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Summary. For a bounded linear operator Q, on a Banach space E, and 
a real number fl, there are introduced classes, ://p(Q), of some limit distribu- 
tions such that ://o(I) coincides with the L6vy class Lo. Elements from ://p(Q) 
are characterized in terms of convolution equations and as probability distri- 
butions of some random integral functionals. The continuity and fixed points 
of this random mapping is studied. It is shown that fixed points coincide 
with the class of Q-stable measures. 

O. Introduction 

The Ldvy class Lo, called also the class of self-decomposable measures, is defined 
as a class of limit distributions of sequences of the form 

(0.1) t , (r  ~.2 + . . .  + r176 

where t~ > 0, x n siR, ( ~ ) ~  are independent random variables (r v's) and the trian- 
gular array tn~j- (1 <j<n: ne1N) is uniformly infinitesimal. If we replace the 
infinitesimality assumption by the assumption that (~)n~N are identically distrib- 
uted then weak limits of (0.1) give the class, 5:, of stable measures. Finally, 
the class, ID, of all infinitely divisible distributions coincides with the class of 
limit distributions of arbitrary uniformly infinitesimal triangular arrays with 
independent r v's in each row. Elements from 1D and 5: were characterized 
in terms of characteristic functions (Fourier transforms) at the very beginning; 
cf. Loeve (1955), Sect. 22.3, Theorem A, and Sect. 23.4, Theorem B, respectively. 
Furthermore stable measures were very extensively studied during the last fifty 
years; cf. Linde (1983), Weron (1984). Characteristic functions for selfdecompos- 
able measures were described by Urbanik (1968) by the extreme-point method 
(Choquet's Theorem). This method has been applied later on to characterize 
other limit laws. Other proofs based on a theory of convex functions and an 

* Permanent Address: Institute of Mathematics, University of Wroclaw, PL-50-384 Wroclaw, 
Poland 
** This work partially supported by AFOSR Grant No. F49620 82 C 0009 



474 Z.J. Jurek 

extension of measures theorems were found by Sato (1980) and Jurek (1982a), 
respectively. All of these methods are of an analytic character without any appeal 
to stochastic methods. Quite recently the technique of random integral represen- 
tation has been developed. Wolfe (1982) and Jurek-Vervaat (1983) characterized 
in this manner the class L0, with completely different proofs. Moreover, the 
proof of Jurek-Vervaat uses the theory of stochastic processes. From the integral 
representation we get immediately the characteristic functions of measures from 
L 0 and the generators of the class L 0. The Jurek-Vervaat result says that a 
selfdecomposable measure can be viewed as a probability distribution of an 
integral functional (Laplace transform) of a stochastic process with stationary 
independent increments. Another way of reading this characterization is that 
the class L 0 coincides with the class of limit distributions (as t ~ oe) of Ornstein- 
Uhlenbeck type processes, cf. Sato-Yamazato (1984). 

It seems that the random integral representation is the method of describing 
classes of limit laws, that it is the connection between the theory of limit distribu- 
tions and the theory of stochastic processes, which were developed quite sepa- 
rately from each other. Since this technique was used with success for many 
different classes of limit laws, in [8], p. 607 the following hypothesis was stated: 

Each class of limit distributions, derived from sequences of independent random 
variables, is the image of some subset of ID by some mapping defined as a random 
integral. 

In the present paper, we will introduce classes d//~ (Q), for tiElR and a bounded 
linear operator Q on a Banach space E, of limit laws obtained from sequences 
of independent r v's. Then elements from q/r are identified by convolution 
equations in Theorem 1.1. In particular, Corollary 1.1(b) gives Lo(I)=~llo(I). 
The main result given in Theorem 1.2 says that for fl > 0, 

(0.2) #Eq/p(Q) if and only if # = ~ (  ~ tOdY(ta)), 
(o, t) 

where Y(t), 0__< t < 1, is a Banach space valued process with stationary indepen- 
dent increments. Let us note that the classes ~1 _,(I) coincide with O'Connor 
(1979) classes L~, for 0 < c~ < 1, which are defined by some monotonicity property 
of their L6vy spectral function. The relation (0.2) suggests to consider the follow- 
ing mapping: 

( 0 . 3 )  Jd(&~ ~ tQdY(tr 
(o,1) 

Theorem 1.3 (a) shows that Jd  is a homeomorphism between the topological 
semigroups ID and q/~(Q), for fl>0. Consequently, Corollary 1.2 gives so-called 
generators for the class ~(Q),  i.e., a set of elements from q/p(Q) that by taking 
their convolutions and weak limits, we obtain whole class q/~(Q). This is an 
analogue of the classical fact that the class ID is the smallest closed subsemigroup 
of ~ containing all Poisson measures; cf. Loeve (1955), Sect. 22.1, Theorem B. 
Finally, Theorem 1.4 shows that Q-stable measures are fixed points of the map- 
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pings J~ .  More precisely, if 5e(Q) denotes the class of all Q-stable measures 
then or ( 5P (Q))= 5P (Q). 

This paper is organized as follows: Sect. 1 contains notations and all main 
results. Two auxiliary lemmas are given in Sect. 2 for further references. Sect. 3 
gives all proofs, and Sect. 4 contains some references and comments on previous 
works dealing with random integral representations. 

1. Notations and Results 

Let E be a real separable Banach space with topological dual E' and the bilinear 
form ( ' , ' )  between E' and E. Let ~(E) and ID(E) (or shortly: ~ and ID) 
be topological convolution semigroups of all Borel probability measures and 
all infinitely divisible ones, respectively, on E. By " ~ "  we will denote the weak 
convergence (weak topology) and by " * "  the convolution of measures. Recall 
that ID is closed (in weak topology) subsemigroup of ~ and each pEID is 
uniquely determined by a triple: a vector a~E, a Gaussian covariance operator 
R and a L6vy measure M. More precisely, if/~ is the characteristic functional 
(Fourier transform) of ~ then for all yeE' 

a 1 (1.1) Ft(y)=exp[i(y, ) - -z(y ,  Ry)+ S K(y,x)M(dx)], 
E\{O) 

where K(y, x):=ei<y'x>-I-i(y, x) ln(x) for y~E', x~E and 1B is the indicator 
function of the unit ball in E. In the sequel, we will write # =  [a, R, M] if i~ID 
and/~ is of the form (1.1). Moreover, for # = [ a ,  R, M] and t>0 ,  # . t  is defined 
as follows: #*t:=[ta,  tR, tM]. Given a Borel measurable mapping f from E 
into E and a measure #, we write f / t  for the measure defined by means of 
the formula 

(1.2) (f#)(F),=#(f- 1 (F)) for all Borel subsets F of E. 

In particular, if #, v e ~  and A, B are bounded linear operators on E, then 

(1.3) A(#*v)=AI~*Av; A(BIJ)=(AB)I~; (A#)^(y)=fL(A *) for y~E', 

where A* denotes the adjoint operator of A. (This star should not be confused 
with the convolution of measures). Moreover, if #, v~ID, A is a bounded linear 
operator on E and t > 0  then A#, AvoID and we also have. 

(1.4) (A (~ �9 v))*' = A ((U �9 v)*') = A ~* '  �9 A v*',  

(1.5) A [a, R, M] = [gt, ARA*, AM], 

where 5 . '=Aa+ ~ (1B(AX)--lB(x))AxM(dx). For a random variable (rv)X, 
E\{0} 

s176 denotes its probability distribution and IEX its expected value (Bochner 
integral). Further, D E [a, b] denotes the set of E-valued cadlag functions on [a, hi, 
i.e., functions that are right-continuous on [a, b) and have left-hand limits on 
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(a, b]. Recall that D~[a, b] becomes a complete separable metric space under 
Skorohod metric, cf. Billingsley (1968). In the case b=  c~, we similarly define 
D~[a, oo) and for details we refer to Pollard (1984), Chapter VI or to Lindval 
(1973). Finally for a bounded linear operator A on E, continuously differentiable 
real-valued function g on [-a, b], DE[0, oo)-valued rv Yand a monotone continu- 
ous function T from (a, bJ into (0, 0o) we define 

(1.6) ~ eg(~)Ady(z(t)):=e g(OA Y(z(t))['t=-~ - ~ (de g(t)A) Y(~(t)) 
(a, b] (a, b] 

=eg(b)A(Y(z(b))-- Y(z(a)))-- ~ g'(t)Aeg(t)A(Y(z (t))-- Y(z(a))) dt. 
(a,b] 

If z maps the interval (a, b] onto finite interval in [0, oo) then the integral on 
the right-hand side there exists path-wise because of Lemma 14.1 in Billingsley 
(1968). The integrals on [a, co) we define as a limit in probability as b--+oo 
in (1.6). 

From now on, Q is a fixed bounded linear operator on E such that t Q 
:=exp(Q l n t ) ~  0 (in the operator norm) as t-~ 0. For a real number fl, we say 
that # E ~  belongs to the class ~B(Q) if there exists a sequence (v,)c_ID such 
that 

(1.7) p , : =n- O( v l , v 2 , . . . , v , )  *n ~ # .  

Let us note that this definition is simpler but equivalent to that used in Jurek 
(1985a, 1985b) for f i= 1. 

Of course, #~ID, i.e., the classes q/~ (Q) are subclasses of the closed semigroup 
ID. In terms of convolution equations they are characterized as follows. 

Theorem 1.1. Let fl be a real number and Q a bounded linear operator on Banach 
space E such that tQ-->O as t~O.  Then a measure #6ID belongs to the class 
~ if and only if for each 0 < c < 1 there exists a measure #r such that 

(1.8) # = c e #.c~.  #c. 

To explain the title of the present paper, let us recall that the LOvy class 
Lo (or more general class Lo(Q)) is defined as follows: #~Lo(Q) if there exist 
sequences (t.).~N of positive real numbers, (x.).~r~ of vectors from E and measures 
(V,),~N such that 

(1.9) tO, (vl * Vz *... * v , )*b(x , )~  # 

and the triangular array to, vj (l <_j<n, neN)  is uniformly infinitesimal, i.e., 
lim max (te, V~)(][x[[ > e ) = 0  for e>0 ;  cf. Jurek (1983). The following are simple 

n--*oo l <=j<n 

consequences of Theorem 1.1. 

Corollary 1.1. (a) The classes dllp (Q) are closed convolution subsemigroups of ID. 

(b) I f  ~ < fl then ~ll~ (Q) ~_ ~ll~ (Q) and ~lo (Q) = Lo ((2). 
(c) I f  a linear bounded operator A commutes with Q then A~llt~(Q)~_q/p(Q). 

In particular, if A is also invertible then A~llp(Q)= ~lll~(Q ). 
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(d) A measure p=[a,R,M]~Ullp(Q) if and only if for all 0 < c < l  R 
> c ~ (c o R c o*) and M > c ~. (c o M). 

(e) I f  fl > 0 then ~ll~ (Q) = ~#1 (fi- 1 Q). 
(f) I f  #eql~(I) and is nondegenerate then fi > - 2 .  

The next theorem describes the elements from the class cg~(Q) in terms of 
random integrals. Namely we have 

Theorem 1.2. (a) Let f l>0  and "c~(t),=t n. Then #~sll~(Q) if and only if there exists 
a D~[0, 1]-valued r v Y with stationary independent increments, Y(O)= 0 a.s. such 
that 

# = ~ (  ~ t(2dY(z~(t)))=~( f t~ 'edY(t)) �9 
(o, 1) (o> l) 

Moreover, for #~ in (1.8) we have that #~. '=f (  ~ t(2 dY(zn(t)) ). 
[e, 1) 

(b) A measure #~r if and only if there exists a O[O, oo)-valued rv Y 
with stationary independent increments, Y(O)= 0 a.s., IE log (1 + [[ Y(1)][)< 0% such 
that 

# = ~ (  ~ t ~  - ~ e-t(2dY(t)). 
(o, 1) (0, co) 

Let [a, R, M] .'= L,~ (Y(1)) and [a (~), R (p), M (~)] .'=5(( 
(o, 1) 

Then using Lemma 2.2 (ii) and the formula (1.1) we obtain 

t o d Y(z n (t))), for fi > 0. 

1 1 

(1.10) a(~)= S t(2adz/s(t) + ~ ~ [1B(t(2x) - l~(x)] tQxM(dx)dz~(t); 
o o E\(o) 

1 

(1.11) R(P)= ~ tO Rt(2*dz~(t); 
0 

1 

(1.12) M(~)(F) = ~(t Q M)(F) dz~(t) for Borel subset f of E\{0}.  
0 

The above and integral representations suggest to introduce mappings J ~  
between the semigroup ID and the semigroups s//p(Q). Namely, for f l>0  and 
v ~ ID let 

J~ ( v ) . ' =S (  S tQdY(z~(t))) , 
(0, 1) 

where Y is a D E [0, 1]-valued r v with stationary independent increments, Y(0)= 0 
a.s. and ~ (Y(1) )=  v. In other words, if v = [a, R, M] then ~r (v)= [-a (p), R (~), M ~)] 
with a (p), R (~) and M (p) given by (1.10)(1.12). Similarly, for fi=0, we define 
the mapping 

~g(v) :=S((  j" tadV(-- ln t ) )  
(o, 1) 

between IDlog..={v~ID: S log (1 + llxll)v(dx)< oo} and ~o(Q). 
E 
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Theorem 1.3. (a) For f l>0,  the mapping J;~ is an algebraic isomorphism and 
a homeomorphism between the topological semigroups ID and ~lio (Q). 

(b) The mapping J~? is an algebraic isomorphism between IDlog and :llo(Q). 
Moreover, for v,, v ~ IDlog we have 

J~(v , )~J~(v )  iff v , ~ v  and I log(l+l[xll)v,(dx)-* ~ log(l+llxll)v(dx). 
E E 

(c) The mappings J~ ,  with fl >= O, satisfy also 

(i) J~(v  *c) = (J~(v)) *c for all c > 0 
(ii) VJ~(v)=J~(Vv) for any bounded linear operator V on E, commuting with 

Q. 
The class ID(E) of all infinitely divisible measures on E can be described 

as the smallest closed subsemigroup of N(E) containing all symmetric Gaussian 
measures and all shifted compound Poisson measures of the form Ix, 0, 26(y)], 
where x, y~E and 2>0 ,  cf. Araujo and Gin6 (1980). Using the mapping J ~  
we shall find sets of generators for ~ (Q). 

Since t e ~ 0  as t ~ 0  then there are positive constants a and b such that 
1 

Ilte[l<at b for all 0 < t < l ,  and Ilxl[~:=S Ilt~xl[ t - l d t  is well-defined norm on 
0 

E. Let S e be the unit sphere in E with respect to the norm II'lLe and for 
a > 0  and z~S e and f i>0  let us define a Borel measure M,,~ on E\{0} by 

M~,~(F) = i IF(tO'z) : - ~  dt. 
0 

Since S min(1, ]lxj])Ma,z(dx)< co, M,,z are L6vy measures on E, cf. Araujo and 
Gin6 (1980), Chapter III, Theorem 6.3. Let Na, e be the set consisting of all 
generalized Poissonian measures Ix, 0, 2 M , , j ,  x~E, z e S  e, 2>0, a > 0  and all 
Gaussian measures [0, R, 0] such that QR + RQ* + f i r  is nonnegative operator. 

Corollary 1.2. For fi>O, the class ~lla(Q) is the smallest closed subsemigroup of 
ID (E) containing the set No, (2. 

We will say that # is Q-stable if # is a limit of (1.9), where the uniform 
infinitesimality assumption is replaced by the requirement that v, = v l for all 
heN.  Let 5~ denote the class of all Q-stable measures. Then 5:(Q)__ Lo(Q) 
and : t e~ (Q)  if and only if there is p > 0  such that for every t > 0  

(1.13) #*t=tP-'Q#* b(zt) for some z tsE , 

cf. Theorem 3.2 in Jurek (1983). We will refer to p as an exponent of Q-stable 
measure. So, if # = [a, R, M] then # is Q-stable with the exponent p if and only 
if for all t > 0 

(1.14) t .R=tP-l f2Rt  p 'Q* and 

t.M(F)=(tP-IQM)(F) for F ~ ( E \ { 0 } ) .  
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Differentiating the first equality we 
+:-~~ for t>O and hence 
= p-  ~ (QR + RQ*) implies 

obtain R = p  -~ t-I(QtP-~Q-RtP-~Q* 
R=p-a (QR+RQ*) .  Conversely, R 

tp-~Q RtP-tO*=p -1 tp-~Q(QR + RQ*) tP-'Q*=t[d/dt(tP-~Q RtP-~Q*)] 

for t>0 .  Hence t .R=tP-~QRt  p-aQ* for all t>0 ,  i.e., R is a Gaussian covariance 
operator of Q-stable measure with the exponent p. The second equation in 
(1.14) one can solve as in Theorem 4.2 in Jurek (1983), using the polar coordinates 
given by the norm II" lie introduced in the comment preceding Corollary 1.2; 
cf. also Remark (b), p. 602, in [-6]. We will get that M satisfies the equation (1.4) 
if and only if there exists finite measure m on the unit sphere SQ such that 

(1.15) M ( F ) =  ~ ; l r ( tQx) t - ( '+l )d tm(dx)  for F~N(E\{0}) .  
s o o 

Finally we have that # = [a, R, M] is Q-stable with the exponent p if and 
only if R = p - I (QR  + RQ*) and M is of the form (1.15). Having this characteriza- 
tion of the Q-stable measures (the class 5P(Q)) we can identify measures of 
5"(Q) among those of ogp (Q), for fl > 0, as follows: 

Theorem 1.4. Let fl>0. I f  # is Q-stable with an exponent p then J~(#)  
= #*r + ~) * 3 (x) for some x e E. Conversely, if J~? (v) = v *c * 6 (x) for some c > 0 
and x eE  then 0 <  c < 1 and v is Q-stable measure with the exponent f l (1-c)  c-~. 

2. Preliminaries 

In this section we will prove some auxiliary lemmas needed later in the proofs 
of the main results. 

Lemma 2.1 (Jurek (t985a)). Let p,, p~ID(E), cn, cMR + and A, ,  A be linear 
bounded operators on E. I f  c, ---, c, p , ~ p  and A, ~ A (pointwise) then 

An p , C , ~  Ap.C. 

The next lemma deals with random integrals, their characteristic functionals 
and probability distributions. 

Lemma 2.2. (a) Let z be a monotone continuous function from (a, b] into (0, oo) 
and let Y1 and Y2 be DE[-0, oe)-valued rv's with independent increments and YI (O) 
= Y2 (0) = 0 a.s. I f  for some positive s > 0  and all O<_v<w< oe 

•(Y2(w)-- Y2 (v)) = Y(Y1 (w)-- IIi (v)) *~ 

then for any bounded linear operator A and continuously differentiable real-valued 
function g we have 

~ (  ~ eg(')Ady2(z(t)))=~( ~ eg(t)Adrl(z(t)))*s, 
(a, bl (a, bl 
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provided one (then both) of these integrals exists. 
(b) I f  I11 has also stationary increments and the integral exists then 

2 (  ~ eg(~ p ~ log ~(Yl(1))(eg(~)a*y)dr(t). 
(a, b] (a, b] 

Proof Let a = t o < t l  < ... < t ,=b .  Then, by definition, the integrals on the right- 
hand in (1.6) are approximated, with probability 1, by 

(2.1) ~ (eg(t3)A __ eg(t j -1)A) Y(z(ti_ 1)) 
j = l  

as the width of the partition tends to zero and so are the left-hand integrals 
in (1.6) by 

(2.2) ~, e g(t')A [Y(z(t j))-  Y(z(tj_ 1))]. 
j = l  

This with (1.4) gives 

eg(tJ)A(y2('c(tj))- Y2(z(tj_t))) = ~  eg('~)A(yl(z(tj))-- Yl(Z(tj_l))) 
Lj = 1 a L j  = 1 

which completes the proof of the part (a). Similarly, using the approximation 
(2.2) we get 

log 5~[ ~ eg(t)AdYx(z(t)) ] (y)=lim ~ (z(tj)--z(tj_l))log c2(yl(1))(eg(t~)A*y), 
n j = l  (a, b] 

which implies the part (b) and completes the proof. 

Remark 2.1. In the sequel we will have integrals over the interval (0, 1] with 
g(t)=log t, which is not defined at zero. However, the integral in the right-hand 
side of (1.6) still exists as a limit of sums (2.1). Note that since tQ-o0, there 
exists constants a, b > 0  such that lit - 1  QtoH < I[QI[ atb-1 for 0 < t < l .  Also, cf. 
Remark 1.1 in Jurek (1982b). 

3. Proofs 

The Proof of Theorem 1.1. Let #e~p(Q), and choose 1 < k, < n such that k,/n-~ c, 
where c is a fixed number from the unit interval (0, 1). Then, for p, given by 
(1.7) we get 

p .  = ( k . / n ) e  ~ , ( k . / . ) ,  ~'k. * n-e(vk,+ t *.. .  * v,)*" ~ 

using (1.3) and (1.4). Since pn~/~, Lemma 2.1 gives that the first factor converges 
to ce# *c" and consequently the second one converges, say to t~ceID which 
gives (1.8). 
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Conversely, let #~ID and satisfy (1.8). Let us put vt :=# and 

v._Va,,,k~ for k >2 .  k " - - ' ~  l ~ ( k  - 1 ) / k  

Using (1.8) for c=(k-1)/k with k > 2  we get 

and hence 
/c a # = ( k -  I) a Ct *((k- ~)/k)z, k a #(k- ~)/k 

k a #,as = ( k -  1) Q #,(k- 1)~, va ,,,k~ tv  P C ( k -  1 ) / k "  

Consequently, we have 

~k (Y) = [( ka #) A (y)]k~/[(( k_  1)a #) A (y)](k- t)~, for k = 2. 

which implies 

v x , V z , . . . , v , = n a #  *"~, i.e., /~e~(Q) .  

The Proof of Corollary 1.I. (a) The semigroup property follows from (1.8) using 
(1,3) and (1.4). Let #n~qtp(Q) and #,=>#. Then there are #c,,~ID for n ~ N  and 
0 < c < 1 such that 

#, = c a #.c~ . Pc, ~. 

Since # , ~ # ~ I D  then cap*c~ca#  *~ and therefore #c , ,~#c  (as n ~ )  for 
some #~e ID, as ft, :# 0. Consequently, # ~ ~r ((2)- 

(b) For  ~ < fl and 0 < c < 1 we have c tJ < cL Hence 

# = cQ #*~ * #c = ca #,c~, #,r 

where # ' :=cOg *(c~ c~)*gc and therefore ~(Q)~_ql~(Q) whenever ~<fl .  The 
equality ~o(Q)=Lo(Q) is a consequence of Theorem 3.1 in [6] applied for a 
group U:={ta:  t>0}  of bounded linear operators on E. 

(c) If AQ=QA then Aca=caA for all c > 0  and the inclusion follows from 
(1.8). If A is invertible then A -1 commutes with Q and A-I~(Q)~_ql~(Q), i.e,, 
% (Q) _ A% (Q) _=_ % (Q). 

(d) Let # =  [a, R, m ]  and pc= [ac, Re, Mc]. Using (1.5) we see that (1.8) is 
equivalent to a=c~5+ac, R=c~(caRca*)+Rc, M=ct~-(caM)+Mc for all 0 < e  
<1.  Hence R>cP(caRc a*) and M>cP.(caM) for all 0 < c < l .  Conversely, if 
R is a Gaussian covariance operator  satisfying the above inequality, then R 
-cP(caRc a*) is also covariance operator. Similarly, if M is a L6vy measure, 
satisfying inequality M>c~.(caM) on E\{0},  then so is M-cB.(caM). Finally, 
for # = [a, R, M] we obtain the factorization (1.8) for all 0 < c < 1. 

(e) Note that for f i>0,  lira t P - l a = 0  and replacing c p by t in Theorem 1.1 
t ~ O  

we have # = t ~ -1 a # ,~ ,  #t for all 0 < t < 1. Thus ~p (Q) = ~gt (fl- 1 Q). 
(f) Suppose that # has non-zero Gaussian part, i.e., (y, Ry )>0  for some 

yeE'. Then from (d) we get cZ+P(y, Ry)<(y ,  Ry) for all 0 < c < l .  Hence we 
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obtain fl > - 2 .  If # has non-zero Poisson part, i.e., M ~ 0, then there is non-zero 
yeE'  such that M({x: I(Y, x)l < 1})>0. From (d) we get for O < c <  1 

O<c  2+z ~ (Y, x)2M(dx)<=c p ~ (Y, cx )2M(dx)  
(x: I<y,x)l < 1} {x: liy, cx) l<l}  

< ~ (y, x )  2 M(dx)< oo, 
{x: I ( y , x ) l <  1} 

which implies fl > - 2. 

Proof of Theorem 1.2 (a). Because of Corollary 1.1 (e) we could restrict ourselves 
to the class q/l(Q) instead of q/#(Q). Since it does not simplify the proof we 
consider the general case. For  z~(t):=t ~, with fl>O, the integral ~ tOdY(z~(t)) 

CO, i )  

exists for all De[-0, 1]-valued rv's Y because of Lemma 14.1 in Billingsley (1968) 
and Remark 2.1. Furthermore, using Lemma 2.2(a), we have 

~q~( ~ t~ ~ tqdY(z~(t)))*5~ ~ tQdY(z~(t))) 
(0, 1) (O,c) [c, 1) 

=cQ2~( ~ sedY(zB(s)))*r 2 ' (  ~ tedy(z~(t))) 
(0, 1) [c, 1) 

for all O < c <  1, i.e., #=A~  ~ tedY(za(t)))eqzp(Q). 
(o, 1) 

Conversely, let #eq/~(Q). Then, by Theorem 1.1, 

(3.1) #=e-t(2#*e-t~t*#t , for all t>O.  

Applying Lemma 2.1 with the fact that / ;  + 0 we obtain 

(3.2) #t=>5(0) as t ~ 0  and #t=># as t - ~ .  

Let (Z~)t~o be E-valued random function with independent increments such 
that Zo = 0 a.s. and 

(3.3) ~ ( 2 , + h - - Z 0 : = e - t e # ~  e-~t, for t, h > 0 ,  

so in particular, 

(3.4) ~ (2h)  '=#h- 

TO see the consistency, we must show that ~%a(Z~+h)=#t+h, if Z t + h - Z t  and 
Zt are independent with the distributions given by (3.3) and (3.4). From (3.1) 
it follows that for t, s > 0 

# = e-(t+~)e #*~-~"+~) * #t+~ = e-~e( e - ' e  #.e-BS * #s),e- ~t * #t 
, e -  ~t 

= e - ( t + s ) Q f l * e - ~ ( ~ + ~ ) * e - t Q f l s  * f i t  
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and consequently 

Hence 
#t + ~ = e- tO #s#e-/~t * #t" 

~ ' ( 2 , +  ~) = ~e (2 ,  + ~ -  2,)  �9 ~e (2,) 

= e-tO # ~ -  ~ * #~ = # t + h  

as was to be proved. Finally as in Application A1.2 in Jurek-Vervaat (1983) 
we conclude that there exists a DE[-0, co)-valued rv Z with the same finite- 
dimensional distributions as a random function 2, thus with independent incre- 
ments and 

(3.5) ~(Z(t ) )  =#t  for t>O. 

Furthermore, from (3.3) we get 

(3.6) 5~ ~ [e h~ (Z (w + h)-- Z (v + h)~ = e-  ~o (#~_,),~- ~ + ~ =  (e- ~Q(#,~_ ~)*~- ~')*~ ~ 

= ~ ( Z ( w ) _  Z(v) )*e  ~,, 

for O < v < w  and O<v+h. 
Let us define 

(3.7) ~'(t).'= ~ eSQdZ(s), for t=>0. 
(o, tl 

Then Y is a D~[0, ~)-valued rv with independent increments as so is Z. More- 
over, i f 0 < s < t  and s+h>O then from (3.6) and Lemma 2.2(a) we obtain 

(3.8) ~-cP(~'(t + h ) -  Y(s+h))=5~( ~ eWQehOdZ(w+h)) 
(s ,  tl 

= S (  ~ e~QdZ(w))*~-~=Sf (Y( t ) -  Y(s)) *~-~. 
(s ,  t] 

Furthermore let us define I11 (t) := - ~ ( -  fi- 1 log t) for 0 < t =< 1. Then Y1 has 
independent increments and from (3.8) we obtain 

(3.9) 2 z  ( y l  (c t) - Y1 (c s)) = ~ e  (y~ (t) - Y1 (s)) *c 

for s, t, cs and ct from (0, 1]. Hence we get 

/ n - 1  \ 

=,~(YI(1)-- Y1(2-1)) *(z-'+---+2 "+ ' )~Sa  (YI(1)-- Vl(2-~))=L,e ( - Y~(2-*)) 

as n ~ m. Therefore, by independent increments property, I11(2-1)_ Y1(2-') is 
convergent in probability. Thus so is {Ya(2-")} and denote its limit by {. (In 
fact, {=2Y1(2-1)). For a > 0  and k e n  such that 2 - k a < l  the equality (3.9) 
implies 

~(Y1 (2-n-k) -- Y, (2 -" -k a))= ~(Ya (2 -k)_ ya (2-k a)).2 -- ~ .  6o ' 
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as n ~ or. Consequently, I11 (2-"-k) - YI ( 2 -" -k  a) ~ 0 in probability and therefore 
also 

(3.10) II1 (2-" a) ~ ~ in probability, for each a > 0. 

Since by (3.9), 5O(Y,(t)-  YI(2-"t)=SO(Y~(1)-  Ya(2-"))*t=5o( - Y1(2-")) *t from 
(3.10) we infer that 5O (Y1 (t) - 3) = 5 ~ ( - ~)*~ for 0 < t < 1. Since for 0 < s < t < 1 

r~ (t) - ~ = ( r~  (t) - y~ (s)) + ( r ,  (s) - ~) 

is a sum of two independent variables we get 5O(YI(t)-YI(s))=SO(-~) *(~-s), 
i.e., Y1 has stationary increments. Finally, letting Y(0).'=0 and Y(t):=Y~(t)-~) 
for 0 < t < 1 we get DE [0, 1J-valued rv with stationary independent increments. 

To conclude the proof  note that, by definitions of Y,, YI and Y we have 

Z( t )=  S e-~adY(s)= - ~ e-SQdYl(e-e~)= - ~ e-~~ -e~) 
(o, t] (o, t] (o, t] 

and by (3.2) and (3.5) 

# = l i m 5 o ( Z ( t ) ) = s o ( -  S e-SQdY(e-~))=5o(  ~ tQdY(zr 
t ~ co (0, co) (0, 1) 

which completes the proof of the part (a) of Theorem 1.2. 

Proof of  Theorem 1.2 (b). Since q/o (Q)= L0 (Q), from Jurek (1982b) we have 

peSo(Q)  i f f /~=5o(  ~ e-tQdY(t))=so(  - S s a d Y ( - l n s ) )  , 
(o, co) (o, 1) 

where Y is a Dr[0, oe)-valued rv with independent and stationary increments 
such that E log (1 + [[ Y(1)[[)< oe and Y(0)= 0 a.s. Finally, taking A . ' = - I  in (c) 
of the Corollary 1.1 we conclude the proof of the part (b) of Theorem 1.2. 

Proof of  Theorem 1.3(a). For fixed y~E' let us put 

gy(s)..=log (JPe(v)) ^ (sa*y) for s > 0 .  

Then from Lemma 2.2 (b) we obtain 

gy(s) =/3s -~ i log ~(r e* y) r ~- 1 dr 
0 

and hence 

dgy(s) = - fl log ( J~  (v))/' (y) +/3 log O (y) 
ds s = l  

Consequently 

and this implies that J ~  is one-to-one. From Theorem 1.2(a) we have that j a 
maps onto ogp(Q). Let vl, vz~ID and Y1, Y2 are independent DE[0, 1J-valued 
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rv's with stationary independent increments such that Yj(0)= I12(0)=0 a.s. and 
~~ vj for j =  1, 2. Then 

~(v l ) . J~2(v2)=~( '  [ j" tOdYl(zr ~ todY2(z~(t))] 
(o, 1) (o, l )  

= ~ [  [. tQd((Yl + Y2)(z~(t)))]=J~(va*v2), 
(0, 1) 

which shows that J~2 is a homomorphism. It remains to establish the continuity 
of J ~  and its inverse. Suppose v,, v ~ID and v , ~  v. Let us choose DE [0, 1]-valued 
rv's Y,,, and Y with stationary independent increments such that 

Y.(0)=Y(0)=0 a.s., S(Y.(1))=v. and ~(Y(1))=v.  

Then, by Theorem VI.5.5 of Gihman and Skorohod (1974), we obtain 
~(Y,)=~5~ in D~[0, 1]. Since the functional 

1 1 

r  ~ tO dy(z~(t)),=y(1) - ~ d(t Q) y(~p(t)), 
0 0 

yeDE[O, 1], 

is continuous in the Skorohod topology (cf. Billingsley (1968), p. 121), the Contin- 
uous Mapping Theorem (cf. Billingsley (1968), Theorem 5.1) gives 

~r (v.) = 2z (4) (y~)) ~ ~'~ (~b (Y)) = J ~  (v) 

which shows the continuity of J z  o. Conversely, let J~(v.)=~J~(v), Y., Y be 
DE[0, oo)-valued rv's with stationary independent increments and 5e(Y.(1)=v., 
2z(Y(1))=v. Let us define 

Z,(t).'= ~ sQdY,(z~(s)), Z(t).'= ~ sQdY(~(s)) for t=>O. 
(0, t] (o, t] 

Then, Z, and Z are DE[0, oe)-valued rv's with independent increments 
5~ (Z, (1))~ o~~ Furthermore 

~(Z,(t))=~Lf(t Q ~ sQdY(zp(t) r~(s)))=too,~(Z,(1)) *t~ for t>O, 
(0, 11 

and this with Lemma 2.1 gives 

5r whenever t , ~ t  in ]R +. 

Hence, for t, > s, and t, ~ t, s, --* s we get 

~(Z,(t ,)--Z,(s, ,))~S(Z(t)--Z(s))  as n ~ oe. 

So, the finite-dimensional distributions of Z,  converge to the ones of Z. Finally 
this gives 

lim lim sup sup P{HZn(t)--Z,(s)] I >~} =0  
h$O n ~ o o  O<=s <t<s +h~a  
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for positive a and e. Therefore, Theorem VI.5.5 in Gihman-Skorohod (1974) 
with Lindvall (1973) imply that 5F(Z,)~t '(Z) in D~[0, oo). As before the func- 
tional 

2~/O 

0(z)= ~ t-O-dz(t),=2-r ~ (d(t-Q))z(t), z~D~[O, oo) 
(1,2~/#1 1 

is continuous (in the Skorohod topology) at z if z is continuous at t=  1 and 
2 p- '. Appealing once again to the Continuous Mapping Theorem we obtain 

5f(Y~(1))=SF(Y,(2)-- Y~(1))=~/'( ~ t-OdZn(t))=~(~(Zn)) 
(1, 21/,el 

~ ( O ( Z ) ) = ~ (  ~ t-(2dZ(t))=Z~(Y(1)), 
(1, 2~//~ ] 

which shows the continuity of the inverse of J ~ .  

Proof of Theorem 1.3 (b). The algebraic properties of J g  are proved in Jurek 
(1982b) and the topological ones in Jurek and Rosinski (1985). Let us note 
only that the weak convergence in IDlog has to be strengthened by requirement 
that ~ log (i + llxt[) vn(dx) ~ ~ tog (I + llxl[) v(dx). 

E E 

Proof of Theorem 1.3 (c). Both properties easily follow from the integral repre- 
sentations given in Theorem 1.2. 

Proof of Corollary 1.2. The class ID(E) can be viewed as the smallest closed 
subsemigroup of ~(E) containing all symmetric Gaussian measures and all 
Poissonian measures [x, 0, 26(y)] with x, y~E and 2>0, cf. Araujo and Gin6 
(1980), Theorem 4.7 in Chapter III. Because of the continuity of the mappings 
J ~ ,  fl>0, cf. Theorem 1.3, it is enough to find how the generators of ID are 
transformed by the mappings ,r At. first, let us note that [-0, R, 0]eY/~(Q) 
if and only if (y, Ry)>_fy, e-re, Re-tO, y) for all yeE', all t>0,  where Q1 "=Q 
+(fl/2) I, cf. Corollary 1.1 (d). Hence we get 

<y, Ry> > <y, e -S~ Re -S~ y> = <e-S~ y, Re-SO*~ y> 
> (y,  e -~'+~162 Re -~S+~ y )  >=0, 

for all t, s>0. Thus the functions fr(t).'=(y, e -t~ Re -tQ*, y), t>0,  are monotone 
d 

decreasing, nonnegative and fv(O)=(y, Ry). Consequently, ~(fy(0)--fy(t)) 

d 
=dt (y' (R-e-ta~ Re-tQ]) y)  ~- (y'  e-tQ' (Q1 R +RQ*) e -t~ y) >=0 for all t=>0 

and yeE', which implies that Q~ R+RQ* is nonnegative operator. Conversely, 
if Q1 R + RQ* is nonnegative, then we have 

d t* d 
o<~ (e-'O~ y, (Q~ R + RQ*) e-~e*~ y ) =  - ~ t  <y' e - ~  R~- ~ y ) =  - - ~  f,(t) 
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for yeE' and t>_O. Therefore fy(t) is monotone decreasing which gives <y, Ry)  
>= <y, e- 'Q' R e-t-~] y>, i.e., R > e-tO1 Re-  *a]. So, we have proven that 

R>=e-tq~Re-tQ*~ for t>=0 iff Q1R+RQ*>=O, 

which gives the Gaussian generators from Np, Q. Let a c E \ { 0 }  and 2>0 .  Then 
a = sou for some s > 0 and u~Se as the function ~ o : S o  x (0, oo)--. E\{0} given 
q~Q(z,t):=tQz is a homeomorphism, cf. Jurek (1984), Proposit ion2.  Since 
(2-M)tP)=2.M (B), cf. (1.12), it is enough to find (6(sQu)) (~). Let F 
:={rQz: zeA, r~B}, where Ae~(So)  and B ~ ( 0 ,  ~ )  sQF={rOz: zeA, resB} 
and from (1.12) we get 

1 

(6 (s o u)) ~) (F) = ti ~ 6 (s o u) {r e z: z e A, r e t-  1 B} t ~-1 dt 
0 

1 

=tilA(U ) ~ lt-l~(S ) t ~- '  dt =tis -~ b(u)(A) i 1B(r) r~-~ dr 
0 0 

=ti s-~ ~ i 1A(x) 1B(r)rP-ldr6(u)(dx) 
SQ 0 

=ti s-p ~ i l f (rox)rB-l  dr6(u)(dx) 
SQ 0 

=tis -p f l~(reu)r~-l dr 
0 

= tis- p M~,,(F). 

Since qsQ is a homeomorphism this equality extends to all F e ~ ( E \ { 0 } ) ,  which 
proves (6 (a)) (~) = 2M~,, for some 2, s positive and u eSQ. 

The case ti = 0 one can prove similarly, but we have to strengthen the weak 
topology on IDlog; cf. Theorem 1.3(b). The complete proof is given in Jurek- 
Rosinski (1985). 

Proof of Theorem 1.4. Let # =  [a, R, M]  be Q-stable with an exponent p>0 .  
Then R=p-~(QR+RQ*),  cf. the discussion following (1.14), and using (1.11) 
we obtain 

1 ] d  e R(~)=flp -1 ~te (QR+RQ*) to* t -~:d t=t ip  -x ~ ( t  RtO*):dt 
0 0 

1 

=tip-  1 R-- t ip-  l ~ ta Rta* dz~(t)= tip- 1 R _  tip-1R(~), 
0 

i.e., R (~) = ti/(p + ti)R. Further, since M is of the form (1.15) then (1.12) gives 

M(P)(F)=ti i ~ ; lr((rt)Qx)r-(P+l)drm( dx) tp-l dt 
0 SQ 0 

1 oz 

=ti S S ~ 1F(SQX)s-(V+l)dstP+~-l dtm(dx)=ti/(P+ti)M(F) 
SQ 0 0 
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for all F e ~ ( E \ { 0 } ) .  Consequently, Jf?(#)=#*~/(P+P).6(z), for some zEE, if # 
is Q-stable with an exponent p. 

Conversely, let v = [b, T, N] and J ~ ( v ) =  v'c* 6(z) for some c > 0  and z~E. 
Then (1.11) and (1.12) implies 

1 1 

(3.12) cT---fl[teTte*tP-ldt and c-N(F)=fl~N(t  eF)t~-ldt .  
o o 

Hence we get 

1 1 d 
QT+ TQ*~c-l  fl o~ te(Qr+ TQ*)tQ* t~-l dt=c-~ fl o ~ dt (re Tt e*) t ~ dt 

I 1 } - - c - l f l  T - f l  ~ teTte* tP-l dt =c-~ 8{r-cT}=(l-c)c-~ 8r 
o 

i.e., Tis  a Gaussian covariance operator  of Q-stable measures with the exponent 
(1 - c )  c -  1 8 whenever c < 1. 

To solve the equation for N, let us introduce so-called Q-L~vy spectral func- 
tion L N, as follows 

LN(A ;s):=N{rOu:uEA and r>s} 

where s > 0  and A is a Borel subset of the unit sphere S o. Then from (3.12) 
we get 

oo 

cLN(A; s)=fls ~ ~ LN(A; t")r-(~+l~dr 
$ 

and hence the following differential equation 

d 
CS-d-sLN(A;s)=8(c-1)LN(A;s ) for almost all s > 0 .  

Therefore putting p . .=8 (1 -  c)/c, and ml (A).'=LN(A; 1) we conclude that 

LN(A; s)=ml (A) s -p, 

where m~ is a finite measure on S o and p > 0, i.e., 0 < c < 1. Consequently 

N ( F ) =  ~ ~ lv(tOu)t-(v+~)dtm(du), F e~ (E \{ O } ) ,  
S o 0 

where m,=pml is a finite measure on S o. So, N is a L6vy measure corresponding 
to Q-stable measure with the exponent p = fi(1 -c ) /c .  



Random Integral Representations 489 

4. Comments 

(a) T h e  class q/ t (Q) has  b e e n  e x a m i n e d  in  J u r e k  (1985b).  The  p r o o f  of  T h e o -  
r em  1.2, for f l =  1 is o b t a i n e d  by  a s e q u e n c e  of e q u i v a l e n t  s t a t emen t s ,  cf. [-9], 
T h e o r e m  2.3, a n d  n o n e  of  these  has  a p r o o f  l ike the  p r o o f  of  T h e o r e m  1.2(a). 
I n  the  p a r t i c u l a r  case Q = I,  r e l a t i ons  b e t w e e n  ~'1 (I) a n d  L o (I) were i nves t i ga t ed  
in  J u r e k  (1985a).  E l e m e n t s  f rom qll (I) were  def ined  by  a n  i n e q u a l i t y  i n v o l v i n g  
L6vy m e a s u r e s  a n d  s o m e  n o n l i n e a r  m a p p i n g  (cf. [8] ,  p. 596) a n d  t h e n  cha rac t e r -  
ized as l imi t  d i s t r i bu t i ons .  M o r e o v e r  o n l y  the  c o n t i n u i t y  of  J ~  is e s t ab l i shed  
there.  F ina l l y ,  O ' C o n n o r  (1979) i n t r o d u c e d  a fami ly  of  classes L~ o n  IR. T h e y  
are  de f ined  by  some  m o n o t o n i c i t y  p r o p e r t y  of  the i r  L6vy spec t ra l  func t ions .  
F r o m  his T h e o r e m  1 a n d  o u r  L e m m a  2.2 (ii) we infer  t ha t  his class L~, 0 < ~ < 1, 
co inc ides  wi th  the  class ~//1 _~(I). 

(b) F o r  fi < 0, the in t eg ra l  ~ t Q d Y(za(t)) i nvo lves  who le  t ra jec tor ies  of  Y(s), 
(0, 1) 

for l < s <  o% a n d  ex is tence  of  such  in tegra l s  m a y  d e p e n d  o n  s o m e  m o m e n t  
cond i t i ons .  Th i s  a n d  o t h e r  q u e s t i o n s  are  g o ing  to be  d i scussed  in  a s epa ra t e  
paper .  

Acknowledgement. I would like to thank the referee for comments which helped to clarify the presenta- 
tion of this paper. In particular, he/she has communicated to me the properties of the process Y1 
(in the proof of Theorem 1.2) and much simpler computation than my previous one, leading to 
the formula (3.6). 
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