
Acta Neuropathol (1993) 85:362 - 369 
Acta 

Heuropathologlca 
(~ Springer-Verlag 1993 

Regular papers 

Colocalization of cholinesterases with [5 amyloid protein 
in aged and Alzheimer's brains* 
M. A.  Mordn 1, E. J. Mufson 2, and P. G6mez-Ramos  1 

1 Morphology Department, School of Medicine, C/Arzobispo Morcillo s/n, Autonomous University of Madrid, 
E-28029 Madrid, Spain 
2 Department of Neurological Sciences, Rush-Presbyterian-St-Luke's Medical Center, Chicago, IL 60612, USA 

Received July 6, 1992/Revised, accepted September 23, 1992 

Summary. The colocalization of [5 amyloid protein with 
the enzymes acetyl- and butyrylcholinesterase was 
assessed using immunocytochemistry for [5 amyloid 
protein and a sensitive histochemical technique for 
cholinesterases. In non-demented aged and Alzheimer's 
disease brains, double-stained sections for cholinester- 
ases and thioflavin-S showed that all thioflavin-S- 
positive plaques were also positive for cholinesterases, 
indicating the presence of these enzymes in all plaques 
with [5-pleated amyloid protein.When amyloid angiopa- 
thy was present, cholinesterases were also observed in 
amyloid-laden vessels walls. Comparison of series of 
adjacent sections alternatively stained for acetylcholi- 
nesterase, [5 amyloid protein and butyrylcholinesterase, 
as well as by double histo-immunocytochemical stain- 
ing, showed either cholinesterase in a proportion of the 
preamyloid diffuse plaques. These data indicate that 
cholinesterases are associated with the amyloid protein 
from very early stages, when the [5-pleated structure is 
being formed. Novel functions attributed to acetyl- and 
butyrylcholinesterase, such us their proteolytic activity 
either by themselves or in association with heparan 
sulfate proteoglycans, may play a role in the aggregation 
or the consolidation processes taking place at the early 
stages of diffuse plaque formation. 

Key words: [3 Amyloid - Acetylcholinesterase - Buty- 
rylcholinesterase - Diffuse plaques - Preamyloid depo- 
sits 

Despite recent advances in our understanding of the [3 
amyloid protein (A[SP) at the molecular and functional 
levels (for reviews see [33, 53]), the role that this protein 
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plays in Alzheimer's disease (AD) and aging remains 
unclear. In senile plaques (SP) the pathologically accu- 
mulated A[SP colocalizes with the serine protease inhi- 
bitor alfa-1 antichymotrypsin, in normal aged human 
and monkey brains and in disorders associating solely 
these A[SP deposits, such as AD [1-3]. A[SP is immuno- 
logically labelled by heparan sulfate proteoglycans, 
which are structurally integrated within the characteris- 
tic lesions of AD and Down's syndrome [58-60], as well 
as by dermatan sulfate proteoglycans [61]. In addition, 
A[SP is associated with serum amyloid P component [17, 
19], chromogranin A [45], complement factors Clq, C3c 
and C3d [20, 21, 25, 41, 51], and protein kinase C 
[381. 

Other proteins found within SP include the enzymes 
acetylcholinesterase (EC 3.1.1.7; ACHE) and butyryl- 
cholinesterase (EC 3.1.1.8; BChE) [10, 12, 22, 23, 32, 
40, 42-44, 49, 50, 62, 65, 66]. Moreover, the global levels 
of AChE and BChE, as well as the distribution of their 
molecular forms, are severely disturbed in AD as 
compared with normal aged human brains [6, 7, 46, 47, 
54, 71]. However, the extensive spread of cholinester- 
ase-positive SP, beyond areas receiving massive cholin- 
ergic projections, strongly suggests that the role of 
AChE (an of the less-well-studied BChE) in SP forma- 
tion is wider than just acting upon acetylcholine, once 
thought to be its sole natural substrate [16]. In fact, 
AChE and BChE might have important functions in 
addition to their classical involvement as cholinergic 
enzymes [8, 15, 18, 24, 34-37, 55, 56]. In relationship 
with the accumulation of A[SP in SE the proposed 
protease activity of cholinesterases is specially interest- 
ing, since it might contribute to the release of the 
membrane-bound form of the amlyoid precursor protein 
in aging and AD [57]. 

In this study the colocalization of both AChE and 
BChE with A[SP is addressed, using immunocytochem- 
ical techniques for labelling A[sP-positive SP and histo- 
chemical techniques for cholinesterases. Special atten- 
tion will be directed towards the early formed diffuse 
plaques (DP), reffered to as preamyloid diffuse plaques 
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(PDP)  [63, 70[, where  the  consol ida t ion  o f  the  pa tho-  
logical events  re la ted  to the  evolu t ion  o f  SP may  be 
taking place.  Some possible in te rpre ta t ions  of  the  
obse rved  results will be  discussed. 

middle one for [3-protein (with formic acid pretreatment) and the 
last one for BChE. 

Double histo-immunocytochemical procedure 

Materials and methods 

Tissue preparation 

Tissue from the substantia innominata, cerebellum, hippocampal 
and parahippoeampal regions, as well as temporo-polar, insular, 
motor and parietal cortex, from nine cases of AD (mean age 81 _+ 
8.5 years) and four neurologically and clinically intact cases (mean 
age 83 _+ 2.3 years) were obtained at autopsy (postmortem delay 
2-9 h). Blocks of tissue (1-1.5 cm) were fixed in 4 % paraformal- 
dehyde in 0.1 M phosphate buffer (pH 7.4) for 26-52 h at 4~ 
cryoprotected in graded concentrations of sucrose (10-40 %) in 0.1 
M phosphate buffer, and cut on a freezing microtome at 40 ~tm.The 
neuropathological criteria used to define AD adhered to the 
NIH/ADRDA age-adjusted criteria [29] based on sections pro- 
cessed for thiofiavin-S (Thio-S) and Bielschowsky silver stains. 

Cholinesterase histochemistry followed by A(JP immunocytochem- 
istry. In ten cases (six AD and four non-demented aged brains) 
selected sections were first histochemically reacted for either 
AChE or BChE. Following histochemistry, sections were wet 
mounted onto glass slides, the areas of interest were photographed 
and their locations recorded using the XY coordinates of the 
microscope stage. A second glass slide was then placed under the 
slide containing the wet mounted section to outline its border. 
Sections were then removed from the slide and pretreated with 
formic acid solution (see above), prior to anti-A[3P free-floating 
immunocytochemistry. Following the immunostaining, the sec- 
tions were again wet mounted onto the glass slides using the 
previously drawn section outline for tissue placement and repho- 
tographed. 

Some additional sections were histochemically stained for 
either AChE or BChE using a tenfold greater concentration of 
substrate and increasing the incubation time to 22 h, followed by 
A~P immunocytochemistry with formic acid pretreatment. 

Cholinesterase histochemistry 

Esterase histochemistry was performed following a modified 
Karnovsky-Roots technique [28] as previously described [42, 43]. 
Briefly, cholinesterase staining was obtained by incubating free- 
floating sections at room temperature for 4 h in a solution (pH 6.8) 
containing either acetylthiocholine or butyrylthiocholine iodide 
(Sigma) as a substrate. The reaction product was visualized with 
diaminobenzidine [64], and intensified with cobalt chloride [4]. As 
a control, adjacent sections were reacted under the same condi- 
tions, eliminating either substrate. Sequential sections to those 
reacted for either AChE or BChE histochemistry were stained for 
Thio-S to compare the pattern of labelling. In addition, following 
the histochemistry for AChE or BChE, selected sections were 
counterstained with Thio-S. 

[3-protein immunocytochemistry 

Immunocytochemistry using the monoclonal antibody 4G8 
(IgG 2b) raised against a synthetic peptide corresponding to amino 
acids 1-24 of A[3P [30] was performed using the biotin-extravidin- 
phosphatase alkaline method. To enhance the immunoreactivity of 
amyloid expressing profiles most sections were pretreated with 
88 % formic acid (Merck) for 20 rain at room temperature [31]. 
However, selected sections were not pretreated with formic acid to 
preserve the AChE or BChE histochemical activity in tissue 
concurrently stained for any of the esterases and the amyloid 
protein. Endogenous peroxidase was inactivated by incubating 
sections in a solution of 0.3 % hydrogen peroxidase in methanol for 
30 min.The sections were then incubated in 3 % normal rabit serum 
in phosphate-buffered saline (PBS) with 0.1% Triton X-100 for i h 
at 4 ~ followed by the primary antiserum (1:1000) overnight at 
4~ Sections were then incubated in a biotinylated secondary 
antibody (anti-mouse IgG prepared in rabbit; Biomakor, 1:1000) 
at room temperature for 1 h, followed by at least 30 min at room 
temperature in extravidin alkaline phosphatase (Biomakor 
1:1000). Fast red was used as a chromogen for revealing the 
alkaline phosphatase. Control sections were incubated in the 
vehicle solution without the primary antibody to evaluate the 
specificity of the staining produced by 4G8. 

To compare the pattern of both esterases with that of the 
amyloid protein, three adjacent series of sections from five AD and 
three non-demented aged cases were stained: one for ACHE, the 

A~P immunocytochemistry followed by cholinesterase histochem- 
istry. In two AD and one non-demented aged brains, additional 
sections were concurrently stained for anti-A[3P without formic 
acid pretreatment and then for either AChE or BChE. 

Controls for the specificity of these techniques consisted of 
double-stained sections which omitted eiher the substrate for the 
appropriate esterase or the primary antibody or both. 

Results 

In  the  present  s tudy the  t e rm D P  refers to  all A~P-  
posit ive deposits  wi thou t  dys t rophic  neur i tes  [63] and 
includes bo th  the  p reamylo id  Thio-S-negat ive  accumu-  
lations (PDP)  and the  amylo id  Thio-S-posi t ive  deposi ts  
[67]. 

The  spec t rum of  morpho log ica l  appearance  of  amy-  
loid deposits  f ound  in our  mater ia l  closely cor responds  
to tha t  a l ready descr ibed for  the  4G8 an t ibody  [69]. 

I n  our  results b o t h  the  halo and the  core  o f  classical 
p laques  showing a central  core  were  consis tent ly posit ive 
for  b o t h  chol inesterases  (Fig. l a ,  b). The  sur rounding  
rim of  the  central  core  was mos t  intensely s tained than  its 
inner  region (not  shown in the  figures). The  same was 
t rue for  the  isolated core o f  the  " b u r n e d - o u t "  p laques  
(Fig. la ) .  I n  neuri t ic  plaques ,  the amylo id  c o m p o n e n t  
was consis tent ly  posit ive for  bo th  cholinesterases,  
whereas  the  neuri t ic  c o m p o n e n t  was only  posit ive for  
A C h E  and/or  B C h E  in some  cases (Fig. lb) .  D R  
including c o m m o n  diffuse pa rench imal  p laques  
(Fig. lc ) ,  cerebellar,  presubicular  p laques  (Fig. l e ) ,  
r ibbon-l ike subpial  deposits  (Fig. 10 ,  D P  in the  substan-  
tia i nnomina ta  (Fig. lg)  and diffuse deposi ts  sur round-  
ing b lood  vessels (Fig. l h )  were  all posit ive for  cholines- 
terases,  except  for  Thio-S-negat ive  P D E  which were 
only occasional ly posit ive for  e i ther  A C h E  or  B C h E ,  as 
demons t r a t ed  in adjacent  sections s ta ined for  Thio-S and 
ei ther  cholinesterase.  

Similar results were ob ta ined  in series of  three  
adjacent  sections s tained for  ei ther:  (a) ACHE,  (b) A ~ P  
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Fig. l a -h .  Cholinesterase histochemistry of senile plaques, a 
Temporal cortex from a non-demented aged brain showing buty- 
rylcholinesterase (BChE) histochemical staining of a classical 
plaque with a central core (solid arrow), and two "burned-out" 
plaques (open arrows); x 100. b Temporal cortex from an Alzheim- 
er's disease (AD) brain showing an acetylcholinesterase (AChE)- 
positive classical plaque with a central core (straight arrow) and a 
neuritic plaque with AChE-positive neuritic component (curved 
arrow). Neurofibrillary tangles (NFT) and neuropil threads are 
also AChE positive; x80. c Section from the temporo-polar cortex 
of an AD brain double-stained for BChE and Thioflavin-S 
observed with bright field illumination. Arrows indicate diffuse 
plaques with BChE reaction product; x25. d Same section and 
same field as in c, photographed with ultraviolet light. BChE- 
positive plaques do not show any fluorescence. Many neurofibril- 

Fig. 2a-e. Three adjacent sections from the presubiculum of an 
AD brain showing two accumulations of diffuse plaques (arrows). 
a AChE histochemistry, b 13 amyloid protein (A~P) immunocyto- 
chemistry, c BChE histochemistry. Layer i is towards the right, a-c 
x25. d, e Hippocampus from an AD brain. The same section was 
first reacted for BChE (d) followed by AISP immunocytochemistry 
(e). Two senile plaques (arrows) are positive for BChE (d) and 
double labeled for BChE and AI3P immunocytochemistry (e). d, e 
x 60. f, g Insular cortex from a non-demented aged brain.The same 
section was reacted for A~SP immunocytochemistry (f) followed by 
AChE histochemistry (g). A classical plaque with a central core 
(thick arrow) and two diffuse plaques (thin arrows) appear labeled 
for A[~P immunocytochemistry (f) and double labeled for AISP and 
AChE histochemistry (g). g, f x70. h A classical plaque with a 

lary tangles are only Thioflavin-S positive (arrowheads); x25. e 
AChE-positive accumulations of diffuse plaques in the presubicu- 
lum (arrows) in the brain of a non-demented aged patient. Some 
AChE-positive neurons and a dense plexus of AChE-positive 
fibers are observed in deeper layers; x 10. f AChE-positive diffuse 
subpial deposits (arrows) in temporopolar cortex of an AD brain. 
A blood-vessel (asterisk) and abundant AChE-positive senile 
plaques are also present in deeper layers; x20. g BChE-positive 
diffuse plaques in the substantia innominata (arrows) in the brain 
of a non-demented aged patient; x70. h BChE-positive diffuse 
deposits surrounding a longitudinally sectioned blood vessel 
(arrows) in a non-demented aged brain. The vessel wall is also 
BChE-positive (asterisks). NFT and numerous neuropil threads 
are also BChE-positive; • 

central core from the insular cortex of an AD brain double stained �9 
for A[3P immunocytochemistry (red) followed by AChE histo- 
chemistry (brown). Arrows point to brown varicose, exclusively 
AChE positive, fibers; x80. i Layer III of temporopolar cortex 
from an AD brain double stained for A~P immunocytochemistry 
without primary antibody followed by AChE histochemistry. Only 
the brown reaction product of AChE is observed in NFT and a 
classical plaque with a strongly positive central core (arrow); x 70. j 
Insular cortex from a non-demented aged brain double stained for 
AI3P immunocytochemistry followed by AChE histochemistry 
without substrate. Only the red precipitate of A[3P immunocyto- 
chemistry is observed in senile plaques. Thick arrow indicates 
classical plaque with a central core. Thin arrows indicate lipofuscin 
granules in neuronal perykaria; • 110 
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or (c) BChE. Again with this approach the number and 
distribution of all types of SP were very similar, except 
for PDR In those cases in which PDP were abundant, 
more diffuse deposits were positive for AI3P than for 
either cholinesterase (Fig. 2a-c). 

In sections double-stained for cholinesterase and 
Thio-S, all SP fluorescence was nearly covered by the 
cholinesterase precipitate (Fig. lc, d). When neuritic 
plaques were double stained, some dystrophic neurites 
appeared fluorescent even after increasing the amount 
of substrate and the incubation time. 

In those cases with amyloid angiopathy some blood 
vessel walls exhibited cholinesterase-positive ring-like 
accumulations (Fig. lh) covering the fluorescent amy- 
loid aggregations revealed by Thio-S. 

Double histo-irnrnunocytochemical procedure 

Cholinesterase histochemistry followed by A ~P immuno- 
cytochemistry. Histochemically single-stained sections 
revealed intense cholinesterase reaction product with its 
usual dark-blue color (Fig. 2d). However, after concur- 
rent immunocytochemical incubation, the cholinester- 
ase-reaction product appeared light-brown in color 
(compare Fig. 2d, e). A similar change was observed 
following the first 5 min of formic acid pretreatment. 
Thus, it was difficult to distinguish the red color of A~P 
from the light-brown color of cholinesterase reaction 
product in the double-stained sections (Fig. 2e). How- 
ever, by comparing the same plaque photographed 
before and after the A~P immunocytochemistry 
(Fig. 2d, e), it was possible to determine that a great 
proportion of SP were double stained. In those cases 
with abundant PDP, even after a very long incubation 
period (22 h) and a tenfold increase in substrate 
concentration, the cholinesterase histochemistry re- 
vealed only a proportion of A~P-positive DP (compare 
Fig. 3a, b). In addition, careful analysis of individual 
plaques showed that in many the cholinesterase precipi- 
tate occupied a smaller area than the A~P immunostain- 
ing (Fig. 2d, e). 

A[3P immunocytochemistry followed by cholinesterase 
histochemistry. When pretreatment with formic acid was 
included in the immunocytochemistry protocol no chol- 
inesterase precipitate was observed in double-stained 
sections. Since the pretreatment was found to be 
responsible for this fact,we omitted formic acid pretreat- 
ment when A~P immunocytochemistry was followed by 
cholinesterase histochemistry. Immediately after the 
double protocol, the cholinesterase reaction product 
exhibited the usual dark-blue color, but this appeared 
brown after covering the sections with the water-soluble 
mounting medium (Apathy; Fig. 2g, h). In these dou- 
ble-stained sections the majority of SP were simulta- 
neously A~P and AChE positive. 

The specificity of the double procedures described 
above was always confirmed in control sections omitting 
either the antibody (Fig. 2i), the cholinesterase sub- 
strate (Fig. 2j), or both. 

Discussion 

The present results showed a consistent, very clear 
staining for both AChE and BChE in all types of SE and 
in blood vesels with amyloid angiopathy (Fig. 1), 
extending our previous observations [23, 42, 43]. Other 
authors have also found that neuritic and classical 
plaques accumulate cholinesterases within degenerating 
neurites [10, 22, 32, 40, 49, 50, 62, 65]:To focus our study 
on the actual relationship between cholinesterases and 
amyloid, avoiding any confusion due to neuritic staining 
within the same plaques, the present study was 
addressed to brain regions, such as presubiculum, 
substantia innominata and cerebellum, where DP are 
commonly found in the absence of neuritic plaques [26]. 
Staining of adjacent sections with either of the cholines- 
terases or with A~P showed a close correspondence of 
labelling for adjacent populations of SP (Fig. 2a-c). 
Following several combinations of sequential immuno- 
cytochemical and histochemical protocols on the same 
sections, all types of parenchimal and perivascular 
deposits of A~P were shown to colocalize with either 
AChE or BChE (Fig. 2d-h). Our results are in close 
agreement with those obtained by Ulrich et al. [66], who 
also observed the same morphological spectrum of 
plaques in sections processed for AChE and those 
immunostained for A~P protein. However, there is 
some discrepancy between both studies arising from the 
criteria used for classifying the plaques considered as 
preamyloid accumulations (preplaques in their termino- 
logy). This is a difficult classification that needs to be 
addressed following not only morphological criteria but 
also other characteristics of the plaques such as their 
affinity for Thio-S, which distinguishes preamyloid from 
amyloid accumulations [63, 67]. 

Most plaques showed accumulations of cholinester- 
ases.With regard to PDE some plaques were also stained 
for AChE or BChE, while others were cholinesterase 
negative, even after increasing the incubation time and 
the amount of substrate tenfold (Fig. 3a, b). This sug- 
gests that PDP may accumulate cholinesterases while 
A~P fibrils are forming. In support of this possibility, 
double-staining techniques for cholinesterases and 
Thio-S revealed that all fluorescent SP were positive for 
AChE or BChE (Fig. lc, d), which indicates that the 
association between cholinesterases and A~P is already 
established by the time the ~-pleated configuration of 
the amyloid fibrils is formed. The fact that A~P and 
cholinesterases do not completely colocalize in PDP 
may indicate that, in the gradual transformation of the 
accumulated A~P into Thio-S-positive fibrils, cholines- 
terases need to accumulate to a certain concentration 
before being histochemically detected. 

Studies on the differences between PDP and other 
types of SP have shown a gradual involvement of 
proteases and protease inhibitors during the first stages 
of SP evolution [1, 13, 52, 53, 57]. Cholinesterases form 
part of the ~ amyloid-associated proteins recently 
identified (and to be found [53]) in SR As for most of 
these proteins novel functions have been proposed for 
cholinesterases [8, 15, 18, 24, 34-37, 55, 56] with special 
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Fig. 3a, b. Temporopolar cortex from a non-demented aged brain. 
The same section was incubated for 22 h with tenfold amount of 
BChE substrate (a) followed byA[3P immunocytochemistry (b). In 

h, some plaques are positive for both BChE and A[3P immunocy- 
tochemistry (arrows), whereas other plaques are only A~P positive 
(arrowheads). a, b x 10 

attention directed to their ability to hydrolyze peptides 
[14, 16, 18, 37, 55, 56]. Recent studies point out the 
possibility that this proteolytic ability of cholinesterases 
may not be intrinsic, but due to a 25-kDa cholinesterase- 
associated protease [5, 11]. In any case, as suggested by 
Small et al. [57], either cholinesterases by themselves or 
the 25-kDa protease associated with them may play a 
role in the cascade of proteases which results in the 
release of the membrane-bound form of the amyloid 
precursor protein. If this is the case, cholinesterases 
should be present in the very first moments of A~P 
accumulation. It could be that our histochemical 
method is unable to detect them until certain levels are 
reached. However, it seems unlikely that the intrinsic (or 
associated) cholinesterase protease activity not only 
contributes to the aggregation of AIdE by specifically 
acting on the amyloid precursor protein, but also 
explains the formation of paired helical and straight 
filaments in which cholinesterases are also localized [23, 
42]. An  additional possibility for interpreting the 
observed colocalization of cholinesterases with A~E is 
that these enzymes may stabilize the A~P aggregates, 
once they are formed in PDR In support of this second 
possibility, which seems to be more compatible with a 
parallel accumulation of these enzymes in paired helical 
and straight filaments, is the proposed interaction of 
cholinesterases with proteoglycans, as well as with other 
components of the basement membrane [9, 39, 68]. 

In AD, the activity of both the A12 and A8 asym- 
metric forms of AChE is significantly increased (342 % 
and 406 %, respectively) [71]. In addition, the asymmet- 
ric forms seem to predominate in SP [46]. It has been 
proposed that the A12 form may be anchored to heparan 
sulfate proteoglycans and other components of the 
basement membrane through its collagen tail [39]. 
Indeed, heparan sulfate proteoglycans have been shown 
to be present in PDP [60]. Both heparan sulfate 
proteoglycans and cholinesterases are detected at early 
stages of the plaque development, before the [3-pleated 

amyloid configuration is formed. Moreover, since pro- 
teoglycans appear associated with A[3P and with paired 
helical and straight filaments, an active role has been 
proposed for them in the accumulation and consolida- 
tion of all these insoluble structures [59]. Part of this 
active role might be due to their binding to cholinester- 
ases, in addition to other proteins, such as serum 
amyloid P component [27] and basic fibroblast growth 
factor [48]. 

Although a large amount of new data has been 
reported dealing with the early stages of the AD 
pathology, their integration in a global context is far 
from clear. In this context, if cholinesterases do play a 
role in these early stages, in addition to their implica- 
tions as severely altered cholinergic enzymes, a careful 
and open minded study may be worthwhile.Whether the 
presence of AChE and BChE in SP and neurofibrillary 
degeneration could lead to new therapeutical strategies 
by preventing the consolidation of these cytopathologi- 
cal features remains to be elucidated. 
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