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Abstract. Let P = P, x P, x ... x PM be the direct product of symmetric chain orders P,, P,, . . . , PM. 
Let F be a subset of P containing no I + 1 elements which are identical in M - 1 components and 
linearly ordered in the Mth one. Then max I F / Q c * M’ l 2 * W(P), where W(P) is the cardinahty of 
the largest level of P, and c is independent of P, M and 1. Infinitely many P show that this result is 
best possible for every M and I apart from the constant factor c. 
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1. Introduction 

It is known that the maximal cardinality of an antichain of a symmetric chain order P is 
W(P), i.e., number of elements in the largest level of P. (For definitions and basic nota- 
tions see the next section.) Katona [2] discovered a sharpening of this theorem: Let 
P = PI x Pz be the direct product of the symmetric chain orders PI, P2. Suppose that 
F C P does not contain two elements fi < fi such that fi and f2 are equal in one com- 
ponent. Then 

IFl<W(P). (1) 

It was a natural question whether this conclusion held in the case when P was the direct 
product of M (M > 2) symmetric chain orders. Namely, let P = PI x Pz x 9-m x PM be the 
direct product of the symmetric chain orders PI, P2 , . . . , PM, and let F not contain two 
elements fi < fi such that fi and fi are equal in M - 1 components. Is it true that F 
satisfies (l)? It turned out to be false even in the case M = 3. 

On the other hand, if P is a symmetric chain order and F C P is a Sperner-k-family, 
i.e., F contains no k + 1 elements which are totally ordered, then the cardinality of F 
does not exceed the number of elements contained in the k largest levels of P. 

A natural combination of the above two conditions is the following one: 

F C P contains no l+ 1 elements, f, < fi < .a* < fl+ i such that 

f, and fi+ i are equal inM - 1 components. 

Griggs [l] proved that condition (2) implies the inequality 

(2) 



124 

IFI < 2”-2 ’ I * W(P). 

The present author [3] improved this estimate: 

IFl6M*f- W(P). 

The aim of this paper is to prove the following theorem: 

ATTILA SALI 

THEOREM 1. Let P = PI x Pz x **a x PM be the direct product of the symmetric chain 
orders PI, P2 , . . . , PM, and suppose that F C P satisfies condition (2). Then 

IFl<Cl *M”*l* W(P) 

and this is the best possible upper bound, i.e., for every M and 1 there are P, , Pz , . . . , PM 
symmetric chain orders and an F C P = PI x Pz x ... x PM satisfying condition (2) such 
that 

where cl and c2 are absolute constants. 

2. Definitions and Notations 

A poset is called ranked if there is a rank function r : P + TN (nonnegative integers) such 
that r(a) = 0 for some a EP and, for any a, b EP such that a <b and there is no c with 
a<c<b thenr(b)=r(a)t 1. 

A ranked poset is called a symmetric chain order (see [2]) if P has a partition P = 
c, u c, u .*a U C, where each Ci, Ci = {al, a2 , , . . , asi}, is a symmetric chain that is 

r(asi)=r(asiel)+ 1 =~.*=r(ar)+Sr - 1 

and 

r(al) t r(a$ = max r(a) = n. 
aEP 

Levels of P are the collections of elements which are identical in rank. W(P) denotes the 
number of elements of the largest level that is the elements of rank p/2_ 

Let k=(kl, kz, . . . . k,) be a vector with nonnegative integer components such that 
kl <k2G.*.Qks, Cki denotes the ki element chain, that is Ckr = {O, 1, . . . . ki -1) 
ordered as natural numbers. Then let Qk = Ckl x Ckz x ... x Cks be an s-dimensional 
rectangle. Levels of Qk are the collections of elements whose component sums are equal. 
We will write simply W(k) instead of W(Qk). 

3. Proof of Theorem 1 

The papers mentioned above [l-3] used the same ideas to prove Sperner-type theorems. 
Their crucial point was the investigation of the special case of an M-dimensional rectangle. 
We are able to prove the best statement in this special case: 
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THEOREM 2. Let k = (k,, kz , . . . , kM), kt < kz Q e.0 < kM and F C Qk satisfy condi- 
tion (2). Then 

IFl<cl .M”*Z** W(k) 

where I* = min( I, kM). On the other hand, there are k and F C Qk to any Mand 1 satis- 
fying condition (2) and 

IFI>cz .M”.I* W(k). 

First we show how Theorem 2 implies Theorem 1, by Griggs’s [I] and Katona’s [2] 
method. The lower bound in Theorem 1 immediately follows from Theorem 2. For 
proving the upper bound let us partition each poset Pi, 1 <j GM, into symmetric chains. 
For each choice of one such chain from each Pi, the product is an M-dimensional rectangle 
centered at the middle level of P. In this way, a partition of the entire poset P into sym- 
metric rectangles is obtained. In each such rectangle, no I + 1 elements of F may be 
ordered in one component and equal in the remaining M - 1 components. Since the 
middle level of each rectangle is also the middle level of P, it suffices to prove the theorem 
in the case that P itself is just a rectangle. 

Proof of Theorem 2. First we note that Qk can be represented as a set of vectors 
x=(x1 , . . . ,xM) where the XI’S are integers, 0 <xi Q ki - 1 and x < y iff Xi <yi for 
every 1 < i GM. Condition (2) reduces to the following one: 

F contains no I t 1 elements which are equal in M - 1 components. (3) 
LEMMA 1. Let F C Qk satisfy (3). Then 

(FI~kl.k?=...-k~_,.l”. 

Proof By the condition, for every choice of the first MY 1 components we have 
only I* possible for the Mth one. cl 

LEMMA 2. For any k there is a subset F of Qk such that F satisfies condition (3) and 

IFI=kl.kz.....k~_l.lY. 

Proof Let F be defined in the following way: Let Fs denote the collection of elements 
of Qk whose component sums are congruent to S modulo kM so 

Fs={fEQk:f=(fi,...,fM), 5 fi=SmodkM}. 
i=l 

Then take 

F=F,UF,U...UF,*-,. 

It is clear that IFI = kl * kz l *.* * kM _ r * l*. Let us indirectly suppose that there are 
2 + 1 elements of F which are equal in M - 1 components. Obviously, there are two of 
them, say f and g, whose component sums are congruent modulo kM. Then d = EE 1 fi - 
Ef!lgi-O mod kM holds and ZEr fi-ZEtgi=fi-gj for some l<j<M,implies 
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-kM < d < kM and d = 0. Hence, f = g follows which is a contradiction. 0 

The next lemma says that the hypercube maximizes the ratio of kl l kZ * *-. * kM _ 1 over 
the size of the largest level. 

LEMMA3. Letkl~kZ~...~kt<kt+l~...~kMand 

ii = 4 ifi#t, 

kit1 if i = t. 

7hen 

Pro05 We wil1 prove the equivalent inequality 

k, + 1 
W(G),< - - 

kt 
W(k). 

When we fix the tth component in Qk or Q’ we obtain symmetric chain orders which 
are isomorphic to the same M - l-dimensional rectangle. The inequality follows im- 
mediately from the fact that W(k) is equal to the sum of the cardinalities of the k, + 1 
largest levels in this rectangle and W(k) is equal to the sum of the cardinalities of the kt 
largest levels in the M - 1 -dimensional rectangle. 0 

Now, we only have to determine the cardinality of the middle level of an&f-dimensional 
cube. It is known [4] that 

W(Ck x “‘X Ck) = 
kM 

M(k - 1) 

(I 1 

M(k - 1) 
- 

(2nM)%. (r - exp 
2 2 t 

M-times 2a2M 

where 

This shows that 

(i) 

km-1 
(ii) c* M1/” > W(Ck x -0. x Ck). 
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Lemmas 1 and 3 and (i) imply the upper bound because 

Lemma 2 and (ii) imply the lower bound in a similar way, hence the proof of Theorem 
2 is completed. 0 
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