral regions of bandlimited noise 



can be avoided. Using a greater number of spatial 
frequencies to compute the average disparity will lead 
to increased accuracy, although only three or four 
different filters were needed to generate the examples 
given in Sect. 3. 

Since the output of the algorithm was not being 
used as input to some other system, the final confidence 
values were used to generate a smooth surface. Under 
the assumption that nearby points should have similar 
disparities, each point of the final disparity map was 
assigned a weighted average of its own and neighbor- 
ing disparities, with the weighting determined by the 
confidence at each point. The smoothing radius could 
be adjusted as needed. Note that this is not the same as 
a simple smoothing of the final disparity surface, since 
each point is weighted by its confidence so that high 
confidence points will tend to determine the actual 
location of the surface. 

2 Analysis of Performance 

2.1 Formulation 
Let R(x) and L(x) be two one-dimensional images, and 
let m(x) be a mapping such that L(x)=R(m(x)) On 
general, re(x) may not be surjective or injective). We 
also define 6(x)= re(x)-x to be the disparity at each 
point x, where x is measured from the fixation point 
(defined to be the origin, for which 6(0) = m(0) = 0). G(x) 
is taken to be the Gabor filter defined in (1), and 
g(co-coo) is its Fourier transform. (Without loss of 
generality, we take x o = 0 in the definition of the filter 
so that g(co-COo) will be real.) r(co) and l(CO) are the 
Fourier transforms of R(x) and L(x), respectively, and 
are given by: 

r(co) = f R(x) e-i'~ 
(1 3) 

l(co) = f L(x) e- i~ 

2 I  e dco, R(x)= r(co) i~o, 

e dco, L(x)= l(co) i~  

(Throughout the following, all spatial frequencies co 
are in radians/pixel.) Therefore, 

L(x)= R(m(x))= ~-~ fr(co)ei~~ (15) 

We now form the convolution products Cg = G * R 
and Cz = G * L, as 

G * R(xo)= [. G(x)R(x o -x)dx,  (16) 

G * L(xo)= ~ G(x)L(x o -x )dx  

=IG(x) I~fr(CO)ei'~176 (17, 
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Changing variables gives: 

G* L(xo)= @l l r ( @ [ I  G(xo-m-l(x)) 

x e'~ ( d d ~ ( X ! )  dx]  dco, (18) 

where m- l(x) is the inverse of the mapping (if it exists). 
In general, m-l(x) may not exist. To circumvent 

this problem we assume that the spatial width e of the 
filters is small enough that m(x) is monotonic and 
differentiable within this range for almost all the filters. 
Further, to obtain an easily understandable solution 
we assume that re(x) can be approximated locally by a 
linear function m(x) ~ Ax + B. The values of A and B 
will be different in different parts of the image, but will 
be assumed to be constant over the width of any given 
filter. A represents the expansion of one image relative 
to the other (slant), and B represents the average 
disparity (absolute distance from the fixation plane) 
near Xo (the center of the filter). From Eq. 17 we then 
obtain the result: 

1 t* itoAxo itaB G*L(xo)= ~-nJg(Aco-COo)r(CO)e e do). (19) 

Note that r(co) is complex, but that g(ACO- coo) is real. 

2.2 Accuracy of the Absolute Disparity Estimate 
We first take the simplest case for which A = 1, and the 
disparity is constant in the region to be examined. 
Computing the disparity then involves comparing the 
complex phases of the two values: 

l [ '  itox i~aB %= ~Jg(co-coo)r(co)e ~ dco (20) 

and 

2I c R = g(co -- COo)r(co ) e '~'x~ de). (21) 

We set A �9 = a rg[cL]-  arg[-cR], restricted to the range 
( - n ,  rc]. Disparity is computed by setting 6(Xo) 
= A 4/co o. Therefore, the error in the disparity estimate 
is B -  A g/COo, and we thus are interested in the extent to 
which A ~ deviates from the value cooB. Since g(co- coo) 
is a Gaussian centered at COo, we assume that most of 
the energy of the product g(co-COo)r(CO) is located 
within the width of g. We therefore restrict the range of 
integration to [coo-z, co o + ~]. The value of A q~ will 
thus be within the range [(coo - z)B, (coo + z)B], and we 
expect the maximum deviation from cooB to be on the 
order of Bz. When the disparity B = 6(Xo) is calculated 
by the relation 6(Xo) = A~/coo, the error will be propor- 
tional to B'c/co o. If we maintain a constant relative 
bandwidth ofz = tcoo, then the disparity error is on the 



410 

order of Bt, or (100)t% of the calculated disparity. For 
a one-octave bandwidth filter, for example, t = 0.33 and 
we expect the maximum error to be about 33%. Note 
that the error is independent of the size of the filter, if 
we maintain a constant relative bandwidth. By similar 
reasoning, when A # 1, we expect a maximum error on 
the order of (Ax o + B)z/co o = (Axo + B)t. 

This approximation depends on r(w) being well- 
behaved in the spatial-frequency band being examined. 
The true maximum error is proportional to Bz'/coo 
where z' is the half-bandwidth of the product 
g(co-coo)r(co), z' may be significantly larger than z if 
r(co) contains large spikes outside the coo - ~ or coo + z 
boundaries. Such an occurrence is not frequent for 
strongly textured images or random-dot stereograms, 
which may have nearly flat spectra near most values of 
(D O �9 

2.3 Accuracy of  Relative Disparities 

Although the absolute disparity measurement may be 
inaccurate by a significant percentage of the true 
disparity, the change in disparity between neighboring 
points is small. If arg[cg] (or arg[-%]) is computed at a 
point x o, then moving to a point Xo + d will change its 
value by COo d _+ zd, as described in Sect. 2.2. Therefore, 
the phase difference A �9 computed at Xo + d will change 
by at most 2zd. A 45/COo will change by at most 2td. Note 
that comparisons should only be made between nearby 
points, since if d is larger than (rc/2)o, the error in A 
(+_ 2zd) will be larger than ~, and the phase difference 
will be meaningless. Since the relative disparity error 
becomes arbitrarily small for points close together, we 
see that the algorithm will generate a smooth surface 
and the value of the absolute error will not change 
much over short distances. 

There is evidence that humans are considerably 
better at measuring the relative disparity between ob- 
jects than at calculating the absolute disparity (the true 
distance from the fixation plane). Westheimer (1979) 
mentions that while we can discriminate relative 
disparity to a few seconds of arc, we can only measure 
absolute disparity to within about a minute of arc. And 
Anstis et al. (1978) have demonstrated that a depth 
edge can determine the perceived disparity of regions 
around it, thereby implying that relative disparity 
computations are only made over short distances. 

2.4 Disparity Limits 

The effective disparity limit is set by the filter width a. 
Since o- is proportional to l /z ,  and z is proportional to 
the spatial frequency co in a constant relative band- 
width system, we see that a is proportional to 1/co. 
Therefore, the maximum disparity which can be fused 

should vary inversely with spatial frequency for band- 
limited images. 

Another cause of disparity limits is "phase wrap- 
around". For an image consisting of a single compo- 
nent coi, if the magnitude of the disparity at x o exceeds 
re~co i then the phase difference A ~ will "wrap around", 
and the computed value of A~ will be coiAx-2rc. For 
any given value of B there will be frequencies which 
wrap around. In general, for a particular filter with 
central frequency coo and half bandwidth -c, the max- 
imum allowable disparity before wrap-around effects 
will cause inaccuracy is 7r/(co o + ~). The effective dispar- 
ity limit for the system is determined by the highest 
filter frequency chosen. Note that, if wrap-around 
occurs, disparity values computed from different filters 
with center frequencies co~ will be dependent on coz by 
the relation Axi = A q~i/co i = Ax  - 2re/co i. The system can 
detect the error when these disparity values do not 
correspond. 

A decrease in maximum fuseable disparity with 
increasing spatial frequency was found psychophysi- 
cally by Schor et al. (Schor et al. 1984). Unfortunately, 
there is other evidence that disparities well beyond the 
predicted limits can be measured (Mayhew and Frisby 
1979; Mowforth et al. 1981), so the significance of this 
result is unclear. 

2.5 Disparity Gradient Limits 

If A #  1, we must consider the effects of frequency 
domain scaling (due to the term g(Aco-coo)) on the 
frequencies to which the filter is sensitive. For now, let 
B = 0 (which we can accomplish by shifting the origin 
of coordinates). Then the region in the spatial fre- 
quency domain to which g(Aco-coo) is sensitive is 
[(1/A) (co o - z), (I/A) (coo + z)]. For A > 1, g(Aco - coo) 
and g(co-COo) will have no part of the spectrum in 
common if (l/A) (coo + z) < co o - 'c. We may assume that 
phase values computed from different parts of the 
spectrum will be unrelated, so for the phase difference 
to be meaningful we require (I /A) (coo + ~) >coo - z, or 

A <  coo+Z (A> 1). (22) 
co0 - - ' ~  

Similarly, for A < 1, we require 

A >  co~  (A<I ) .  (23) 
coo + Z 

If we maintain a constant relative bandwidth ~ = tcoo, 
we can rewrite this expression as 

l - t  l + t  
1 +---t < A < 1 -~"  (24) 

If the relative bandwidth is one octave, for instance, 
then t=0.33 and we must have 1 / 2 < A < 2 .  If a scale 
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change greater than (1 + 0 / ( 1 - t )  is presented, the 
system can detect this fact since it will be signalled by a 
difference in the Gabor amplitude values which now 
reflect completely different ranges of the spatial- 
frequency spectrum. 

Tyler (1973), Tyler and Sutter (1979), and Burt and 
Julesz (1980) have found psychophysically that there is 
a maximal rate of disparity change that can be fused. 
Tyler and Sutter (1979) found that when two different 
sinewave gratings are presented stereoscopically, the 
maximum ratio of spatial frequencies (or the maximum 
scale change) which can be fused is a factor of 1.5, 
although a change of up to 2 is possible if the images 
are moving. The psychophysical value found by Burt 
and Julesz (1980) for fusion of dots is closer to 3. (Note 
that they define the disparity gradient differently: their 
gradient is equal to 2 (A-  1)/(A + 1).) They also found 
that a disparity gradient limit exists in all directions. 
The theory presented here predicts such a limit only in 
the horizontal direction. In the macaque monkey, the 
mean spatial frequency bandwidth in the fovea is 1.4 
octaves (Foster etal. 1985). For this bandwidth, 
t=0.45, and the discussion of Sect. 2.5 shows that we 
must have A < 2.63. This value is in reasonable agree- 
ment with the psychophysical data mentioned above. 

2.6 Other Causes of Error 

Sharp depth boundaries in real-world scenes lead to 
occlusions. There will be areas of each image which do 
not occur in the other, and matching of any sort will be 
impossible in these regions. Near boundaries, Gabor 
filters will give unpredictable phase information, and 
disparity values computed from these filters will be 
meaningless. The occurrence of this problem will be 
signalled by the amplitudes of the components ICRI and 
Ic/J being different. When significant amplitude dif- 
ferences are found across a range of spatial frequencies, 
the image location should be considered ambiguous. If 
a continuous contour of such ambiguous points exists, 
it is strong evidence for the existence of a depth 
boundary in the image. 

2.7 Noise Tolerance 

If additive noise is present, we have R(x)+ Ng(x ) and 
L(x) + NL(x). The convolution products can be written 

G * (R + NR) = eR +ng (25) 

and 

G * (L + NL) = % + n L . (26) 

The effect of the noise on the complex phase is limited 
by 

(Zma x = arcsin(In[/Icl), (27) 

for each image (if Inl < Icl). Therefore, the change in the 
computed value of A4~ is limited to 27 . . . .  and the 
disparity will be accurate to within 2era,x/CO o. If Icl >> In[, 
then we can approximate ~m,~[nl/]cr which is the 
reciprocal of the signal to noise ratio. Therefore, the 
loss of accuracy occurs smoothly with increasing 
image noise, and is most severe at low spatial fre- 
quencies. If the noise is bandlimited, then the inaccu- 
racy will be limited to those filters which respond to 
the noise frequencies. 

2.8 The Importance of Gabor Filters 

From Sect. 2.2 we see that the disparity error is on the 
order of Bt. Therefore, a smaller relative bandwidth 
will allow a more accurately computed depth. How- 
ever, a larger relative bandwidth will increase the 
disparity gradient limit (1 + t)/(1 - t) and decrease the 
spatial width of the filters, so the approximation of re(x) 
by a linear function will be more likely to be valid. 
Smaller spatial width also means that there is less 
chance of any given filter falling across a depth 
boundary. Gabor (1946) showed that (in the 
time domain) Gabor filters achieve the theoretical 
minimum product of spatial width and bandwidth for 
complex-valued linear filters. It is for this reason that 
Gabor filters are a good choice for this algorithm. Note 
that many similar filter shapes achieve near- 
minimality, and that the algorithm would not suffer 
severely if a different set of quadrature-phase filters 
were substituted. 

2.9 Accuracy of Depth Estimates 

Verri and Torre (1986) calculate that the error in 
computation of depth can be described by 

<) ~z= ~ AXmin, (28) 

where Az is the depth error, Z is the absolute depth of 
the point being measured (near the fixation plane), f is 
the focal length of the lens used, d is the inter-camera 
distance, and Axmin is the minimum measurable dis- 
parity. For the image of a mask given in Sect. 3, the 
values of these parameters are Z=2m, f = 5 0 m m ,  
d = 6.4 cm, and the pixel spacing is 24 g. Since there are 
64 greylevels in the Autovision system, the theoretical 
limit of disparity measurement is 24g/64 (a shift 
smaller than this will have no effect on the cameras). 
This means that the minimum depth discrimination is 
0.47 ram. If we assume that, in noisy real images, the 
algorithm can only measure down to 1/20 th of a pixel 
width, then the theoretical depth discrimination is 
1.5 mm. 

However, absolute depth estimates may be con- 
siderably worse than discrimination ability. From 
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Sect. 2.2 we note that the absolute disparity estimate is 
accurate to within only 33 % of the total disparity. This 
means that measurement of absolute disparities far 
from the fixation plane will be considerably less 
accurate than for those closer to the fixation plane. 
Nevertheless, the relative disparities between adjacent 
points will be discriminable down to the limits deter- 
mined by noise in the imaging system. So although the 
depth of a point 2 cm from the fixation plane (which 
generates a disparity of about 1 pixel) can only be 
known to within 7 mm (assuming 33% accuracy), the 
relative depths between this point and neighboring 
points can be computed with up to 0.5 mm precision 
(depending on the local rate of slant). 

3 Examples 

The following sections show the performance of the 
algorithm on a variety of test images. Computation 
time depended on the number of different scales of filter 
used, and the complexity of the image. Typical times 
were one minute for six spatial scales. The output is 
presented in the form of a three-dimensional depth 
map. This map shows the relative depths at each point 
(the overall height of the map is adjusted for ease of 
interpretation). The true depths are not computed. 

3.1 Random-Dot Square 

Figure 2A and B is the right and left images of a 
random-dot stereo pair which represents a central 

square raised above a flat background (viewed by 
crossing the eyes). The disparity of the central square is 
5 pixels. To compute the depth map of Fig. 2C, five 
different Gabor filters with 1/2-octave bandwidths 
were used. The resulting map was smoothed based on 
confidence values in a 3 x 3 neighborhood of each 
point, and the depth was linearly interpolated over 
regions of excessively low confidence. 

3.2 Random-Dot Ramp 

Figure 3A and B gives the right and left images of a 
random dot pair representing a smooth ramp in the 
center of the image. The maximum disparity of the 
ramp is 10 pixels. The depth map of Fig. 3C was not 
locally smoothed, but linear interpolation was per- 
formed over low-confidence regions. Note that the 
vertical magnification in Fig. 3C is half that of Fig. 
2C, so that the height of the two figures appears the 
same although the maximum disparity in 3C is 
twice as great. 

3.3 Random-Dot Hyperacuity Test 

Figure 4A and B gives the right and left images of a 
square which is 1/64 th of a pixel behind the back- 
ground. The background has a uniform 1/32 nd dispar- 
ity relative to the fixation plane. Subpixel shifts were 
performed using the following formula: 

L,=(~4)R, +(-~)R,+ I, 

C 
Fig. 2A-C. Random-dot stereo pair with computed depth map. 
Maximum disparity is + 3 pixels 
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Fig. 3A-C. Random-dot stereo pair with computed depth map. 
Maximum disparity is + 5 pixels 

Fig. 4A-C. Random-dot stereo pair with computed depth map. 
C Maximum disparity is 1/32 pixel 
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[ 

Fig. 5A-C. Test image of mask, and map computed from a small 
region around the mask. Maximum disparity is approximately 
1.5 pixels 

Fig. 6A-C. Test image with 50% multiplicative noise 
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C 

Fig. 7A-C. Aerial view of the Pentagon. Maximum disparity is 
approximately 7 pixels 

where R, and R,,+ 1 are the intensities of two neighbor- 
ing pixels in the right image, and L, is the assigned 
intensity of a pixel in the left image. (The difference 
between the two images may not be visible due to 
nonlinearities of the display and reproduction process.) 
Figure 4C gives the computed disparity map. The 
vertical scale on this map is 100 times the scale of 
Fig. 2C. Smoothing was performed in a 3 x 3 region, 
and low-confidence regions were interpolated. 

3.4 Natural Image 

Figure 5A and B depicts a real scene containing a 
mask. The mask is 16 cm wide and 6 cm deep from the 
nose to the rear edges. Cameras were placed 6.4 cm 
apart at a distance of 2 m from the mask. Convergence 
was established near the back of the mask, and Gabor 
filters were chosen at 1/2-octave intervals. The com- 
puted depth map is shown in Fig. 5C. Smoothing was 
performed over 3 x 3 regions, and low confidence 
points were interpolated. The vertical magnification is 
twice that of Fig. 2C, and the maximum disparity is 
therefore about 1.5 pixels. 

3.5 Natural Image with Multiplicative Noise 

Figure 6A and B shows the same image as Fig. 5A and 
B, but with the addition of noise. The noise was 
generated by choosing, for each pixel, a pseudo- 
random number between 0 and 0.5 from a uniform 
distribution. The pixel was modified by multiplication 
with this number. The results of computation are 
shown in Fig. 6C. (The vertical magnification is slight- 
ly less here.) 

3.6 Natural Image with Larger Disparity 

Figure 8A and B shows an image with maximum 
disparity of around 7 pixels. The computed depth map 
is shown in Fig. 8C. All parameters were the same as 
for Fig. 5C, although the vertical magnification is less. 
Smoothing was performed over 5 x 5 regions. 

4 Discussion 

4.1 Relation to Other Algorithms 

The algorithm proposed here may be considered to be 
a "correspondenceless" algorithm and should there- 
fore be understood within this context. It performs 
essentially the same calculation as cross-correlation 
(Hannah 1974; Panton 1978; Moravec 1980), the 
primary difference being that the correlation is within 
bandlimited regions, and the disparity values from 
each region are computed independently and com- 
bined subsequently. Nishihara (1983, 1984) used a 
coarse-to-fine implementation of bandlimited cross- 
correlation to find disparities. He locates the corre- 
lation peak using an interpolation method which 
theoretically allows subpixel precision. Similarly, 
Krotkov (1986) locates the centroid of a small region in 
the left and right images and compares the positions 
with high precision. Unlike the complex phase, these 
methods do not give a disparity measurement directly, 
but the theoretical basis is the same. 
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Another very similar method involves subtracting 
the two images (Sperling 1970; Krotkov 1986). Krot- 
kov proposed that the differences in the left and 
right images near zero-crossings could be used to 
discriminate crossed from uncrossed disparities. 
Although this method was not extended to actually 
determine the disparities, it is theoretically equivalent 
to finding the phase difference. The images were 
bandpass filtered with the Laplacian of a Gaussian, so 
as Krotkov notes, the method is "equivalent to finding 
the phase difference in the power spectra" (although he 
actually only computes the sign of the phase 
difference). 

4.2 Advantages of this Algorithm 

This paper presents a new method for solving the 
correspondence problem for stereopsis. The use of 
Fourier phase information allows disparities to be 
computed in an object-independent manner, without 
the necessity for explicitly matching local features. The 
algorithm applies equally well to random-dot stereo- 
grams and natural images, showing that the corre- 
spondence problem is solved both for the most ab- 
stract case with no monocular cues, and for the case of 
a real image with the normal range of spatial fre- 
quencies. The main advantages of the algorithm are: 

1. No specific feature set needs to be identified, so we 
will be able to compute disparities for arbitrary images 
wherever the image is not perfectly unmodulated. 
There is no need for the presence of any particular type 
of feature such as a line ending or zero-crossing within 
the width of the filter. The resulting depth map will 
therefore be dense and can be used for identifying 
complex surfaces and depth boundaries. 

2. The algorithm is not significantly affected by mod- 
erate amounts of noise. Disparity is computed inde- 
pendently at several different spatial scales, so band- 
limited noise can be easily eliminated. Combination of 
information from different scales increases the ac- 
curacy of the final disparity estimate. Locally com- 
puted confidence values are provided along with the 
depth map, and can be used either for "intelligent" 
smoothing or as input to subsequent processing sys- 
tems. Because of its noise-reducing abilities, the 
algorithm will perform well for real image processing 
applications in which specular reflectance changes, 
lighting intensity changes, camera noise, and quanti- 
zation errors may not be controllable. 

3. Hyperacuity is possible down to the physical limits 
on the image acquisition system. If there are 256 
greylevels, for instance, this means that disparities as 
small as 1/256 th of a pixel can be discriminated. 
Cameras can thus be placed very close together, 
thereby reducing occlusions due to viewpoint dif- 

ferences. In addition, each detector can sense a range of 
disparities from less than a pixel width to half the width 
of its receptive field, and therefore has a large range of 
possible depths to which it will respond. 

4. All operations are completely local, allowing effi- 
cient parallel implementations. Both disparity and 
local confidence values can be computed based entirely 
on small regions of the image. Therefore, serial com- 
puters can save considerable amounts of computation 
by checking disparity at only a few points in a time- 
varying image. Certain points which are useful, "inter- 
esting", or which have given reliable disparity values in 
the past can be used to  give continually updated 
information about the depth of objects in the scene 
without the necessity for performing a large-scale 
convolution and associated processing. This fact 
makes it possible to implement the algorithm on 
microprocessors without special hardware. 

5. Operation is fast, with typical computation times on 
ordinary hardware being 1 rain to compute a 64 x 64 
array of disparities. On the connection machine at 
MIT, computation of depth  for 256x256 points 
required less than two seconds. 

4.3 Biological Relevance 

In some sense, any system which recognizes disparity 
can be said to be sensitive to differential phase, since 
any change in the image will change the phase of local 
spatial frequency components. The main difference in 
the algorithm presented here is that the phase is 
measured directly, and that the change in the relative 
responses of odd and even symmetric filters is used to 
indicate disparity. It is important to realize that such 
an algorithm does not require that the phase be made 
explicit anywhere in the visual system. It seems un- 
likely that there are "arctangent cells" capable of 
computing the complex phase from the arctangent of 
the ratio of responses of the odd and even receptive 
field cells. What is important is that the phase informa- 
tion is implicit in the relative responses of these two 
filters. The implicit phase information could be propa- 
gated upward through the system in the form of four 
distinct response profiles (positive and negative even 
and odd filters). Groups of four responses could be 
compared to each other directly, without any need to 
compute the phase difference itself. What the algorithm 
predicts is that the complex phase is available to the 
system in a fairly direct way, and that the system might 
therefore make use of this information. 

There is biological evidence supporting different 
aspects of this method. The use of bandpass spatial- 
frequency filters (Campbell and Robson 1968; Julesz 
1971; Pollen and Taylor 1971; Mallei and Fiorentini 
1973; Julesz and Miller 1975; Levinson and Blake 
1979; Shapley and Lennie 1985) or quadrature-phase 
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Gabor filters in particular (Marcelja 1980; Pollen and 
Ronner 1981), the combination of information com- 
puted independently at different spatial scales (May- 
hew and Frisby 1981 ; Lawden 1983), the importance of 
phase information (Oppenheim and Lim t981; Julesz 
and Schumer 1981; Howard and Richardson 1986; 
Pollen and Ronner 1981; Robson 1975; Burgess and 
Ghandeharian 1984; Lawden 1983), and the ability to 
perform stereoacuity tasks (Morgan and Watt 1982) 
are in agreement with predictions of this algorithm. 
The algorithm also correctly predicts the maximum 
rate of change of disparity (Tyler 1973; Tyler and 
Sutter 1979; Burt and Julesz 1980) and the response to 
spatial frequency differences between the two eyes 
(Tyler and Sutter 1979). Its ability to determine relative 
disparities more accurately than absolute disparities 
agrees with human performance (Westheimer 1979; 
Anstis et al. 1978). Finally, a wavelength dependence of 
Panum's fusional area is predicted, in agreement with 
some (Schor et al. 1984) but not all (Mayhew and 
Frisby 1979; Mowforth et al. 1981) psychophysical 
evidence. 

4.4 Limitations 

While this algorithm performs well on smooth 
surfaces, it gives very poor results near depth 
boundaries. Occlusions lead to regions of one image 
which are not present in the other, and a filter which is 
across a depth boundary will therefore give meaning- 
less phase information. This may be signalled by a poor 
first-level confidence value, but it will nevertheless be 
impossible to obtain an accurate depth near a depth 
edge. 

Another problem is the limit on maximum dispar- 
ities. Due to "wrap-around,,  the maximum disparity 
which a filter can accurately determine is one-half the 
wavelength of its central spatial frequency. This means 
that large filters are necessary to determine large 
disparities, since the filter width is usually two to three 
times the wavelength of the central spatial frequency. 
Unfortunately, these large filters will only give informa- 
tion about low frequencies in the image. This problem 
can be helped by using a coarse-to-fine strategy which 
allows larger filters to bring smaller ones into 
registration. 

For  images whose spectra are not flat, the absolute 
disparity estimates may be very inaccurate. While this 
may not be a problem for a system attempting to 
recognize objects based upon surface contours, it could 
adversely affect a system attempting to navigate a 
vehicle through the environment. 

4.5 Improvements 

It is possible to respond to larger disparities if the 
fixation point can be moved during processing. If the 

widest receptors in one region of an image signal very 
large disparities, then the fixation point can be moved 
in such a way as to bring more of the narrower high- 
frequency receptors into alignment. This trick was 
suggested by Marr and Poggio (1979) who used low- 
frequency information to guide vergence movements. 
A change in vergence is equivalent to comparing phase 
values from receptors at different positions in the image, 
and this need only be done locally in the regions where 
large disparities are expected. 

Although the examples given here use the raw 
image data as input, it is possible that performance 
might be enhanced for certain types of images by pre- 
processing. If it were known, for instance, that a 
particular feature in an image contained all the useful 
information, and that this feature was not too sparse, a 
map of the feature locations could be supplied to the 
Gabor phase algorithm for matching. Of course, acuity 
would be limited by the minimum feature spacing. 

Any linear filtering operation could be used to 
reduce noise without affecting the acuity of the system, 
however. In addition, other types of information could 
be supplied as input. Color, texture, or motion informa- 
tion could be used for matching, and the disparity 
values computed from each type of data could be 
combined in the same way as for disparity values from 
different scales. 
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Note Added in Proof. After this paper went to press, two reference errors were discovered in the Introduction: (1) "J. G. Daugman 
(Personal Communication)" appeared as: Daugman JG (1988) Pattern and motion vision without Laplaeian zero crossings. J Opt 
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