
Probab. Th. Rel. Fields 77, 271-305 (1988) Probability 
Theory    ,  
�9 Springer-Verlag 1988 

The Central Limit Theorem and the Law 
of Iterated Logarithm for Empirical Processes 
under Local Conditions 

Niels T. Andersen 1,, ,**, Evarist Gin6 2,**, Mina Ossiander 3,,, and 
Zinn 2, ** 
1 Department of Mathematics, University of Aarhus, DK-8000, Aarhus, C, Denmark 
2 Department of Mathematics, Texas A & M University, College Station, TX 77843-3368, USA 
3 Department of Mathematics, University of Washington, Seattle, WA, 98195, USA 

Joel 

Summary. A CLT and a LIL are proved under weak-L 2 Gaussian bracketing 
conditions (weaker than the usual ones). These results have wide applicability 
and in particular provide an improvement of the Jain-Marcus central limit 
theorem for C(S)-valued random variables. 

1. Introduction 

Let (S, 5(,P) be a probability space and let ~ be a set of measurable functions 
on S with an envelope F finite everywhere. If X i, i e N  are the coordinate func- 
tions of (S N, 5 PN, P~<), the empirical measures P, based on P (or on {Xi}) are 

defined as P , = n - 1  ~ 6x,. We say that ~ e C L T ( P )  or that ~- is P-Donsker  
i=1 

if {nl/2(P,-P)},~,= 1 converges "weakly"  in f~(~-)  (precise definitions are given 
below) and that ~ ,~CLIL(P )  (BLIL(P)) if {nl/2(lnln n)- I /2(P, -P)} ,% 1 is a.s. 
a relatively compact (bounded) sequence in (oo(~-). Here CLT stands for the 
central limit theorem and CLIL (BLIL) for the compact (bounded) law of iterated 
logarithm. Since Dudley's (1978) influential article on the central limit theorem 
for empirical measures, a considerable amount  of work has been devoted to 
the problem of determining the classes ~- which are in CLT(P). Gin6 and Zinn 
(1984) and Talagrand (1985) (see also Gin6 and Zinn 1986) gave necessary and 
sufficient conditions, modulo measurability, for Y e C L T ( P )  in terms of the size 
of ~ measured in the Lz(P) and Lr(P,) pseudo-distances, r =  1, 2. However, 
although these random conditions provide significant understanding of the prob- 
lem and are of considerable practical value, it is obviously desirable to have 
sufficient conditions for ~,~eCLT(P) that are not random, i.e., that do not depend 
on P" for n > 1. Two interesting non-random sufficient conditions for Y E CLT (P) 
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already appear in Dudley (1978), who obtained sharp results for classes of sets: 
the Vapnik-Cervonenkis property and the entropy with bracketing condition. 
See e.g., Alexander (1985) for the definitive result on the CLT for Vapnik-Cervon- 
enkis-graph classes of functions (see also Dudley 1984 and Pollard 1982). The 
CLT under metric entropy with bracketing has been considered by Dudley 
(1978 and e.g., 1984), Gin6 and Zinn (1984, 1986) and Ossiander (1985). The 
law of the iterated logarithm has received somewhat less attention in this context; 
see however Alexander (1984), Borisov (1985), Dudley and Kuelbs (1980), and 
Yukich (1986), among others. If the envelope function F of ~ satisfies 
P* F2/L2 F < oo and ~-e CLT(P) then, at least under appropriate measurability, 
~ e C L I L ( P )  (Goodman, Kuelbs and Zinn 1981, Heinkel 1979). But examples 
of Kuelbs (1976) in Co and a result of Ledoux (1982) on the LIL for processes 
with Lipschitzian trajectories show however that there are many interesting 
classes of functions ~ which are uniformly bounded or with P* F 2 < oo satisfying 
the CLIL but not the CLT. 

The object of this article is to present a CLT and an LIL for empirical 
processes under integrability conditions on their local modulus (with respect 
to a Gaussian distance) with a wide scope of applicability and which are sharp 
for some important classes of examples. 

To motivate and explain our results we recall first Ossiander's CLT which 
is the sharpest bracketing CLT for unbounded classes in the literature: Let, 
for e>0, NL~)(e,~-,,P)=min{n: 3u 1, ..., u,, dl . . . . .  d,e~fo(P) such that for each 
f e ~  there are i , j<n  such that d i< f<u j ,  P ( u j - f i ) z < e  2} be the 
L 2 (P)-bracketing number of ~ ;  if 

(1.1) ~ [In NE(zl)(e, ~, P)] 1/2 de< oo 
o 

then J~ e CLT (P). Condition (1.1) implies that P* F 2 < ~ and, if Gp is the limiting 
Gaussian process, that its associated distance dG(f,g):=[E(Ge(f)-Ge(g))2] 1/2 
satisfies the metric entropy condition, ~ [lnN(e,~,d~)]l/Zde<o% where 

o 
N(e, ~,d a):=min{n: 3hl . . . . .  h, such that sup mindG(f, hi)<e } is the covering 

f e3 :  j<=d 

number of ~ by d6. However, neither p ' F 2 <  ~ is necessary for ~ e C L T ( P )  
(although t2P*(F>t)-+O as t - - .~  is) nor is the entropy condition necessary 
for Gp to have a version with bounded dz-uniformly continuous trajectories. 
A statistically significant example of a CLT for empirical processes holding, 
but with these two conditions failing, is the Chibisov-O'Reilly CLT for weighted 
empirical processes. In this paper we improve Ossiander's (1985) result by taking 
balls with respect to a Gaussian distance as "brackets" and by measuring them 
in the weak-L2 pseudo-metric. So, we obtain a CLT and an LIL under what 
we could call a Gaussian weak-L z bracketing condition or a weak-L2 condition 
on the local modulus of { f(X)}y~s with respect to a Gaussian pseudo-metric. 
The results obtained apply in several different situations, among others, the 
invariance principle, the Chibisov-O'Reilly theorem, the CLT and LIL for certain 
c0-valued random variables, an improvement of Ledoux's LIL for Lipschitz 
processes and a significant improvement of the well known Jain and Marcus 
(1975) CLT. Actually, our main result for the i.i.d, case can be thought of as 
an improved Jain-Marcus CLT which also applies to not necessarily sample 
continuous processes: see Theorem 4.4" and Corollary 4.5 below. 
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About the method of proof, first we note that if p is a Gaussian distance 
on ~ (i.e., p corresponds to the L2-distance for a Radon Gaussian measure) 
or is dominated by a Gaussian distance, then a recent important theorem of 
Talagrand implies that p satisfies the (discrete) majorizing measure condition 
(see Sect. 2). This is an analytic condition that allows the use of "chaining" 
very much like metric entropy does. (We learned chaining under the majorizing 
measure condition from M. Talagrand.) Then we handle the "links" of the chain 
by truncation at the largest level possible that can be controlled using pregaus- 
sianness plus Bernstein's inequality and, as in Ossiander (1985), by use of the 
bracketing condition in the remainder, after summation by parts (see Sect. 3). 
The main differences from the method in Ossiander (1985) is that the chaining 
here must be done simultaneously for the L2-distance and for the bracketing 
and, more significantly, that the non-uniformity of majorizing measures requires 
the use of a new inequality: an exponential bound for sums of positive random 
variables truncated away from 0 and from oo which may be of independent 
interest (Lemma 2.16 below). In the LIL we combine these techniques with 
techniques developed in the separable, measurable case by Kuelbs and Zinn 
(1979) and by Goodman, Kuelbs and Zinn (1981). A new important characteriza- 
tion of LIL in Banach spaces of Ledoux and Talagrand (to appear) will simplify 
our proof, however one may not be able to apply their result without further 
measurability requirements. 

In Sect. 2 we present all the "lemmas", old and new, needed to prove our 
results; in particular, some elementary but useful results on majorizing measures, 
the theorems of Fernique and Talagrand on Gaussian processes, the usual even- 
tual equicontinuity conditions for the CLT and the LIL in a version adapted 
to our needs, and the above-mentioned exponential bound for sums of non- 
negative random variables. In Sect. 3 we isolate the main argument of our proofs 
in the form of an inequality to be applied both in the CLT and in the LIL. 
In Sect. 4 we obtain the CLT, Gaussian convergence, both for i.i.d, and for 
non i.i.d, random variables. Donsker's invariance principle is an immediate con- 
sequence of the result for triangular arrays and the i.i.d, case is illustrated by 
the examples already mentioned. Finally, Sect. 5 contains the LIL with applica- 
tions to some interesting Co-valued random variables and to Ledoux's LIL in 
C(S). 

Techniques similar to those in this paper also apply to the CLT with limits 
other than Gaussian, like e.g., stable (slightly generalizing the CLT's of Marcus 
and Pisier 1984) and degenerate (Marcinkiewicz type weak and strong laws 
of large numbers): see Andersen et al. (in preparation). 

Here is the notation not explained in the main text: for all f, g ~ , ,  

Pf..= SfdP = Ef(X) if ~(X) = P; 

ep(fg):=[P(f-g)2] 1/2, p e ( f g ) = e p ( f - P f g - P g ) ;  

A2 e. o. (f)"= [sup t 2 P {Ifl > t}] 1/2; 
t > O  

da(f g):= [E(G (f)-- G(g)) 2] 1/2 

where G is a centered Gaussian process indexed by i f ;  
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Pr*, P*, P,*, etc., denote outer probabilities and expectations; 

IIh(f)Ll~=sup Ih(f)[ for any function h on ~ .  
f e o ~  

Regarding measurability, all of our random elements are defined on product 
spaces of the form (f2, Z, Pr) = (S N, 5er~, p~) x ([0, 11, ~ ,  2) where 2 is Lebesgue 
measure on the Borel sets ~ of [0, 11, and depend on the coordinates of S N 
sometimes multiplied by random variables defined on ([0, 11, ~ ,  2), usually Rade- 

macher e.g., ~ ~i 8x, �9 We recall that a Rademacher sequence {ei} is a sequence 
i = l  I 

of i.i.d, random variables such that Pr(~i=l)=Pr(ei=-1)= 1/2. In particular 
if F: S-MR is not necessarily measurable and X is a coordinate function of 
S N, then it is "perfect" on (f2, Z, Pr) and therefore F*(X)=F(X)* a.s., where 
F* is the P-outer envelope of F and F(X)* is the Pr-outer envelope of F(X), 
hence we will have e.g., Pr* {F(X)> a} = P{F* (s)> a} (see e.g., Andersen [19851, 
Theorem 2.2 and Propositions 3.1 and 2.6). This applies also in the non-i.i.d. 
situation where P• is replaced by a product of different probability measures. 
In fact the use of product space is not strictly necessary: perfect random elements 
suffice. We also use two exponential inequalities without further reference. One 
is Bernstein's inequality (e.g., Bennett 1962): if ~i are independent, centered and 
uniformly bounded by c, then 

n n 

(1.2) P{~=l~i>t}<=exp{--t2/(2~=iE~,-J-~tc)}. 
The other one is an inequality for binomial probabilities (Gin6 and Zinn 1984)" 
if PA i= p j, j = 1, ..., n, and the Aj are independent sets then 

(1.3) P {j~=Il AJ >=f} <(ej~=lPJ/f )e 

for all n. (Actually, modulo constants, both inequalities are contained in Prohor- 
ov's inequality.) 

2. Some Basic Preliminaries 

(a) Gaussian Processes and Majorizing Measures 

Let (T, d) be a pseudometric space. A Borel (sub-)probability measure /* on 
(T, d) is a majorizing measure for (T, d) (Fernique 1974) if 

(2.1) sup ~ [In(/, {(Be(t, e)})- 111/2 de < oo 
t ~ T  0 
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where Bd(t ,e)={seT: d(s,t)<e}. A (sub-)probability measure # is a discrete 
majorizing measure if there exists a (countable) set S e T ,  S = { ~ q t  tET, qeN},  
which supports # and satisfies 

(2.2) 
(i) d(t,~qt)<=2 -q, teT, q e N  

(ii) sup ~, 2 -q [ln (# {T% t})- 2] 1/2 < c~. 
t E T  q= l  

We present some properties of majorizing measures before describing their 
relationship to Gaussian processes. Lemma 2.1 is embedded in Talagrand's 
results (1986); here is a direct proof. 

2.l. Lemma. If(T,  d) has a majorizing measure, then it also has a discrete majorizing 
measure. I f  the majorizing measure v satisfies 

6 

(2.3) lira sup S ln(v {Bd(t, e)})- ~] 1/2 dE = 0 
6 ~ 0  t e T  0 

then the discrete majorizing measure # can be chosen to satisfy 

(2.4) lim sup ~ 2-q[ln(p{nqt})- l] l /2=O. 
k ~ c ~  t ~ T  q = k  

Proof. Fix qeN.  Let {t~}r= 1 ~ T be a finite set such that sup inf d(t, ti) < 2 q- 3. 
t e T  i<_r 

(Note that the existence of a majorizing measure v implies that (T, d) is totally 
s 0o such that v{Ba(si, e)}~O, thus bounded: otherwise there exist e > 0  and { i}i=~ 

contradicting (2.1).) We may assume that v {B(ti, 2-q-2)} decreases in i by reor- 
dering if necessary. Define disjoint sets { T/}~= 1 inductively as 

T~ =B(tD 2 -q-  2) 

[0 if v B(ti,2 -q-2 U TJ~ < 2 - 1  �9 = v {B(ti, 2-q-  2)} 

g / ~  { t \ t  1 j 1 ) 

L B(ti, 2 - q - 2 ) \  ~ T~ otherwise 
~ j = l  

for i < r. Define a subprobability measure #q with support {ti: T~ + 0} by 

#q{ti}=v(Ti}>=2-~v{B(ti,2-q-2)}, Ti*O. 

For each t E T  define ~qt in the following way: if {t i" d(t, ti)=<2 -q-3, T/#:0} :~0 
let ~qt be one of these ti. Then d(t, ~qt )<2-q  and 

#q {~Zq t} - #q {ti} ~ 2-* v {B(t i, 2 q- 2)} >= 2-2 v {B(t, 2 -q-  3)}. 

Otherwise, if ti is such that d(t, tl)<_<_2-q-3 (hence Ti=0), there is j < i  such that 
Tjc~B(ti, 2 - q - 2 ) ~ 0 ;  define nqt to be tj for one of thesej. Then 

d(t,~qt)<=d(t, t,)+d(tl, t~)=<2 - q - 3 + 2 -  2 - q - 2 < 2  q 
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and 
#q { ~q t) =/2q { ty} > 2-1 V {B (t2, 2 -q-  2)} 

> 2 -1 v {B(t~, 2 -q-  2)} > 2- '  v {B(t, 2 -q- 3)}. 

We claim that the measure # =  ~ 2 -q #q is a discrete majorizing measure, and 
q = l  

it satisfies (2.4) if v satisfies (2.3). The claim follows from the fact that for all 
te  T and all k e n  

2-q [-in (# {=q t})- 1] 1/2 ~( i 2-q [In (2 -q #q {~zq t})- 1] 1/2 
q=k q=k 

~ 2-q [ln(2 �9 {Tzq t}) -a +ln2q+ 1] 1/2 
q=k 

<= ~ 2-q[ln(v{B(t, 2-q-a)})-a]l/2+ ~ 2-q[ln2q+l]  1/2. [] 
q=k q=k 

2.2. Remarks. 1. It is obvious from the last part of the proof that there exists 
a discrete majorizing measure # on {nqt: teT, qeN} if and only if there exist 
(sub-)probability measures/,q on {rtq t: te  T}, qeN,  such that 

(2.2) (ii)' sup ~ 2 -q [ln(# e {re e t})- 1],/2 < oo 
tET q = l  

and that furthermore, there exists a discrete majorizing measure satisfying (2.4) 
if and only if there exist (sub-)probability measures #q o n  {lrqt" teT}, qeN, 
such that 

(2.4)' lim sup ~ 2-q[ln(t~q{Tzqt})-l]l/2=O. 
k~oo t~T q=k 

2. It is obvious that (2.2)(ii), (ii)', (2.4) and (2.4)' hold if and only if they hold 
with (pq {Tcq t}) -1 replaced by 2q/#q {rc~ t} in the logarithmic part. 

3. It may conceivably be useful to have {nq t) satisfying particular properties. 
It is not hard to prove (e.g., with a proof similar to that of Lemma 2.1) that 
if a discrete majorizing measure # exists on (T, d) then there exists a possibly 
different majorizing measure fi on (T, d) with support on a set S =  {~qt} ~ T 
such that 

(i) d(t,'ffqt)<=2 -q, teT, qeN, 
(ii) d(~qt,'~qs)>2 -q if ~qt4=~qs, t, seT, qeN, 

(iii) ~q is the identity on ffq_ I(T), q e N .  

One can also choose {ffq} to satisfy 

( i i) '  7~qOT~r=~q, l <=q<_r, reN 
instead of (ii). (Andersen 1986.) 
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4. It is well known (Fernique 1974; Preston 1972) that if (T,d) satisfies the 
metric entropy condition ~ I-in N(e, T, d)] 1/z de < oo (see e.g., Dudley [-1978] for 

o 
the definition) then (T, d) admits a discrete majorizing measure which verifies 
(2.4), but the converse does not hold. 

5. In Lemma 2.1 we use the function ]-lnx-r]  1/2, but the statement holds for 
all decreasing functions qS: IR+-,IR+ satisfying ~qS(x)dx<oo and 
q~ (x + y) < ~b (x) + ~b (y) for all x, y ~IR +. o 

The following is a simple but important observation of Talagrand (private 
communication) which allows the use of discrete majorizing measure in "chain- 
ing" arguments as efficiently as metric entropy. 

2.3. Lemma. (A) For every q E N  let S q c T  be a countable (or finite) subset 
of T and let #q be a (sub-)probability measure on Sq. Define on Sq 

To(S) = [ln(2q/l~q {s})] l/2, S~Sq. 

Then for r > 1 
Z e x p ( -  r 7q(S) 2) < 2-qL 

$~Sq 

(B) The following are equivalent for (T, d): 

(i) there exists a discrete majorizing measure t~ on (T, d); 
(ii) there exist S={rcot: q~lN, t~T}  satisfying (2.2)(i) and strictly positive 

functions 7q on Sq = {rCq t: t~ T} such that 

(a) sup ~ 2-  q 7q (nq t) < oo, 
t~T q = l  

(b) lira ~ ~ e x p ( - r y q ( s ) e ) = o .  
r ~ o o  q = l  s~Sq 

Moreover, condition (2.4) for I~ is equivalent to 

(a') lim sup ~ 2-qTq(Trqt)=O. 
k~oo t~T q=k 

Proof (A) Just note that since ktq is a sub-probability 

2 exp{- rTg(s )}=  2 (#q{S}y<-2-qL 
s~S o seS~ \ 2q ] -  

(B) (ii)~(i). Take r such that ~ exp(-ryq(S)2)<= 1 for all q~]N. Then t~q{s} 
s~Sq 

�9 "=exp (-- r 7q (s)2), s e Sq, q E IN, defines a family of subprobability measures satisfy- 
ing (2,2) (fly ((2.4)' if (a') holds). 

(i) ~ (ii) Take 7q (s) = [ln (2- q # {s})- 1] 1/2, s ~ Sq. Then (ii) (a) obviously holds 
and (ii)(b) follows from (A). [] 

Actually o u r  7q'S will depend on 1r r t, r < q, but the same argument applies 
to give: 



278 N.T. Andersen eta[. 

2.4. Lemma. Let I~ be a discrete majorizing measure for (T,, d) with support {nq t: 
q e N ,  t~ T}. Let 

r h e ~ /  

(i) sup ~ 2-qffq(t)<oo 
t e T  q = l  

and 

(ii) l im E e-~%(t)2 = 0 

where the sum extends over all the distinct (q + 1)-tuples 

(q, n l t  . . . . .  7~qt) t e r ,  q > l .  

I f  moreover # satisfies (2.4) then also 

(i)' lim sup ~ 2-  q ~ (t) = 0. 
k~oo  t ~ T  q=k  

q) 
Proof. Let yq(S), qEN,  seSq be as in Lemma 2.3. Since p x ... x # is a subprob- q) 
ability measure on T x ... x T, the counting argument of Lemma 2.3 applies 
to give (ii). Proving (i) from (2.2)(ii) is similar (easier) to prove than the limiting 
version of (i) from (2.4), so we check only this last implication. Assume (2.4) 
holds. Then 

bk,=SU p ~ 2-qyq(TCqt)--*O a s  k-~oe 
t ~ T  q = k  

and 

c~:=supT~(nrt)<=b,2~ < oc. 
tET  

Since q 

~L(t)__< ~ ~,~(~t), 
r = l  

we have, for any ro<k and any t ~ T  

2-qTq(t) < ~ Y,(nr t) 2 -q 
q = k  r = l  q = r v k  

r 0 k -  1 

__2. 2-'~r(~rt)+2-k+~ETr(~rt)+2-y~ 2-r~r(~t) 
r=k  r = l  r = r o + l  

____<2bk+2-k+ 1 ro max cr + 2b~o+ 1" 
r=<ro 

So, taking limits first as k--,oe and then as ro-~Oe, we obtain (i)'. [] 

As mentioned in the introduction sample continuity and sample boundedness 
of Gaussian processes are characterized in terms of majorizing measures. The 
sufficiency part of the following theorem is due to Fernique (1974) (see also 
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the earlier work of Preston 1972). Necessity was proved by Fernique (1974) 
for stationary Gaussian processes, and in general by Talagrand (1986) (actually, 
Fernique proves that the entropy condition is necessary in the stationary case). 

2.5. Theorem. Let G= {G(t)}~ T be a centered Gaussian process on a set T. Assume 
G is separable in (T, dG). We then have: 

(i) If (T, de) admits a majorizing measure, then G has bounded sample paths 
a.s.; if moreover the majorizing measure satisfies (2.3), then G has bounded and 
dG-uniformly continuous sample paths a.s. 

(ii) I f  G has bounded sample paths a.s. then (T, d~) admits a discrete majorizing 
measure. I f  G has bounded and de-uniformly continuous sample paths a.s. then 
the discrete majorizing measure can be chosen to satisfy (2.4). 

2.6. Remark. As a first example of chaining with a discrete majorizing measure, 
illustrative of what follows, here is a proof of the boundedness part of statement 
(i) in Theorem 2.5, along Talagrand's ideas. If a majorizing measure for (T, dG) 
exists, then there exists a discrete one by Lemma 2.1. Let Tq={(%t,~q_lt): 
t~T}  and for seTq let sq and sq-1 denote its components. Note that (E(G(sq) 

_'1 l/2 
- -  G(sq_ 1))2) 1/2 < 3-2 -q. Note also that if ~q(t) = In--  which 

= #{7cqt}#{=q_lt}] ' 

depends only on s=(~qt,~q_lt) ,  then ~ ~ exp(-r~Tq(s)2)= < ~ 2-qr, as 
q=qo+l  5~Tq q=qo+ 1 

in Lemma 2.3 (A). Finally set flqo = sup ~ 2-q ~Tq(s), which is finite by hypothe- 
t ~ T  q=qo+l  

sis. We then have, for any qoEN and u>0,  

P { s u p [ G ( t ) - a ( % o t ) l > u } = P  sup ~ (G(~qt ) -G(%_l  u 
tE T  ~ . teT  Iq=qo+ 1 

_< Z P sup &o 
- - q = q o + l  L$cTq 

~ u22--~2qJq(s)2/f12~ ~ 2-q"~/18'~o. 
< E E exp 1 8 - 2  - 2 q  J=q=qo+l q=qo+ 1 s~Tq t.. 

Now, sample boundedness of G follows from the fact that ~ {~Zqo t: t~ T} < or. 
The above results will be useful mainly for the CLT. Now we give a lemma 

on majorizing measures specific to the LIL. We write Lx==l v l n x  and LkX 

:=L .k.). Lx,  k e N .  

2.7. Lemma. Let (T, d) be a pseudometric space. Then the following are equivalent: 
(i) There exists a (sub-)probability measure # on (7; d) such that 

oo 

sup I [(in (# {Bd(t, e)})- 1)/(L 2 ln(fl {Bd(t, e)})- 1)] 1/2 de < oo 
tET  0 

( i ) and lim sup [(ln (# {Bd (t, e)})- 1)/(L 2 in (# {Bd (t, e)})-a)]l/2 d e = 0 . 
6 ~ 0  t e T  
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(ii) There exists a countable subset S = {nq t: t ~ T, q e N} c T and a (sub-)prob- 
ability measure # on S such that 

(a) d(t, nqt)<=2 -q, t~T, q~N,  

(b) sup ~ 2 -q (L q)- 1/2 [ln(fl {nq t})- 1] 1/2 < oo 
t e T  q = l  

(and lira sup ~2-q(Lq)-l/Z[ln(#{nqt})-l]l /2=O). 
k~oo  t e T  q=k  

(iii) There exist {nq t} satisfying (iia) such that the Gaussian process 

Z( t )=  ~ 2-q(Lq)-l/2gq,=qt, t~T, 
q = l  

where {gq, t: q e N ,  t~S} are i.i.d. N(O, 1), has a version with bounded (and 
dz-uniformly continuous) sample paths. 

(iv) There exists a centered Gaussian process G on T with bounded sample 
paths such that 

d < da [L 2 d~ 1] 1/2 

(G has also d~-uniformly continuous sample paths). 

Proof (i)=>(ii). The proof of Lemma 2.1 will give us (ii) with L21nl~({nqt}) -1 
instead of Lq  in (b) (see Remark 2.2 (5)). Now using that 
2-2q(L 21n(#{%t} ) - l ) -* ( ln (#{%t} ) - l ) i s  uniformly bounded in q and t one 
can show that there exists c<oo ,  not depending on t or q, such that 
L2 lnq(# {nq t})- 1 < c. L q. Hence we get (b) as stated. 

(ii)==> (iii). We give only the proof of boundedness since the proof of continuity 
rests on the same principles (see e.g., Gin8 and Zinn [1986] Theorem 3.1.2): 
Let ?q(t) = [ln(2q/# {% t})'l 1/2 and 

f l=sup  ~ 2-q(Lq)-l/2?q(t)< c~. 
t e T  q = l  

Then 

Pr {sup Z (t) > M} 
t e T  

{ ~. ( q )  gq,~t(oo ))-1 } 
< P r  surp 2 - q L  -1/2 ~12-q(Lq)-1/2?q(t > M f l - t  

q = l  q 

< ~ Pr {suplgq, ,~t[ Tq(t) - 1  > M fl- 1} 
q= 1 tET  

< ~ ~exp(--2-1M2fl-2?q(S)2)--*O as M ~  
q = l  sc.Sq 

by Lemma 2.3 (A). 

(iii)=~(iv). Let Z be the Gaussian process in (iii). If 2-q-l(L(q+l))  -1/2 
< dz (s, t) < 2- q (L q)- 1/2 then n r (s) = rcr (t) for all r < q. Hence 
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d(s, t)_-<2 -q+ 1 -<4- dz(s, t). (L(q+ 1)) ~/2 

< 8 (L q)1/2 dz(s ' t) 

_< 8 (L 2 (d z (s, t)- 1)1/2 dz (s, t). 

Therefore a suitable multiple G of Z satisfies d< dG(L2 d~ 1)1/2. 

(iv)=~(i). Let ~b (t)= t(L2 t-1)1/2, and let G be as in (iv). Put Bo(t , e)= {s t  T: 
p(s,t)<e} for p=d, d G and e>0.  Then Bd(t,e)~Be~(t4)-l(e)) for all e > 0  and 
all t~ T. Hence if # is a majorizing measure for G, which exists by Talagrand's 
Theorem 2.5 (ii), and if we let 

zp(s, t),=zp(e):=ln(l~{Bp(t, e)})- i for p =d,  d~, 

and a =  diam(T, dG), then 

[za ( e ) / L 2  "ca (8) ]1 /2  d 8 ~ [27d G ((~) - 1 ,f,)/L 2 .Cd G (q~ - 1 8)]  1/2 d 
0 0 

< i [za~ (u)/L2 zaG (u)] 1/2. (L2 u - x) 1/2 d u 
0 

~ i  1/21 S u-1/2dH = (veG(u)) E~d~(,)>,- lldu + 
0 0 

~ ~ (Tdc~(U)) 1/2 du + 2a 1/z. 
o 

0o 

Hence, since sup ~ (z~ (u, t))l/2d u < oe if G has bounded sample paths, we obtain 
t~T 0 

(i) in this case (if moreover the sample paths of G are d~ uniformly continuous, 
0 

the same computations together with lim sup ~ (zda(u, t)) a/2 du=O, also give the 
~ 0  t~T 0 

parenthetical statement in (i)). 

(b) The Central Limit Theorem 

Let (S, 5 ~) be a measure space. Let {P , / j  = 1, ..., n, heN} be probability measures 
on (S, 5~) and let ~ ~ 5 ~ ( S ,  ~P,s) such that 

n,j 

(2.5) sup If(s)[ < oe for all s~S. 
f ~ N  

Let also (f2,, Z., Pr,) =(S',  5 p", P,,i |174 x ([0, 1], ~ ,  2), let X,s: f2,--*S be the 
coordinate projections and let {a,} be a sequence of real positive numbers. 
Then: 
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2.8. Definition. Y satisfies the CLT with centering at expectations with respect 
to {P,j} and {a .}-  o~ ~ CLT {P,j; an} for short - i f  there exists a (centered) Radon 
measure 7 on Y~(~) such that for all H: E~(~)-~IR bounded and continuous, 

E* H(a~ l ~ (~Sx,j-- P,j)),~ooS H d7 �9 
j = l  

(With some extra care we could define CLT with the usual centering at 
expectations of truncations, but this definition is enough for our purposes in 
this paper.) 

The following theorem combines finite dimensional approximations and ran- 
domization. (We only state the "sufficiency" half of it, but a "necessity" part, 
in similar terms, can also be proved.) Finite dimensional approximation in the 
CLT in infinite dimensions goes back, in a sense, to Prohorov, and more specifi- 
cally, to de Acosta, Pisier and Dudley and Phillip; Jain and Marcus introduced 
randomization in the present setting, and Andersen and Dobri6 showed that 
distances other than L 2 may be considered. 

2.9. Theorem. Let Y c ( ~ I ( S ,  5(,P,j) and satisfy (2.5). Assume that for all 
n,j 

t" u n 

k I. j = l  

-P~j fi converge weakly in I1 k. Assume further that there are maps ~q: 
i = l  n = l  

~ ,  g~N, such that 
(i) ~ {~q f :  f e ~ }  < o9 for all qeN,  

and for all e > O, with {ei} a Rademacher sequence defined on ([0, 1], N, 2), 

(ii) lira lim sup P a~- ej ( f -  nq f )  (X.j) = 0 
q ---~ 00 n 

and 

(iii) lim lim sup sup Pr,* a n  
q~o~ n fe~. e~ L 

Then ~ C L T  {P,j, an}. 

1 ~ [ ( f _  ~q f ) ( X . j ) -  P . j ( f -  nq f ) ]  > e} = O. 
j = l  

Proof (Sketch). By (iii) and the symmetrization argument in Lemma 2.7 (b) of 
Gin6 and Zinn (1984) (using probabilities instead of second moments) it follows 
from (ii) that 

Now, this implies an "asymptotic equicontinuity condition" for the pseudo- 
distance p ( f  g)=2 -mln(q:~"f*~qg} and obviously (~*p) is totally bounded. From 
this point on the proof is completely analogous to that of Theorem 1.1.3 in 
Gin6 and Zinn (1986), (ii)=>(i). [] 

A better statement of Theorem 2.9 has (ii)' as a hypothesis instead of (ii) 
and (iii) (note that (iii) is only used as a centering condition). But the random 
elements ei f(Xi) are easier to handle than f ( X i ) -  P f, particularly if truncation 
and recentering is required. 
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Next we recall some known facts and notation about the "1 /~- i . i .d . "  case, 
that will be used without further mention. If P,j = P and a, = n l/% then the limit 
7 is Gaussian and we write ~,~ECLT(P) instead of geCLT({P , j ;  a,}). Definition 
2.8 in this case is Hoffmann-Jorgensen's and is equivalent to Dudley's definition 
of Donsker classes. In the case P,j= P, a ,  = n ~/2, the finite dimensional distribu- 
tions always converge to those of Ge, the centered Gaussian process with differ- 
ence variance p2(f  g ) = p ( f _ p f _ g + p g ) 2 .  If ~-eCLT(P),  then the limit 7 is 
the law of Ge, and since it is Radon, Gp, in particular, admits a version with 
bounded and pc-uniformly continuous sample paths (Andersen and Dobri6 
1987). 

2.10. Definition. ~ - ~ 2 ( P )  and satisfying (2.5) is P-pregaussian if Ge admits 
a version with bounded p~-uniformly continuous sample paths. 

As a corollary to the definition, a necessary condition for Y e C L T ( P )  is 
that f f  be P-pregaussian. From Talagrand's theorem, we obtain the first part 
of the following corollary. The second part is trivial and therefore its proof 
is omitted. 

2.11. Corollary. A class of functions ffc~C~2(P ) is P-pregaussian if and only 
if (~,pp) admits a (discrete) majorizing measure. I f  [IPfll:< ~ ,  Pe can be re- 
placed by ee in this statement, where ee(f  g)= (p( f  _g)2)l/2. 

Let F(s)=sup If(s)[ be the envelope function of f f  and let F(s)=sup If(s) 
f ~  J'e,~ 

--Pfl .  Then (see e.g., Gin6 and Zinn [19863, Proposition 1.2.7) a necessary 
condition for f f e C L T ( P )  is that limt2P*(ff>t)=O. If I IP f l [ :<~,  then 

t ~ o O  

lira t 2 P* (F > t) = 0 is necessary for ~- e CLT (P). 
t ~ o O  

Since ep and F are more convenient than PP and if, we will assume in 
what follows that I[Pfrlo* < o% in the i.i.d, case. 

(c) The Law of the Iterated Logarithm 

Recall that L x =  1 v l n x ,  x > 0 ,  and L2x=L(Lx) .  Let for n ~ N  

(2.6) a, = (n L z n) 1/2. 

Let (S, ~ P )  be a probability space and let ~ _~ 5~ 2(P) satisfy (2.5). The follow- 
ing definitions are analogous to the definitions in separable Banach spaces (see 
e.g., Goodman, Kuelbs, and Zinn [1981]). 

2.12. Definition. Let X~: (O,s be the coordinate projections from 
(s Z, Pr) = (S N, 5 P~, R ~) x ([0, 1], N, 2) onto S. Then we say that ~ satisfies the 

compact law of the iterated logarithm for P - ~ C L I L ( P )  - if (f(Xi) 

- - P f ) ~  is relatively compact in 5r a.s. We Say that ~ satisfies the 
) . :  1 

bounded taw of the iterated logarithm for P - ~ e B L I L ( P )  - if 
n 

- ~ = ( f (  lira sup a, 1 Xi)--Pf)  < m a.s. 
3~ 

n i = 
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Next we give a sufficient condition for o~eLIL  which is based on ideas 
of Pisier (1975) (we only state a sufficiency result since this is all we need). 
As usual {el} is a Rademacher sequence on the ([0, 1], N, 2) part of (f2, Z, Pr). 

2.13. Theorem. Let  J ~ F 2 ( P )  and satisfy (2.5). Assume that for  every q ~ N  there 
exists 7zq: Y ~ ~ such that @ {~qf: f ~ }  < o% 

(2.7) lira II P ( f -  rcq f)2 JI w = 0 
q ~ o o  

and such that for  all c~ > 0 there exists  qo > 1 such that for  all q > qo 

(2.8) " . / } lim Pr* sup ~ i ( f - r c q f ) ( X i )  an>o~ =0 .  
no--* co t - n ~ n o I l i =  1 

Then @ ~CLIL. (And i f  instead o f  (2.8) we only have that for  some ~ > 0 

(2.8)' l imPr* sup ~ e i  a , > ~  =0 ,  
no-~C~ ~ .n~no  i = 1  

then Y ~ BLIL.) 

Proof  If (2.7) and (2.8) hold, since 

sup sup anZ E - 7cq f )  ( X i ) -  P ( f  - Tzq f ) ]  2 
n > n o  f ~ . W  i 

< ( L 2 n o ) - ~ s u p P ( f - r c q f ) 2 ~ O  as no~OO, 
f e w  

it follows by standard symmetrization techniques (e.g., Corollary 2.6 and a simple 
modification of the proof of Lemma 2.7 (b), both in Gin6 and Zinn [1984]) 
that for all e > 0 there exists qo > 1 such that for all q > qo, 

n 

limooPr* {s2p ~ ,,~. [(f--.q f)(X~)- P(f-.q f)] w > . a.} = O. 

Hence 
n 

lira sup a 2 1 .  i~1 [ ( f - r ~ q f ) ( x i ) - P ( f - z q f ) ]  w--<a a.s. 

From this it follows by the usual finite dimensional approximation (see e.g., 
Pisier [1975], Theorem 3.1) that f f~CLIL(P) .  The proof for the BLIL is trivi- 
al. []  

A way to check (2.8) is via the following. 

2.14. Proposition. Let  I k = {n: 2 k < n <_ 2 k + 1 }, k E N .  Let  J-g c 2 '  2 (P). I f  for  some 
5>0  

(2.9) ~ Pr* {ll ~ el h(X~)[I ~r > ~ azk} < 
k = 0 i ~ l k  
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then 
n limooPr*{suPo,,i~leih(Xi) ./a.>8@=O. 

Proof Follows as in Stout (1974) pp. 159-160 by keeping track of constants. 
Note that Levy's inequality holds with Pr* (see e.g., Dudley and Phillip 
1983). [] 

We also require a way to evaluate (2.9) due to Kuelbs and Zinn (1979, 
Theorem 1). For the reader's convenience we will state the result the way we 
need it. 

2.15. Proposition. Let {Zj}i~r~ be independent, symmetric B-valued random vari- 
ables, (B, ][" [J) a separable Banach space. The conditions 

(2.10) j - 1 H Z j ] ~ 0  a.s., 

(2.11) ~(A(k))2<oo, where d(k)=  ~ 4-kEl]Zil] 2, 
k j e l k  

k 

Z Zj/k-+O in probability, 
j = l  

(2.12) 

imply that 

(2.13) Pr{II~Zs]I>62k}<o0 for all 6>0. 
k = 0 j~ lk 

As a final remark, it should be added that at least under separability if 

the CLIL(P) holds for if, the set of limit points of the sequence (f(Xi) 

- P f ) "  f e ~ }  is a.s. equal to the ball of center zero and radius ~f2 of the 

reproducing kernel Hilbert space of the covariance of f ix,-P. In this case the 
rkhs is 

~ = { f  ~ ~g f  dP: f e~ ,  geL 2(S, ~,P), P g = 0 }  

(Dudley and Kuelbs 1980, Yukich 1986). 

(d) A Lemma on Sums of Nonnegative Random Variables 

In the proof of Theorem 3.1 we will need the following lemma, which may 
be of independent interest. See Marcus and Pisier (1984) and Marcus and Zinn 
(1984) for results of a similar nature. 

2.16. Lemma. L e t  {Zi}/k=l, k <~ o0, be a sequence of independent nonnegative real 
random variables, and let 

/ k ~1/2 

I]{Zi}l]2,~:=(sup ae E Itz,>al] , 
\ a>O i=1 / 
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which is equivalent to the d 2 ,  0o norm of {Z~}. The following inequalities hold" 
k 

a) I[ {Zi} 112 _< s u p  a ~ Zi I[z, >.1_-< 2 I1 {Z~} II 2 , O 0 - -  2, o0 
a > O  i = l  

and 
k 

b) /f  K : = s u p  t 2 ~ P { Z  i > t} < oe 
t > 0  i = l  

and 
Z i ( c o ) < b  < oe ~o--a.s., i = l , . . . , k .  

then for c > e K, 

P {[L {Zi} 112 o0 > c} _-< (1 - e K/c) -*  exp  ( - -  c b -  2 In (c/e K)). 

Proof Le t  , k {Zi }i=1 be  the  n o n i n c r e a s i n g  o r d e r  s ta t is t ics  o f  {zi}f= 1, i.e., Z *  > Z *  
for  i<_j, a n d  let Z ~ + I  .'=0. W e  h a v e  

k k 

sup  a. ~ Z i I[z , > al = s u p  a.  ~ Z i* Irz;>al 
a > O  i = 1  a > O  i = 1  

J 
= sup  sup  a . ~ Z *  

l<=j<kZ~j+l<~a<Z * i = l  

J 
= sup  Z *  Z Z *  

l < j < k  i = l  

J 

1 <--i<~k 1 < j < k X i  = 1 / 

=< 2 �9 sup  i Z *  2 _ 2 [[ {Zi} I]2,2 oo, 
l <i~_k 

a n d  p a r t  (a) is p r o v e d  s ince the  first  i n e q u a l i t y  in (a) is tr ivial .  As  for  p a r t  
(b) we  h a v e  

I[z, > ~1 > c = P( sup  i Z *  2 ~> C) P \,>oSUp a 2 "i l<<-i<k 

= P(  s u p  i Z ~  2 > c)  (since 
c b - 2 < i ~ k  

) <= ~, P ~ Itzs>(c/i)'/21>= i 
c b - 2 < i < k  \ j = l  

<= e e ( z j> (c / i ) l / 2 ) /  
cb 2<i=<kk j = l  

< ~, (eK/c)  i 
c b - 2 < i ~ k  

< (1 --  e K/c) -  1 (e K/c) cb-2 

= (1 -- e K/c) - 1 exp  ( - -  c b -  2 In (c/(e K))), 

sup  i Z *  2 , (C)  
i < c b - 2  

w h e r e  we  h a v e  u sed  i n e q u a l i t y  (1.3). [ ]  
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In Theorem 3.1 we will use both inequalities (a) and (b) together i.e., the 
k 

exponential inequality for the variable sup a ~ Zi l~z~ > ~j. 
a > O  i = 1  

3. The Basic Inequality 

In this section we will prove the basic inequality needed for the proofs of Theo- 
rems 4.1 and 5.1. See Remark 3.2 for a clarification of the hypotheses. 

3.1. Theorem. Let ((2, X, Pr) be a probability space, (S, 5~) a measurable space 
and k {Xi}i= 1 a sequence of independent S-valued random variables with laws 

k 

~q(Xi)--Pi. Let furthermore Y =  (-]Yo(S, 5~,,Pi). For some qoe]N assume that 
i = 1  

for each q>qo there exist a set Tq, and functions tq: ~-~Tq,  ~q: T~ 
k 

0 o(S, ,P0, and l<_i<_k, such 

i ~ i  that, for 7cq=~qOtq, 7q=- ~qo tq and Aq=Aqotq, we have 

(3.1) [(f-~qf)l<__Aqf for f e ~ ,  l < i<k ,  

(3.2) fl,o"=sup E 2-qTqf  < oQ, 
f e ~  q>--_qo 

k 

(3.3) ~ E([TCqf--Tzq_lf ] (Xi))2<K . 2 -2q, f ~ ,  
i = l  

k 

(3.4) sup t 2 ~ Pr {Aiq f(Xi) > t} < K .  2- 20 fe~, ,  
t > O  i = l  

(3.5) d~f~  as q~ for f ~ , ,  1 <_i<_k, 

(3.6) t q _ i f = t q _ l g  for all f, g E ~  such that tq f=tqg ,  

where K <  ~ is a constant. Then for all ~]R+ and ql >qo such that 

(3.7) ~ > (K e 2 fiqo) v ((K k) ~/2. 2-q') 

we have 

(3.8) Pr*{  i~ed f -~qo f ) I tGo1<2~o-~ /~o§  

q l  

=<3. Z 2) 
q = q o +  I t~Tq 

where {ei} is a Rademacher sequence independent of {Xi}. 

3.2. Remark. The hypotheses (3.1)-(3.6) may be difficult to grasp at first glance. 
So, at the risk of incurring some repetition (see Sects. 4, 5), let us relate these 
conditions to majorizing measures and Gaussian processes. Let p be the pseudo- 
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distance associated to a Gaussian process on f f  whose law is Radon in d~(~'). 
Suppose: 

k ] 1 / 2  

i __~-~1P~ ( f - -  g) 2 ] ~ "(f ,  g), f , g ~ f f  (i) 

and 

(ii) 
k 

sup t 2 ~ Pr{[  sup [f(Xi)-g(Xi)[]*>t}<=~ 2 
t > 0  i = l  g ~ B p ( f , e )  

for all f ~ ,  e>  0. 
([ii] is the local modulus or bracketing condition alluded to in the title of 

this article.) Then all the assumptions of Theorem 3.1 hold and moreover the 
right side of (3.8) tends to zero as q 0 ~ .  To be more precise, if/~ is a discrete 
majorizing measure for (~,, p), take zc q f as in (2.2); Tq = {t o f==(q, n 1 f, ---, nq f ) :  
f ~ }  ((q, gqof, "", 7rqf) suffices); take the 7qf ' s  to be the ~qt's of Lemma 2.4; 
and let 

A~f= min [ sup [ g - G f l ] *  
l <=r<=q g e B o ( ~ r f ,  3 " 2 - r  ) 

where the �9 denotes the upper measurable envelope with respect to P~ (assume 
the Xi are perfect). 

Proof of Theorem 3.1. Let zi f : = m i n  {q > q0: 3q f > 2 -q-  1/yq + i f }, f ~ ,  1 < i < k, 
We have for f e ~  and 1 _< i _< k that 

ql 

f - n q o f  = f - ~ q ~ f  + ~ (nqf--rcq-lf) 
q = q o  + 1 

qI 

= f - n q ~ f  + ~ (~qf-~zq_lf)I~,:<qj 
q = q o +  1 

ql 

+ ~ (~rqf--zcq-lf)ILny~ql 
q = q o  + 1 

ql - 1 ql 

+ ~ (f-nqf)I~,~:=q~+ ~ (r%f-~zq_lf)I~c>=qp 
q = q o + l  q = q o + l  

So, by (3.9) and (3.1) 

(3.10) P r*{  ~=le~(f--~rqof)It~,:>qol(X~)>12a} 

k 

q l _ 1  1 i ~  1 
+Pr*  q=~+ ~A:fl t~, . r=ql(X 3 ~ > 8 @  

+ Pr* ~i(~zq f -  Uq_ ~ f )  l[,~f >q](Xi) > o~ 
q =  + l  i = 1  ~" 

�9 "=I+ I I +  III. 
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Estimation of I. If k {Zi}z=l are non-negative random 
k 

=sup t 2 ~ Pr{Zi>t } and a=(c/k) 1/2 we have 
t > O  i = 1  

k 

EZi<k 'a+ ~ ZPr(Zi>t) dt 
i = 1  a i = 1  

oo 

<k. a+c. ~ t-2dt=2(kc) 1/2. 
a 

So, by (3.4) and (3.7) 

k 

A i (3.1l) ~ E( q~f)(Xi)<2(kK)~/22-q*<2e, fe~,~ 
i = 1  

variables then for c 

Since {zi f >  q~} -- {A~, f <  2 -ql (Tq~ f)-1}, (3.11) gives 

k 

(3.12) ~ E(A~ f lt~,p=~n(Xi)) 2 < 2 ~ 2-q*(yq, f)-1. 
i = 1  

By (3.6) A;,flt~,y>=q n only depends on f through tq, f so we get by Berntein's 
inequality after centering, 

(3.13) I <  2 Pr 2 A~(t)It~(O>q~](Xi)>3c~ 
teTq~ ki= 1 

< Z 2"exp(--l~4eZq'Yq~(t)) 
teTqt 

<2. ~ exp(-3afi~o*yq~(t) 2) 
t~Tql 

since/3qo > 2 -q' 7ql(t), te Tq. 

Estimation of II. Note that 

{z, f =  q} _c {(2 7q + 1  f ) - I  < 2 q A~ f=< ('~q f ) -  1} 

and that Aq f and 7q f only depend on f through tq f So 

([I q~-i k 2qAi~fI~if=ql(Xi).~, } (3.14) n=Pr* l [ Z ( 2 - q Y q + l f l ( ~ ) q + l f ) - l E  >Sg 
k l l q = q o +  1 i = 1  

= ~ Z P r  sup (Tq+lf)-l~2qA~(t)lt~,f=ql(Xi)>4c~fl~o 1 
q = q o +  1 teTq {f: tqf=t} i = 1  

Pr supa-  ~ q i = 2 dq(t)I[a<zqA~tO<e.(O-q(Xi)>2o~flqo I . 
q = q o +  1 teTq k a > O  i = 1  
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Now, Lemma 2.16, (3.4) and (3.7) yield 

k 

Pr~supa't~=12qA~(t)l[a<2qa~(t)<vq(t)La>O .= 1] (XI)>  2 0~ fl~ol } 

So, by (3.14) 

(3.15) 

< 2. exp (-- e fi~ t 7q (t)2) �9 

ql-- t  
I I < 2 .  ~ ~ exp(-afl~o17q(t)2). 

q=qo+l  teTq 

Estimation of  I IL  Here we note that (nq f - rc~_  if)It~f>=q] and nq f only depend 
on f through tq f Hence 

(3.16) III =Pr*  2-q (7q f ) (2 -q?q f ) - i  
k i l q = q o +  1 

k 

ei(rcqf - ~q-1 > 
i=1 

=< ~ Pr ei(=q(t)--Tzq_l(t))It~(O>=ql(X,) >~ 2-q7~(t)fl~o 1 . 
q=qo+ 1 teTq ki=l 

Since (by (3.1) and ( 3 . 5 ) ) 1 7 t q f - ~ _ , f t < = 2 - q + l ( y q f ) - '  on {z~f>=q} Bernstein's 
inequality and (3.3) give 

k 

Pr ( i~= lgi(1~q(t)- 7~q_ l (t)) l[z,(t)>q](Xi) > 0~ 2-q ,q(t) fl~o 1} 

=< exp { -- g2 (2K fiao + 4/3 ~)-1 flqo 1 7q(t)2}. 

This, together with (3.16) and using (3.7), gives 
ql 

(3,17) III=< ~. ~ exp(--�89 1 7q(t)2). 
q=qo+ 1 teT~ 

Now since {v , f=qo}={A~of>2-qo-z />.qo+l f }  , (3.10), (3.13), (3.15) and (3.17) 
imply (3.8). [] 

4. The Central Limit Theorem 

We obtain first a non-i.i.d. CLT, Gaussian convergence, that includes Donsker's 
invariance principle and then we specialize to i.i.d, random elements. 

(a )  A CLT  for Non-Ll .D.  Random Variables 

Using Theorem 2.9 and Theorem 3.1 we obtain the following "bracketing" 
CLT for not necessarily i,i.d, random variables. Set-up and notation are as 
in Theorem 2.9. 
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4.1. Theorem. Let oj = ~ SI(S,  Y,,P,j) and satisfy (2.5), and let F be the envelope 
n, )  

function of ~. Assume 

(i) For every keN,  and f l ,  . . . , f k ~  the finite dimensional distributions 

5 ~ a. -1 (fi(X.j)-P.jf/)~=l converge weakly; 
j=l n=l 

(ii) ~ Pn*{F>ta,} ~ 0 foraIl t>O; 
j=l 

and that there exists a pseudo-distance p on o~ dominated by the distance d a 
of a centered Gaussian process G on o ~ with bounded do-uniformly continuous 
paths, such that 

(iii) an 2 ~ p~j(f_g)2 <p2( f  g) for all f g ~ Y  
j=l 

and 

(iv) for all f E ~  and e>0,  

s u p t 2 ~ p n * {  sup ]f--gl>tan}<=e 2. 
t>O j=l gEBp(f,e) 

Then ~" ~CLT{P,j; a,} and the limiting measure is Gaussian. 

Proof Let T:={rcq f :  f ~ ,  qr  and let/~ be a probability measure on T satisfy- 
ing the conditions (2.2) and (2.4) for d = d~. These exist by Talagrand's theorem 
2.5 (ii). Then the ~q'S satisfy conditions (i) and (iii) in Theorem 2.9. By hypothesis 
(ii), the finite dimensional limits are Gaussian. So, only condition (ii) in Theorem 
2.9 remains to be checked. For this, we will use Theorem 3.1. Let ~ ,={a~-~f :  
f ~ Y } .  For  all r, q, n, jEN,  f e ~, f =a ~ a f z~ ,  we let 

(4.1) t q f= tq f={~r f }~=l ,  Tq=tq~, 

(4.2) rCq f= a~- 1 lrq f ,  

[ ( / r O i  \)]1]2, (4.3) 7qf:=?q~=Tq(tqf):= In 2 q # { % f }  

(4.4) flq = sup 2 2-~ 7~ f,  
f e ~  r>=q 

(4.5) nj nj  --  nj  - 1 Aq f:=A~ f:=Aq (tq f):=a, rain [ sup Ig-rc~fl]* 
l < r < q  g~Bo( l r r f ,  3 .  2 r) 

where the upper envelopes are taken with respect to P~j. Obviously 

(4.6) 2-~ql/2~Tqf 'r  and AqJf~ as q]', 

and by Lemma 2.4, 

(4.7) flq+O, flq<Oe for all q > l  
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and 

(4.8) lim ~ ~ exp(-rTq(t)2)=O. 
r ~ a o  q = l  tETq 

Let ct>0 be fixed and let P r , = P , I |  |  Then 

(4.9) Pr*{  j~=lej(f-TCqof)(X~j)>2~a~} 

: P r * {  j~=le~(f-r~qof)I~jo:>2 qo-1/,qo+l:l(Xi)>cxa,} 

+ Pr* ~leJ(f - ~qof) ltz~oY <- 2 ~o- %~o+ 
j ~n 

. .=I+II.  

Estimation of I. Since "~ - Aao f(X,j) < 2. as ~ F(X,j)* and 

bqo,=2-q~ (by (4.7)) we have by (ii) 

(4.10) I=< ~P~*{F>�89 as n - - ~ .  
j = l  

Estimation of II. The conditions (3.1)-(3.7) in Theorem 3.1 are satisfied for 
K = 9  and for qo and ql(n)>qo sufficiently large (use (2.2), (4.5)-(4.7), [iii and 
iv]). So, by (4.7) and (4.8) 

(4.11) lim lim sup I I ~  lim ~ ~ exp(-~fi~o~Tqo(t)2)=O. 
qo--~r n qO~oo q = q o + l  tETq 

Now (ii) in Theorem 2.9 follows from (4.9), (4.10) and (4.11). []  

4.2. Remark. Minor modifications of the above proof yield stochastic bounded- 

ness of the sequence a~- ~ under the weaker assump- 
tions J n = 1 

(ii)' sup ~ P~* {F > t a,} < c~ 
t > 0  j = l  

and 

(iii)' and (iv)': (iii) and (iv) with p dominated by the distance dG of a centered 
Gaussian process G with bounded sample paths. 

4.3. Example. Donsker's invariance principle. Let {~2}~=1 be i.i.d, real valued 
random variables with E ~ = 1 ,  E ~j = 0. Define S-valued random variables, with 
S = (Q c~ [0, 1]) 2 x N,, by X, j  = ( ( j -  1)/n, fin, ~i), J = 1 .... , n, heN, and let @ = {ft: 
te l0 ,  1]}, with ft(rl, r2,x)=O if t < r l ,  = x  if t>r2, and linear for t between rl 
and rE, where 0 __< r t < rE =< 1, rl, r2 e ~ ,  x ~N~ (and set f~(rl, r2, x) = 0 if r 2 < r 0. Then 
the invariance principle for the sequence {~} is equivalent to @ z C L T  {P,j; n ~/2} 
with P~i=(X,j). But standard computations show that Theorem 4.1 gives 
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~-eCLT{P.i;  n t/2} just by taking p ( f , f ~ ) = 2 l t - s [  1/2 in (iii) and (iv). (Since 
max l~l/n ~/2 ~ 0 a.s., here we mean the invariance principle for both the polygon- 
j<=n 

al lines and the step functions constructed from the partial sums of ~j/nU2.) 

(b )  The Central Limit Theorem for Ll.D. Random Variables 

The following theorem follows directly from Theorem 4.1. 

4.4. Theorem. Let ~ ~5~2 (S, 5{,P) and let F be its envelope function. Assume 
PIPflI~< oo and 

(i) lim t2 P{F* > t} = O. 
t ~ o O  

Assume further that 

(ii) ~ is P-pregaussian, 

and that 

(iii) for all q ~ N  and f ~  there exist measurable functions r and Uq(f) 
on (S, 5 r and there exists a finite measure ~ on the pairs {(/q(f), Uq(f)): q~N,  
f c ~ }  such that 

(a) Eq(f) <=f < uq(f) for all f 6 ~  and qEN,  

(b) supAI~, oo (uq ( f ) -  [q (f))  < 2 -q for all q ~ N ,  
f eo* 

oo 

(c) lim sup ~2-q[ ln (#{ (r  and the sup is finite for 
r ~  f e , ~  q=r  

r = l .  

Then F ~ CLT (P). 

Proof Assume the hypotheses of Theorem 4.4 hold. Let {rCqf} and v satisfy 
(2.2) (i), (ii) and (2.4) for p. Define 

lim t 2 P(F* > t) = O. 
t ---~ oO 

Assume further that 

(ii) ~ is P-pregaussian 

and that 

(iii) there exists a bounded and da-uniformly continuous centered Gaussian 
process G such that for all e > 0  and all f ~ ~ 

P A2,~o([ sup [ f - g l ] * ) < e .  
g~BdG ( f ,  e)  

Then ~ e C L T ( P ) .  

We now restate the theorem in a more standard "bracketing" form (although 
the examples that will follow seem to indicate that condition (iii) in Theorem 
4.4 is more readily applicable than the equivalent bracketing condition that 
follows). 

4.4'. Theorem. Let ~ c S ~ ( S , ~ P )  and let F be its envelope function. Assume 
JlPfH~< ~ and 

(i) 
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Uq(f)=rCq+lf+ ( sup IrCq+ 1 f - g [ ) * ,  
gEBp(nq+ i f ,  2 - q  -1)  

# q ( f ) = n q + l f -  ( sup [~q+ l f - g l ) ,  
geBo(rr + l f , 2 -  q -1  ) 

and # {(#q f, Uq f)} = v {~q+l f}  for all f e ~  Then ~ q(f), uq(f) and # satisfy condi- 
tion (iii) in Theorem 4.4'. Conversely, assume condition (iii) in Theorem 4.4' 
holds. Define 

hq(f) = {({r(f), ur(f))}~= 1 for all f e . ,  ~ and q e N  

q 

and/~ {hq(f)} = 2 -q l--[ # {(fr(f), u,(f))}. Then the argument in Lemma 2.4 shows 
r = l  

tha t / l  verifies (2.4) with rcq t replaced by hq(f). Define 

/5(f ,g)=2 -*(I'*)+1 where r ( f ,g)=inf{q:  hq(f),t=hq(g)}. 

Choose a function h in each class {g: hq(f)=hq(g)}, q e N ,  f e Y ,  and define 
~q-1 f =  h. Let v {Tcq_~ f }  = fi {hqf},  q e N ,  f s ~  Since/5(f, ~ q f )  __< 2 -q and v veri- 
fies (2.4) it follows that v is a majorizing measure for /5. Hence by Remark 
2.6 (2), fi is dominated by the pseudo-distance d G of a Gaussian process G with 
bounded and p-uniformly continuous sample paths. Finally the A2, w-condition 
in Theorem 4.4 is obvious from the definitions of p (/5) and the hq's and from 
(iii) (c) in Theorem 4.4'. [] 

The improvements of Theorem 4.4 on the already sharp CLT under bracket- 
ing in Ossiander (1985) are apparent from 4.4': the L2-brackets are replaced 
by A2. oo-brackets and the entropy condition is replaced by the weaker majorizing 
measure condition. This weakening of the L2 and entropy conditions considera- 
bly widens the applicability of bracketing. 

In order to make more transparent the relationship between Theorem 4.4 
and the Jain-Marcus CLT, we reformulate Theorem 4.4 for processes. We recall 
first that a centered stochastic process {X(t): t e T }  on a metric space (T,d) 
is pregaussian if its covariance coincides with the convariance of a centered 
Gaussian process Gx on T with bounded and uniformly d-continuous sample 
paths. If no metric d is specified for T, we take d = dx in this definition, with 
dx(s, t ) : : (E (X  ( t ) -  X (s))2) 1/2, s, t@ r. 

4.4". Theorem. Let {X(t): t s T }  be a sample bounded process on a set T such 
that EX( t )=O and EX2( t )<  oo for all te  r. Assume: 

(i) u2p*{llXlloo>u}--,O as u ~ o o ,  
(ii) X is pregaussian, and 

(iii) there is pseudometric p on T dominated by the pseudometric d e correspond- 
ing to a centered Gaussian process G on T with bounded and uniformly 
dG-continuous path such that for some K > 0 and for all t ~ T and e > 0, 

A2,~( ( sup IX( t ) - -X(s) l )*)<Ke.  
seBp(t,~) 
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Then X ~ C L T  as a :~ random element. Moreover, if (T, d) is compact 
metric and X is sample continuous, then conditions (i)-(iii) imply that X ~ C L T  
in C(T, d). 

4.5. Corollary. Let (T,d) be a compact metric space and let {X(t): tET} be a 
centered stochastic process such that EX2(t)< oe for all t~ T. Assume: 

(i) X is pregaussian, and 
(ii) there exist M~A2,~(Y2, ~,, Pr) and a pseudometric p dominated by do for 

some centered Gaussian process G with bounded and uniformly do-continuous paths, 
such that 

(4.12) [X(t, co)-X(s,(o)[<m(o)p(s,t) ,  for all co~f2, s,t~T. 

Then X ~ C L T  as a C(T, d)-valued random variable. 

Proofs. The first part of Theorem 4.4" is obvious: take S=:~ 5P=the cylin- 
drical a-algebra of S, P=5~(X)  and ~ - =  {6t: t~T}. If X is sample continuous 
on (T, d), take instead 5~= C(T, d) and 5~=the Borel a-algebra of 50. Then note 
that if Y e CLT (P), since G x has bounded d-continuous paths, the finite dimen- 
sional approximation condition of Theorem 2.9 (iii) holds for p = d, and therefore 
X e C L T  as a C(T,d)-valued random variable. This proves the last statement 
of Theorem 4.4". To prove the corollary note first that condition (4.12) is much 
stronger than condition (iii) in Theorem 4.4". Finally, it remains to check that 
EXZ( t )<~  for all t 6T  and condition (4.12) imply the tail condition 
n2p{Hx][~o>n}~O as n~ov .  If e > 0  and if {sl} is an e-net for p then IlXIro~ 
< m a x  [X(si)[ + e M  and therefore lira sup n2p{][Xl] ~ >n} <e. e being arbitrary, 

i n ~ o o  

the tail condition holds. [] 

4.6. Remarks. (1) In the Jain-Marcus CLT, the conditions on M and p are 
stronger than in Corollary 4.5: in their theorem MsL2(f2, v, Pr) and p satisfies 
a metric entropy condition that implies its domination by a d o metric. (2) B. 
Heinkel (to appear) has recently obtained a direct proof of our Corollary 4.5. 
Heinkel (1977) had proved a weaker version of Corollary 4.5 (with MeL2). 

Next we indicate how a variety of known interesting CLT's are direct conse- 
quences of Theorem 4.1. 

4.7. Example. Let {~,},~N be random variables such that e,.'= 
(Ln) 1/2.A2,~(supj>.(Lj)-l/2[~j[)~O as n ~  oo and the vector X =  
((Ln)-l/2~,:n~N), which is obviously a.s. in Co, is pregaussian. We show now 
that Theorem 4.4 immediately gives that X~ CLT. (Paulauskas 1980, and Heinkel 
1983, considered a similar but less general situation.) We must prove that the 
class of coordinate functions on Co, ~ =  {f~: f , ( x )=x , ,  XSCo}, satisfies CLT(P) 
with P-SF(X) .  The hypotheses readily imply that t2p(F>t)~O.  Moreover, 
the pseudo-distance p(f, ,  f,,)=e,(Ln)-1/2 for 0 < n < m <  oe, is dominated by a 
Gaussian distance (that of G =  {e,(Ln)-1/2g,},~, with gi i.i.d. N(0, 1)). Hence, 
to apply Theorem 4.4 it suffices to verify (iii) for p. Given e>0,  if en(Ln)-l/Z<=e 
< e,_l (L(n-  1))- 1/2 then Bp(fk, e) = {fk} for k < n and Bp(fk, e) c {fj}j>, for k > n. 
So, the quantity in (iii) is 0 for k < n  and is bounded by 
A2, oo (2 supj=>,(]~j[/(Lj) l/z)) < 2 e,(Ln) 1/z < 2 e for k > n. 
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4.8, Example. Let {X(t)}tE T be a centered uniformly bounded stochastic process 
with all its sample paths in C[0, 1] (D[0, 1]). Gin6 and Zinn (1984) prove that 
if 

E[X(t)-X(s)I <=Kit-s[, s, t6[0, 1] 

for some K <  oo then X e C L T  as a C[0, 1]-valued (D[0, 1]-valued) random vec- 
tor. This is also an easy consequence of Theorem 4.4. To see this let us prove 
that ~ = {3t: re[0, 1]} eCLT(P),  where P = ~(X).  Assume sup IX(t, co)] < 1. 

t ,  o 

Obviously f f  is P-pregaussian. Take dG(s, t)=(2K It--s[) 1/a in (iii) in Theorem 
4.4 and observe that for t fixed 

2 " -  1 

sup [X(t)-X(s)J<_lim ~ [X(t+~k2-n)-X(t+a(k+l)2-")[ 
[ t -s[<~ n-,oo k = - 2 "  

so that for each t 
E sup [X(t)-X(s)l<_e 

and (iii) holds. ~s: d~ (s, t)-__ ~ 

4.9. Example. Weighted empirical processes. The Chibisov-O'Reilly theorem 
without continuity assumptions on the weight (as in Cs6rg6 et al. 1986 and 
Dudley 1985) can also be obtained from Theorem 4.4. Let P be the Lebesgue 
measure on [0, 1] and let ~={w(t)I[o, tl: te(O, 1/2]} where w is a measurable 
weight function for which there exists 7e(0, 1/2) such that w is non-increasing 
on (0, 7) and uniformly bounded on [7, 1/2] (usually one considers re(0, 1) and 
w U-shaped; the problem reduces to this "half"  by symmetry). The Chibisov- 
O'Reilly theorem assert that the following are equivalent: 

(a) Y e CLT (P), 
(b) ~ is P-pregaussian and p/2w(t)-~O as t ~ 0 ,  

(c) ~ t -1 exp (-e/twZ(t)) dt< oo for all e>0.  
0 

Since for @ = U ~ ,  ~ e CLT (P) iff ~ CLT(P) for all i=< n (Alexander 1985) 
i = 1  

we may consider separately ~ ,  i=1,  2, where ~={w(t)I[o,tl: te(O, 7)} and ~z 
= ~ \ ~ .  Trivially, ~ e C L T ( P ) .  So it is enough to consider ~ .  Condition 
(c) implies that t 1/2 w(t)~O as t ~ 0 ,  hence the envelope function F=w of 
satisfies (i) in Theorem 4.4 under either (c) or (b). Now, (b) holds iff w(t) W(t)~ 0 
a.s. as t ~ 0, where W(t) is Brownian motion (a version with continuous sample 
paths), and this is equivalent to (c) as follows. Independent increments and 
the Borel-Cantelli lemma show that the integral condition is equivalent to 
W(2-k) w(2-k)--*O a.s. as k-+oo; to show that this implies w(t)W(t)~O a.s. 
we use Levy's inequality to get 

Pr { sup Iw(t) W(t)-w(2 -k) W(2 -k) [>e} 
k t e ( 2 - k +  1,2 k] 

=< 4 ~  exp { -- ~2/8.2 k W(2-k- 1)2}. 
k 

This last expression converges for all e > 0 iff the integral condition holds (see 
e.g., Dudley 1985 for details). 
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So it remains to show that, under the integral condition (c), (iii) in Theorem 
4.4 holds. Assume without loss of generality that w is right continuous. Take 
as G the centered Gaussian process 

G(t)=23/Z(w(t) W,( t )+w(t - )  W2(t)) , t6(0, ~ 

where W1 and W 2 are two independent Brownian motions, so that 

d~ (s, t) 2 = 8 [ ( t -  s) w (t) 2 + s (w (s ) -  w (t)) 2] 

+ 8 [ ( t - - s )  w ( t - - ) 2 + S ( W ( S - - ) - - w ( t - - ) )  2] 0<s=<t=<7. 

Let m + ( u ) =  sup Iw(t)I[o,t](u)-w(s)I[o,s](U)l, u, se[0, 1] and let m 7 be 
t~BdG(S, e), t>s 

the same sup for t <s. Since M~ and M j  can be dealt with in similar ways, 
we only prove 

A~.o~(M+)<e2/2 for e>0,  s~[0, 1]. 

Let s~[0, 1] and e > 0  be fixed, let t 1 :=sup {t~Bd~(S, e): s<:t<=?} and 

{s, l(s, t~) otherwise 

For u~[0, 7] set u',=inf{t~Ud~(S, e): t_~u}, u".'=sup {t6B~(s, e): t<u} and note 
that if u6(s, tl} then u'~(s, tl]. Then for all u > V, Ms + (u)= 0, and for all u~(0, V], 
M + (u)=(w(s)-w(tD) I[o.~](u)+w(u') Ir~,t,}(u). So, with t,= sup {u: w(u)=>a}, we 
have 

A 2, oo (M +) = sup cd P {u: M + (u) = c~} 
~ > 0  

= s u p [ e  2 P{u<s:  w(s)--w(tD>a } +c~2p{ue(s, t~}: w(u') > c~}] 
~ > 0  

<_<_ (w(s)-w(t D)2 s + sup[w(t~- )Z p {u~(s, tt}" u' <=t~}] 
a > 0  

~(W(S)--W(tl))2 S +SUp[w((t2 A ta)-- )a P {ue(s, tl}" u<:t; /x tl} ] 

__< (w(s ) -  w(tl)) 2 s + sup [ w ( t - ) 2  ( t -  s)] 
tEBdG(S, ~), t>s 

=< sup dG(s,t)2/2<�89 2 
t e BdG (s, ~) 

Hence, (iii) in Theorem 4.4 is fulfilled. [] 

Alexander (1985) proved the CLT for VC-graph classes, and his CLT also 
implies the CLT for weighted empiricals, in fact more directly than our Theorem 
4.4. 

The previous examples show a very wide range of applicability for Theorem 
4.4. Note that 4.5, 4.7 and 4.9 cannot be obtained from bracketing entropy 
CLT's (Alexander, private communication, for 4.9), and that 4.5 and 4.9 satisfy 
EF2= co, hence cannot be obtained from an L2-bracketing theorem. All the 
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above examples are sharp in one sense or other (for Example 4.8 see Rhee 
[1985]). 

5. The Law of the Iterated Logarithm 

In this section we prove: 

5.1, Theorem. Let ~ c ~LP 2 (S, 6 a, P) and let F be its envelope function. Assume 
IIPf I [ :<  oe and 

(i) P* (F2/L2 F) < oe. 
Assume further that there is a bounded (resp. bounded and da-uniformly continu- 
ous) centered Gaussian process G and a pseudometric p on ~,~ so that 

(ii) p v e v__< do(L 2 d~ 1)1/2 
and 

(iii) for every e > 0  and f e w  

A v 2, oo(I- sup If-gl]*)<e. 
g e B p ( f  , e) 

Then ~ e B L I L ( P )  (resp. ~ C L I L ( P ) ) .  

Proof. By Lemma 2.7 there exists a subprobability measure ~t on T 
= {n 4 f :  q~N,  f s ~ }  c ~ with # (no Y )  < o9 such that 

(5.1) 

and 

(5.2) 

ev(f, = q f ) < 2  -q, p(f,, rt4 f ) < 2 - 4  

lim sup ~ 2-4(Lq) - 112 [ln (#{nq f } ) -  111/2 = 0  
r ~ 0 o  f e o ~ q =  r 

if G has bounded and d~-uniformly continuous sample paths, or 

(5.3) sup ~ 2-q(Lq)-  1/2 [ln (]A {7l; a f } ) -  1] 1/2 < 
f e o ~  q = 1 

if G has only bounded sample paths. Without  loss of generality, sup p f z <  1, 
p-diam ~ =< 1 and % f - -  n_ 1 f = O. Let 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.81 

Obviously 

(5.9) 

t~f=={nrf}~=l, Tq := t,l ~ ~ , 

In  24 , 

74 f '=~a(tq f)==(Lq)-  1/2 74(f), 

fl4o:=Sup ~ 2-qY4f, 
f ~  q>qo  

d4 f :=A4( tq f ) :=min  [ sup Ig -n~ f l ]* .  
r<= 4 g~Bp(Trrf, 3 " 2 - r )  

2-1ql/2<~Tq(f)'~ and Aqf+ as qT- 
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By a slight variation of Lemma 2.4 we have 

(5.10) fiqo+0, fig~ < ~ for all qo > 1 if(5.2) holds 

o r  

(5.11) fl~ < oo if (5.3) holds 

Also, and by Lemma 2.3 (A), for all qo > 1, rq > 1 

(5.12) ~ exp (--rq ~q(t)2)<2 -q~ 
t ~ Tq 

By Theorem 2.13 and Proposition 2.14, in order to prove the compact LIL 
it suffices to show that for all c~ > 0 there exists q => 1 such that 

(5.13) ~ Pr*{Ij ~, ~i(f -- TZqof)(Xi)l]o~ >o~a2k } < oo 
k=O i e l k  

for all qo>=q (and for the bounded LIL it suffices to show that there exists 
c~ < Go such that 

(5.13)' 

Define 

For qo > 1 we set 

Pr*{I] E eif(Xi)llo*>ea2 ~} < oo). 
k=O i e l  k 

Aq, k f :={Aq f >(2k/Lk) 1/2 2 - q -  1 / ~ q +  1 f)}.  

(5.14) f--rCqof =(f--rCqof) IAqo, kY+(f--rCqof) I(Aoo, kZ)~,=l+II 

Estimates for I. First we note that, by the integrability condition (i), there is 
cs. ~0, 3.< 1/2, such that 6, a.Tm and 

(5.15) ~ P{F*>a,a,}<oo. 
n > l  

Therefore also 

(5.16) n.P{F*>6, a,} ~ 0  

and 

(5.17) ~ 2kp{F*>62~ a2~ } < oo. 
k = l  

Hence, for any e > 0 

(5.18) ~, Vr* {N ~ ei (f-- xao f )  I A q o  , k f  n [F* > a2ka2k] ( X i ) I ]  ,~ > O{ a2k } 
k = 1 i e l k  

oo 

<= ~ 2kp{F*>62ka2k}< ~ 
k = l  
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Next we consider the truncated sum. It is easy to check that for a nonnegative 
random variable ~, E~I~e >~1 <= A 2, o~ (~)/a for a > 0 so that by (5.8) and (iii) 

(5.19) PAqo flAqo.kf _--< 9.2  -q~ ~ (Yqo+ 1 f ) (  2-k Lk) 1/z. 

Therefore, using (5.19), centering and symmetrization (e.g., Gin6 and Zinn [1984], 
2.7(b) with first instead of second moment), 

(5.20) Pr* {]1 ~ z i ( f  -- rcqo f )  I xqo, kf  ~tF*<_aZ~,X,:](Xi)[l~ >0~a2k} 
k = 0 ie lk  

< ~ Pr {H Z Aqoflaqo.kY~e*<-a2,-,z,4(X*lll~>~a2"} 
k = 0 i~l~: 

<4-  ~ Pr {l[ Z e'iAqoflaqo, kfc~tF*<=a2kaaul(Xi)ll~ 
k=O i~Ii< 

> 1 [ ~ _  27 sup 2 -  qo + 1 7qo + 1 f ]  a2k} 
f ~  

< 4 .  ~ Pr {1[ ~ eiAqoflAqo,kfc~[v,<_a2kazkl(Xi)H~>lo:a2u} 
k=O ie t  k 

provided e > 5 4  sup 2 -q~ Yqo+l f 
f e o  ~ 

In order to prove that the last sum in (5.20) is finite we will apply Proposition 
2.15. To check the hypotheses of Proposition 2.15, we proceed as in Goodman,  
Kuelbs and Zinn (1981) (in short, GKZ) pp. 727-728. We define for qoeN,  
k > l and j~Ik  

(5.21) Z~ ~ ( f )  = 2 k a2,, 1 aj A qo flaqo, k f " IF* ~ 62k a2kl ( X  j ) .  

Fix qo~N. The •oo (Y)-valued random variables Z'~o, j e N  (these are true random 
variables since ~ {AqoflAqokf} < 00) satisfy condition (2.10) (condition (4.11) in 
GKZ), actually, j -  1 [1Zj [I < 4 62k for j ~ lk. Now 

klZ~~ < 2k afk* I[Aqo f l [ :  I[;.qo(Zk/LkWZ< [Iaqof l l :  <a2k] 

where ~qo---2 -2(q~ because 3.<1/2, [IAqof l l :<2F*,  and we may assume 
V~o+,(f)<2q~ by (5.7) and (5.10)). Since s u p t 2 P { l l A q o f I l ~ > t }  is finite by 

t > 0  

hypothesis (iii), the proof on pages 727, 728 in G K Z  applies almost verbatim 
(the only differences are that we have slightly different bounds - e, and ft, 
in G K Z  - and that D in (4.17) of G K Z  has an extra summand of lower order, 
actually bounded, as is easy to check) to obtain condition (2.11) of Lemma 
2.15 (condition (4.13) in GKZ). To prove (2.12) of Proposition 2.15 we note 
that by (5.19) 

(5.22) pZ Aq ~ f laq  ~ , < . < 2 6.,,, a2k PA qo ,kf, '~[F =52ka2k]  = ~ f l A q o ,  k f  

< 9 . 2  -q~ 7qo+ 1 f f z k L k .  
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Hence 

~p2z~of<=eqo ~ 2kJf2kj for all f ~ f f  
j = l  j = l  

where eqo=9.2 -q~ supTqo+l f < o v  (by (5.2) or (5.3)) where kj is defined by 
feo~ 

the inequalities 2 k j -  a <j<2k~. Obviously 

~-m:=m - 2  ~ 2kJbzkj--+0 as  m--+oo 
j = l  

since 6~ --* 0. Hence by Chebyshev's inequality 

lira Pr ~ ~ Z~~ >mfl} N(+ Tqo ) lira sup Pr ~ ~ Z~~ >mfi~ 
kllj= 1 IlY f e F  t.lj= 1 I ) 

fi-2 lim g., 0 __<(# T~o) % = 
m 

for all qoEN and all fl>O, i.e., (2.12) is proved. So, Proposition 2.15 shows 
that 

Pr{ll ~ Z~~ 
k=O j ~ l k  

for all e > 0 ,  which by the definition (5.21) of Z~ ~ and the inequalities (5.18) 
and (5.20) gives 

(5.23) Pr* { ]] ~ e i ( f -  rCqo f)  IAqo, k: (Xi)II ~ > a a2~} < oQ 
k = 0 ie lk  

for c~> 108-2 -q~ slip 7qo+ 1 f. 
f e n  

Estimation of 1I. Let ~ = { f -  2 - ki2 : f~  ~ )  and let for f = f -  2-  k/2 E ~ and q _-> 1 

7qf=(Lk)l127q f, tqf=tqf,  ~qf=2-k127zqf and 

A~f=2-klEAqf for ieI k. 
Then 

(5.24) Pr* {11 Z ei(f--rCqof) I(Aqo,kf)c(Xi)N~>c~a2 ~} 
i~Ik 

= Pr * { N ~ e i ( f -  ~qo f)  Ira {o ~-<- 2-qo 1/Vqo+ 1 f] (Xi) l[ ~k > O~ (L k) 112 }. 
ie lk  

We will use Theorem 3.1 to estimate the last quantity. Note that (3.1), (3.2), 
(3.5) and (3.6) are fulfilled and that 

2 E((7cqf-7gq-1 f)(Xi)) 2 < 9 2 - 2 ~  f ~ ,  
ie lk  

supt  2 ~ Pr{Aiqf(XO>t}<9 "2-2q, f~ffk 
t>O i~Ik 
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by (5.1), (5.8) and (iii). Let q~ = k > q o  and 

(5.25) ~ ~ (108 e 2 fiao) v (36.2-  qo/Z). 

Then l~(Lk) 1/z ~ >(9ea(Lk) 1/2 fiqo) v (3(Lk) 1/2 2 k/2 2-q'). 
using (5.6) and (5.7), 

(5.26) 

So, by Theorem 3.1, 

Pr* { I] ~ ~ i ( f -  7tqo f )  I t~ y_< 2- ~o- '/v,o +, Yn (X~)II ~ > a (Lk) 1/2} 
i~I~: 

k 

<3.  ~ ~ exp(- -~c~(Lk)(Lq)-~  fl~o~q(t) 2) 
q = q o + l  teTq 

Now (5.24) together with (5.26) and (5.12) give that, for c~ satisfying (5.25) (which 
implies that ~6 ~fl~l > 2), 

(5.27) ~ Pr* {[I ~ ei ( f  -- rCqo f )  I(Aqo, k f)c (Xi)II ~ • ~ a2k} 
k >=qo ie lk  

k 

_<6. 
k>qo q = q o +  1 

1 - 1  <6.  ~ k . k - ~ P ~ o  ln2<(30" 
k >=qo 

Let us now prove the compact LIL. Let a > 0  and choose q such that �89 
~(108e 2 flq) v (36.2-q/z), which is possible by (5.10). Then (by (5.23), (5.27), (5.10) 
and (5.7)) (5.13) holds for all qo_~q. The bounded LIL is proved by letting 
qo = 1 and choosing a sufficiently large. []  

We omit here the "bracketing" version of Theorem 5.1 as it is completely 
analogous to Theorem 4.4'. In view of Lemma 2.7, Theorem 5.1 contains Yuk- 
ich's (1986, Theorem 7) LIL under bracketing. 

Our result was inspired by Ledoux's (1982) LIL for Lipschitzian processes. 
The following, which contains Ledoux's theorem (see Lemma 2.7), is an immedi- 
ate consequence of Theorem 5.1' (5.1). 

5.2. Theorem. Let T be an index set and let {X(t)}t~r be a centered stochastic 
process on T such that EX2( t )< ~ for all t~ T, satisfying 

(i) E*(IIXII~/L2 IIXll~)< 0% 
(ii) dx < da(L2 d~ 1)1/2 

for some bounded (bounded and d~-uniformIy continuous) centered Gaussian pro- 
cess G on T. Assume further that there exist M ~ A 2, ~(f2, Z, P) and a pseudometric 
p on T satisfying 

(ii)' p <<_dG(L: dd ~) 1/z 

such that 

(iii) IX(t, co)--X(s, m)l<M(o))p(s ,  t), o)~f2, s, t~T. 

Then X ~ B L I L  (X~CLIL)  as a C~(T, p)-valued random variable. 

Finally we will show that even the condition on p in Theorem 5.1 is sharp, 
at least in a particular instance. 
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5.3. Example. Let {~ ,} ,~  be random variables such that E~,2+0, let 
7, = {, (L3 n)l/Z/(Ln) 1/2, n e N ,  and F = sup,~N fq,]. Assume (L 3 n) - a/2 
.(LN)l/2Az.~(sups~,]tlj])~O as n--+ 0% and EFZ/LzF<oo. Then the Co-valued 
random variable X=(rl , :n~N ) satisfies the CLIL (the BLIL if the two zero 
limits are replaced by uniform boundedness). This follows from Theorem 5.1 
exactly in the same way as the CLT is proved in Example 4.7 from Theorem 4.4. 
Kuelbs (1976) proves the CLIL for ess sup I{k]= (Lk)- 1/2 We thus have addition- 
al examples of X~CLIL ,  X ~ C L T ,  ess sup JtX[p <oo.  This example contains 
Theorem 2 of Heinkel (1983). 

Example 5.3 is sharp: 

5.4. Proposition. Let {ek}k~ N be a Rademacher sequence. The Co-valued random 
variables X - { ( L  3 k)a/2(Lk)-l/2~k}k~ N does not satisfy the CLIL. I f  Ck-+ ~ the 
Co-valued random variable X={Ck(L 3 k)l/Z(Lk)-l/2ek}k~N does not satisfy the 
BLIL. 

Proof Let bk=(L3k)l/2(Lk) -1/2 and X~={bkek~}k~N, where {eki: i k~N} is a 
(double) Rademacher sequence. By Kuelbs (1977), in order to prove the first 

n 
statement, it is enough to show a, -1 ~ Xi+*O in probability. We have 

i=1 
n 

P {  i~=, X~ >a . ' }=P{supb t ,~=te~ ,> 'a"  } 

(oo { =1 g'ki } ) (  ~' { ng'ki=l })- -1  kE 1P b k iE  > ,a  n 1 -~ k=l-- P b k iE > 'a  n 

Since x ( l + x )  -1 is decreasing, it suffices to show that the numerator  of this 
fraction does not tend to zero. For  this we use Kolmogorov's  exponential lower 
bound (Kolmogorov [19291; see e.g., Stout [-1974), p. 262, Theorem 5.2.2(iii)), 
which specialized to our case is as follows: for every 7 > 0 there exist positive 
constants a (y) and fi (V) such that if n 1/2 fi (y) > ~ > a (V) then 

P { ~lei>nl/20~}_~exp(-�89 + Y)). 
i= 

We choose ~ > 0 and 6 <(1 + y)-~/2. Then we let c~, = (L  2 n) */2 , and a = �89 fl2(y)(l 
+y). Choose no(y) such that b~ -1 e ,>c~,>e(7)  and L2(n)/L2(an)<2 for n>no(7). 
Hence, for k < exp (a n), b~ 1 c~, n-  1/2 < (2 a) 1/25 < fl (7) for n > no (7)- Therefore, for 
n > no (7) and k < exp (an), Kolmogorov's  inequality gives 

p gki>b~l,a.  = e, ki > 1 .= i=1 z 1 

Hence 

O~ n n 1/2} 

( -- ~- bk c~, (1 + y)) > exp ( -- (L k) (s n) (2 La k)- *) >exp  1 -2 2 

> exp ( -  a n (s n)(2L2 (a n))- 1 > exp { - a n}. 

~=IP b k Zk i> 'a  > ~ P gk~>b[l~a, >=1. 
k i k~exp (an) ki= 1 
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Thissh~176 i~Xi > a , @ i s b o u n d e d f r o m b e l o w  

by 1/2 i.e., a21 ~ Xi+_~O in probability. The proof of )r162 is entirely similar 
i = 1  

(take 6 = ek(1 + 7)- l/Z) and is omitted. 
For an example in the same direction see Yukich (1986), Theorem 8. 

5.5. Remark. M. Ledoux and M. Talagrand have recently informed us that they 
can improve upon Theorem 5.1 (and hence its corollary) by relaxing condition 
(ii), at least in the separable case. Their result contains Borisov's (1985) whereas 
ours doesn't. We would like to thank M. Lacey for bringing Borisov's paper 
to our attention. 
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