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Diffusion Approximation for a Multi-Input Model Neuron 
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Abstract. A generalization of an earlier paper (Capocel- 
li and Ricciardi, 1971), dealing with a diffusion ap- 
proximation for a neuron subject to one excitatory 
and one inhibitory Poisson input, is provided by not 
imposing any restrictions on number and magnitude 
if synaptic inputs. An equation for the neuron's 
transition p.d.f, is derived, use of which is made to 
determine the moments of the membrane potential. 
It is finally shown that a diffusion approximation is 
possible and that the resulting diffusion process is 
characterized by constant infinitesimal variance and 
linear drift. 

1. Introduction 

In principle every differential equation derived to 
provide the description of a physical system should 
contain a random term to account for the unavoidable 
perturbations that arise because of the interaction of 
the system with its environment. However, in physics 
not always the effect of these perturbations is large 
enough to make such procedure mandatory. Quite 
contrary, the reason why stochastic differential equa- 
tions are being increasingly utilized in biology is 
mostly due to the impossibility of accounting for the 
essential interaction of the system under study with 
its surroundings. It appears then necessary to resort 
to the "heat bath" assumption, namely to direct 
attention only to a subsystem and to model the effect 
of its environment as a "random force" whose sto- 
chastic properties are conjectured on the basis of 
intuition and common sense. 

The most illustrious physical example where the 
above procedure has been successfully employed is 
the well known study of the motion of a Brownian 
particle. As for biology, the studies by Reichardt and 
coworkers [cf., for instance, Poggio and Reichardt 
(1973), and cited references] of the pattern induced 
flight orientation of the fly must be recalled. 

The stochastic equations approach has also been 
widely used to arrive at some statistical description of 

the output of spontaneously active neurons belonging 
to complex networks and has proven useful to solve 
the inverse problem as well, i.e., the prediction of the 
neuron's input on the basis of the experimentally 
determined interspike interval histogram (Ricciardi, 
1976, and quoted references). Nevertheless, the pro- 
cedure that consists of adding a "random force" term 
to the equation expressing the spontaneous exponential 
decay of the neuron's membrane potential in the 
absence of inputs appears to be open to criticism 
unless it is at least plausible that such force is of the 
Langevin type. Unfortunately, thus far no systematic 
method is known for deciding whether any proposed 
choice is correct. This is the main reason why in an 
earlier paper (Capocelli and Ricciardi, 1971) a dif- 
fusion approximation was derived for a model 
neuron without resorting to any stochastic equation. 

The purpose of this paper is to provide a generaliza- 
tion of the model discussed in Capocelli and Ricciardi 
(1971) in a way to include an arbitrary number of 
excitatory and inhibitory inputs. We shall prove that 
a reasonable diffusion approximation is still possible 
for the time course of the neuron's membrane potential 
under suitable assumptions on the neuron's inputs. 
Such approximation can a posteriori be looked at as 
generated by a stochastic equation of the Langevin 
type. 

Apart from minor obvious changes, the formalism, 
the motivations and the general background is that 
of Capocelli and Ricciardi (1971). 

2. Formulation of the Model and Moments 
of the Membrane Potential 

Let x denote the variation of the potential difference 
across the neuron's membrane (membrane potential, 
in the following), so that x = 0  is the resting potential. 
In the absence of neuronal inputs x exponentially 
decays toward the resting potential: 

x(t)=X(to)exp ( " ~ )  , (2.1) 
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where 0 is the time constant of the neuron's membrane, 
typically of the order of a few milliseconds. Generaliz- 
ing the situation described in Capocelli and Ricciardi 
(1971) we assume that the neuron's input consists of 
p + q sequences of approximately zero-width impulses 
Poisson distributed in time with rates al, e2 . . . . .  ~p 
and fi~, f12 . . . . .  fig, respectively. The pulses character- 
ized by the rates ak (k=1,2 . . . . .  p) are excitatory 
while those arriving at rate fik ( k = l , 2  . . . . .  q) are 
inhibitory. Denoting by ek>0 (k= 1, 2 . . . . .  p) and by 
ik<0 (k= 1, 2, ..., q) the corresponding excitatory and 
inhibitory post synaptic potentials, the instantaneous 
transition 
X~X+ek  (k= 1,2 . . . . .  p) (2.2) 

depicts the effect of an excitatory input pulse belonging 
to the sequence characterized by the rate c~k, whereas 
X~X+ik  ( k= l ,2 , . . . , q )  (2.3) 

is the instantaneous transition occurring when the 
neuron is hit by a pulse belonging to the sequence 
that has rate ilk. 

It should be noted that these assumptions about 
the neuron's input appear to be quite reasonable if one 
thinks of them in the framework of the asymptotic 
theorems characterizing the superposition of a large 
number ofweakty correlated point processes (Capocelli 
and Ricciardi, 1973). Furthermore, they imply that 
x(t) is a homogeneous Markov process so that its tran- 
sition p.d.f, satisfies the Chapman-Kolmogorov equa- 
tion: 

f (x ,  t + AtlXo)= ~ dz f (x ,  At[z)f(z, tlxo), (2.4) 
- oo  

where x o = x(0) and t + A t > t >0 are arbitrary instants. 
Equation (2.4) can be thrown in to a simpler form by 
noting that, apart from quantities o(At), there results: 

f (x ,  Atlz)={I--At[~=IC~k+k~_,f ik]}6[X--(Z--Zo) ] 

+At  C~kC~ X-- Z--Z O- +ek 
k = l  

+At fik(~ X-- Z-- Z ~- + i k , (2.5) 
k = l  

where 6(-) is the Dirac delta function. Substituting 
(2.5) in (2.4) and making use of the approximation 

( o) 1 -  ~ l + ~ -  

one thus obtains" 
f (x ,  t + A tlXo) 

k = l  

It is finally seen that, in the limit as At~O, Equation 
(2.7) yields: 
0 f  ~?(x ) P 
Ot - ~x 0 f + ~ ~ k [ f ( x -  ek, tlXo)-- f (x ,  tlXo) ] 

k = l  

q 

+ 2 f i k [ f (  x - -  ik '  t i X o ) - -  f ( x ,  t l X o ) ]  . 

k = ~ (2.8) 

This is a differential-difference equation for the 
transition p.d.f, describing the time course of the 
neuron's membrane potential in the absence of 
threshold. This equation will be used in Section 3 to 
construct a diffusion approximation. In the remaining 
of this Section we shall instead make use of Equation 
(2.8) to obtain a closed form expression for the moments 
Mn(tlXo) of the membrane potential. This task will be 
achieved without actually solving Equation (2.8) or 
determining the characteristic function of the process. 
To this purpose we set" 

M,(tlxo)= S dxx~f(x,  tlxo) (n=0,1 , . . . ) .  (2.9) 

Clearly there results: 

M 0 = 1 

M,,(Oixo)=X~o (n= 1,2,. . .) .  (2.10) 

We now differentiate with respect to t both sizes of 
Equation (2.9) and make use of Equation (2.8) to 
express ~f/&. Under the legitimate assumption that 
f (x ,  glXo) vanishes rapidly enough at infinity, a 
straightforward calculation yields' 

dt - 0 M~+ #;,_rM, (n=1,2  . . . .  ), (2.11) 
r = 0  t' 

where we have set: 
P q 

#J= 2 c~ke{+ ~ flki{ (j= 1,2, . . . ,n) .  (2.12) 
k = l  k = l  

Solving recursively the ordinary differential Equations 
(2.11) with the initial conditions (2.10) one thus easily 
obtains the moments of the process describing the 
time course of the neuron's membrane potential. 
Setting in (2.11) n =  1 gives the equation for the mean 
membrane potential, whose solution is" 

Ml (tbXo) = 0#1 - (0111 - Xo)e -t/~ , (2.13) 

where #~, the rate of the mean net excitation induced 
on the neuron, is defined by (2.12). The variance 
V(tlXo) of the membrane is also easily determined as 
solution of the equation 

dV 2 
dt - 0 V +#2 

V(0lXo) =0  (2.14) 

obtained by differentiating both sides of the identity 

V(trXo) = M2(tlXo)- [M1(tlXo)] 2 (2.15) 
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and by using (2.11). The result is: 

0#2 e- 2~/0) V(tlXo)= ~ - ( 1  - (2.16) 

with #2 given by (2.12). It should be noted that in the 
particular case p = q = l ,  that is when the neuron's 
input consists of only one excitatory and one inhibitory 
pulse train, Equations (2.13) and (2.16) yield a result 
earlier found by Stein (1965) by a less straightforward 
procedure. 

3. Diffusion Approximation 

The outlined procedure allows one to achieve a 
satisfactory description of the sub-threshold behavior 
of the neuron's membrane potential. However, because 
of the discontinuities of the sample paths of the under- 
lying process it is exceedingly hard to get some 
information on the distribution of the firing times. 
To make some progress in this direction it is expedient 
to "smooth down" the sample paths, if at all possible, 
in a way to change Equation (2.8) into a partial 
differential equation of the diffusion or Fokker- 
Planck type. Thus doing one is allowed to use the 
various techniques available in the literature to 
estimate the firing distribution as a first passage time 
distribution through the neuron's threshold value. 
Here we do not intend to enter details or technicalities 
as the method has been already outlined in Capocelli 
and Ricciardi (1971) and it can be used in a straight- 
forward way for the present model. Instead, we wish 
to point out that a sensible diffusion approximation 
is possible for the present model neuron and derive 
the appropriate Fokker-Planck equation. 

The starting point is to expand the functions 
f ( x  - % tlxo) and f (x  - ik, tlx0) on the right hand side 
of Equation (2.8) as Taylor series about x. Thus doing, 
Equation (2.8) can be rewritten in the following form: 

( -1) ;  OJf 
0t 0x ~ +#I  f + - - ( 3 . 1 )  

j=2 

where the #j's are given by (2.12). Equation (3.1) is the 
Smolukowski series expension of Equation (2.4) for 
the transition p.d.f. It simplifies into a diffusion 
equation of the Fokker-Planck type only if the 
coefficients # j ( ]=3,4 ,  ...) vanish. For this to occur, 
it is necessary to envisage a suitable limit procedure 
that makes infinitesimal the postsynaptic potentials 
ek's and ik's while simultaneously allowing the input 
arrival rates ~k'S and/~k'S to become infinitely large. 

In Capocelli and Ricciardi (1971), where only one 
excitatory and one inhibitory input sequence was 
considered, an analogous limit has been explicitly 
carried out. The resulting diffusion equation is 
identical to the one describing the velocity distribution 
of a Brownian particle subject to an elastic restoring 
force. In order to obtain a meaningful limit process 
suitable conditions on rates and magnitudes of 

post synaptic potentials had to be imposed, which 
prevented a constant contribution to appear in the 
drift term. Consequently, the transition p.d.f, of the 
membrane potential turned out to have a maximum 
exponentially drifting toward the resting potential, 
no matter how large the absolute mean rates of the 
postsynaptic potentials. 

Much more satisfactory is the behavior of the 
present model. Indeed, as we shall see, it yields a 
limit diffusion process whose mean drifts toward the 
neuron's threshold whenever there is a surplus of 
excitatory input over inhibitory input. To this purpose, 
and without loss of generality, let us assume that the 
number of excitatory inputs exceeds the number of 
inhibitory inputs, i.e., p>q. The coefficients #fs in 
Equation (3.1) can then be made all vanishing with the 
exception of #I and #2 if the limit values of rates and 
magnitudes of the postsynaptic potentials are taken 
as follows: 

c~ k = lim ak y ~ o T '  ak>O 

/~k = lim bk bk > 0 
y-*o y2, 

ik = lim dky , d k < 0 
y ~ O  

Idklbk 
ek = lim Cky, Ck-- 

y ~ O  a k  

and 
c~= lim a~ , ar>O 

y~O Y 

/~r= lim b' , b,.>0 
y~0Y 

ir = lim d~y, d~ < 0 
y~O 

( k = l , 2 , . . . , q )  

(3.2) 

e~= lim c~y, 0 < c r +  
y ~ O  ar  

(r=q+ l ,q+ 2,...,p) 

(3.3) 

where ek'S, bk's, Ck'S, and dk'S are otherways arbitrary 
constants. Indeed, recalling (2.12) and making use of 
(3.2) and (3.3), in the limit y-~0 one obtains: 

#I---> ~i~mo[Y-1~(akCk--bkldkl)]k=1 
p 

+ 
r - q +  l 

#2 ~ bkd 2 1+ 
k = l  

2 2 + lim y ~ (arc~+b~dr)-#>0 
y~O r = q + l  

#j---> l i m / S  -a ~ bkdkIl+(--l)n(bkl"-ll 
y ~ o t k = I \ a k /  ] 

+y, I 2 arc~+(-1)nbrldr] n =0 U=3,4,...). 
r = q + l  

(3.4) 
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We have thus proved that Equation (3.1) tends to the 
Fokker-Planck equation 

at -- Ox - - 0  +6  f +~Ox~- ~ ,  

where # denotes the infinitesimal variance. The 
quantity 3 in the drift term is the net rate of ex- 
citation impinging on the neuron. Should inhibitions 
prevail over excitations, the limit equation would still 
be (3.5), however with 6 < 0. The case 6 = 0  corresponds 
to the situation described in Capocelli and Ricciardi 
(1971). 

Under the diffusion approximation just introduced, 
a closed form expression for the membrane potential 
transition p.d.f, is readily available as the process 
described by Equation (3.5) can be derived from the 
Wiener process (Ricciardi, 1976). For the sake of 
brevity we shall not insist on this. Rather, we wish to 
point out that the method used in Section 2 also yields 
the moments  m,(t]xo) and the variance v(t]Xo) of the 
membrane potential when Equation (3.5) holds. Now 
the basic equations are: 

dm n _ n mn 4- n(~m n_ , 
dt 0 

1 
+ ~ H(n ~ 1) # n ( n -  1)m,_ 2 (n= 1, 2 . . . .  ) 

m,(Olxo) = x'~ , (3.6) 

where H(z) is the Heaviside unit step function. One 
thus easily finds: 

ml (tlxo) = 60 - (60 - Xo)e- t/o 

v(tlxo) = ~ (1 - e -  2~/0), (3.7) 

as was to be expected. 
Let us now note that i f# is small the sample paths 

describing the time course of the membrane potential 
are clustered around m1(t[Xo) with fluctuations whose 
amplitude vanishes in the limit #--*0. Therefore, if # 
is small the mean time T necessary for the membrane 
potential to attain for the first time the neuron's 
threshold S < 60 is approximately given by: 

T,,~O In 6 0 -  x~ (3.8) 
( 5 0 - S  

Setting x o = 0  in (3.8) we see that for large values of the 
net excitation rate the mean time necessary for the 
neuron to fire again after a spike has been elicited 

(i.e., the mean interspike distance) is approximately 
given by 

r 1 -  (3.9) 

thus becoming roughly inversely proportional  to the 
net excitation rate when the excitatory inputs largely 
override the inhibitory ones. If, however, # is large the 
estimates (3.8) and (3.9) are dangerously misleading. 
In such case the firing time distribution problem has 
to be tackled with the help of the mathematical 
machinery outlined in Capocelli and Ricciardi (1971) 
and in Sugiyama et al. (1970). 

In conclusion, it should be pointed out that 
Equation (3.5) could have been postulated by assuming 
that a "force" of the Langevin type appears in the 
equation expressing the exponential decay of the 
membrane potential: 

dx 1 
+ g x = g + F ( t )  (3.10) 

where F(t) is a stationary delta-correlated normal 
process with zero mean. However, it is not a priori 
obvious that Equation (3.10) has any neurobiological 
significance for the reasons outlined in Section 1. 
The justification for attaching to F(t) the properties 
characterizing a Langevin force rests exactly, and 
exclusively, in the diffusion approximation limit 
carried out above. 
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